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Abstract: Inferring gene regulatory networks (GRNs) from gene expression data is an important but challenging issue in
systems biology. Here, the authors propose a dictionary learning-based approach that aims to infer GRNs by globally mining
regulatory signals, known or latent. Gene expression is often regulated by various regulatory factors, some of which are
observed and some of which are latent. The authors assume that all regulators are unknown for a target gene and the
expression of the target gene can be mapped into a regulatory space spanned by all the regulators. Specifically, the authors
modify the dictionary learning model, k-SVD, according to the sparse property of GRNs for mining the regulatory signals. The
recovered regulatory signals are then used as a pool of regulatory factors to calculate a confidence score for a given
transcription factor regulating a target gene. The capability of recovering hidden regulatory signals was verified on simulated
data. Comparative experiments for GRN inference between the proposed algorithm (OURM) and some state-of-the-art
algorithms, e.g. GENIE3 and ARACNE, on real-world data sets show the superior performance of OURM in inferring GRNs:
higher area under the receiver operating characteristic curves and area under the precision–recall curves.

1 Introduction
The dynamic nature of gene regulatory networks (GRNs) plays
critical roles in cellular activity and ultimately determines
biological processes in a cell [1, 2]. A major issue in systems
biology is to unveil the GRNs for comprehensively elucidating
molecular mechanisms of cells and uncovering disease aetiology
[3–5]. With the increasingly accumulated high throughput data,
reverse-engineering GRNs from transcriptomic data has become an
important and cost-effective approach for this issue [5]. Lots of
efforts have been devoted to this issue from the community, e.g. the
DREAM project (http://dreamchallenges.org/). However,
untangling the comprehensive gene regulation networks (GRNs) is
now still a challenging task due to the complexity of cellular
regulatory system and limited knowledge about it in bioinformatics
and computational biology [6, 7].

A number of computational approaches have been presented to
reconstruct GRNs from transcriptomic data [8–17]. In general,
these GRN inference approaches fall into two categories:
parameterised topology methods and unparameterised topology
methods [16, 18, 19]. For the former, network topology is often
parameterised using generative network models, such as Boolen
networks [20], Gaussian graphical models (GGMs) [21], Bayesian
networks [22], or Petri nets [23]. Earlier, Shmulevich et al. [24]
introduced a probabilistic Boolean network model for GRN
inference, which, as a probabilistic generalisation of standard
Boolean networks, allows uncertainty in model selection and offers
more flexibility in inferring GRNs compared with Boolean
network models. Recently, Vasic et al. [25] extended the original
probabilistic Boolean model for GRN inference by adding
information theoretic rules. GGMs are another commonly used tool
for GRN inference, especially for small- or median-scale gene
networks [26]. For example, Tian et al. [27] applied a graphical
model to identify tissue-specific gene regulations. While the
GGMs-based methods focus on inferring undirected biological
networks, the Bayesian networks-based methods are used to infer
directed GRNs. Roy et al. [28] proposed to utilise the Bayesian
networks to infer regulatory programmes for individual genes

under a probabilistic constraint of module-level organisation of
regulatory networks. Siahpirani and Roy [29] recently further
improved this Bayesian network-based method by adding prior
information of sequence-specific motifs. However, most of the
parameterised methods face two challenging problems when it
comes to data sets with a large number of genes: (i) they can be
very time-consuming due to huge amounts of parameters being
trained; (ii) a larger number of observations than usually available
are required to reliably estimate network parameters [30]. Many
efforts have been made to deal with these problems. For instance,
Schafer et al. proposed to estimate the partial correlation matrix
with the Moore–Penrose pseudoinverse of the sample correlation
matrix, which is always irreversible due to limited number of
samples available [31]. Wang et al. [32] proposed to utilise a
regression approach for asymptotically efficient estimation of each
entry of the precision matrix of the graphical model under a
sparseness condition relative to the sample size. Considering that
GRNs are scale-free network and that hub genes play an essential
role in gene regulation, Yu et al. [17] developed an improved GGM
for GRN inference by incorporating prior information about hub
genes.

The unparameterised topology methods mainly rely on
measuring pair-wise dependencies between genes based on linear
or non-linear correlation models. The reconstructed networks are
also known as gene association networks [33, 34]. The Pearson
correlation coefficient (PCC) is a commonly used rule for
measuring the linear correlation between a pair of genes [35–37].
However, PCC have limited power in detecting complicated
dependency patterns between genes [38]. Information theory-based
rules, e.g. mutual information and its various variants, have been
extensively used to model the non-linear dependencies between
genes [39]. One drawback of standard mutual information rule per
se cannot distinguish direct regulations from indirect regulations
[12]. Conditional mutual information (CMI), as an extension of
mutual information rule [40, 41], has been applied to distinguish
direct regulations from indirect one [42]. However, CMI is often
too stringent to objectively estimate regulatory relationships [38,
43, 44]. To alleviate the false-negative problem caused by CMI,

IET Syst. Biol., 2017, Vol. 11 Iss. 6, pp. 174-181
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

174



Margolin et al. [42] proposed to filter out the indirect regulations
with the data procession inequality (DPI), while Meyer et al. [45]
proposed to filter out indirect regulations with the maximum
relevance/minimum redundancy feature selection. Recently, Zhang
et al. [12] proposed a new statistic, namely conditional mutual
inclusive information (CMII), which interrogates association
between a pair of genes based on the Kullback–Leibler divergence
by comparing the actual gene expression probability density and
the postulated one when the possible link between the two genes is
removed. However, in CMII, the imposed unimodal Gaussian
distribution causes bias in GRN inference. Liu et al. [46]
introduced the redundancy control strategy of information theory
and combined with clustering technology for GRN inference.
Running time is another crucial issue when applying information
theory to data sets with a large number of genes, e.g. genome-wide
GRN reconstruction. Parallel computation frameworks have been
introduced for improving computation efficiency of information
theory-based approaches [47, 48]. Liu et al. [49] proposed to
simultaneously improve computation efficiency and eliminate the
redundant regulations by incorporating CMI into local Bayesian
networks. Glass et al. [50] proposed a message passing-based
framework for updating GRNs initialised by the Tanimoto
similarity.

Another important line of unparameterised topology methods is
to see pair-wise dependence inference as a linear or non-linear
regression problem, namely, solving for the regulatory
relationships by regressing the expression levels of target genes on
known transcriptional factors (TF), despite the drawbacks of
vulnerability to incomplete knowledge of the system and the
statistical challenge of calibrating complex models to limited data.
For time-serious data, similar strategies, linear or non-linear ODE
models, were also used to elucidate gene regulatory interactions
[51]. Many traditional regression algorithms have been applied [3].
Sparse linear regression, e.g. l1 or l0 regularised linear regression,
has been recently used for selecting true regulators from a group of
candidates as GRNs are a kind of sparse biological networks per
se, i.e. a target gene is often directly regulated only by a small
subset of regulators. For example, Geeven et al. [52] predicted TF–
TF and TF–target gene interactions using LAsso models based on
gene expression data in combination with DNA sequence data
(GEMULA); Haury et al. [53] combined least angle regression
with stability selection technology for improving the accuracy of
inferred regulatory relationships. To address the non-linear
regulatory pattern problem, Huynh-Thu et al. [54] proposed a tree-
based ensemble method (GENIE3) by wrapping linear regression
model in a random forest framework, which relies on an interaction
ranking rule, instead of regressed association values, and was the
best performer in the DREAM5 network inference challenge.

However, the regression model-based methods just ignore the
influences from unknown or unobserved regulators. As we know,
limited by human knowledge, there are a number of potential
regulatory units still unknown, referred to as latent regulators
(LRs) [3]. Ignoring these LRs necessarily degrades the
performance of the regression models due to the incompletion of
predictors. A natural way to approach the problem is to first
discover as many LRs as possible from the expression matrix of
genes. This is analogous to ‘signal restoration’ in the field of signal
processing [55–57]. Dictionary learning is a new and promising
approach for ‘signal restoration’, which essentially finds the

subspace or dictionaries where the observed data (e.g. natural
patches, audio segment, or even gene expression data) lies and
determines the efficient representations of the data in the subspace.
Generally speaking, sparsity constraints are keys to most of the
algorithms of dictionary learning: they enforce the identification of
the most important causes of the observed data and favour an
accurate representation of the relevant information. Dictionary
learning has been widely applied in signal processing areas for
image denoising, audio processing, as well as classification,
proving that it outperformed traditional wavelet analysis in
discovering hidden signals [58–61].

To our knowledge, using dictionary learning to reconstruct
regulatory networks has not been explored. We here propose to
improve GRN inference by utilising dictionary learning to
interrogate hidden regulatory signals, including TFs, non-coding
RNA, and methylation, and remove their influences. An
assumption is made that the expression profiles are shaped
collectively by a handful of regulators, known or latent, in a
weighted linear way and these regulators can be discovered by
mapping gene expression data into a regulatory space spanned by
the regulators. Finally, with the resulting regulators, a given TF can
be predicted to be a real regulator for a target gene via a confidence
score that measures the expression similarity between the TF and
the resulting regulators. We applied the model to analyse synthetic
as well as real gene expression data about two model organisms
(Escherichia coli and Saccharomyces cerevisiae) and demonstrated
the superior performance of the proposed model for inferring
GRNs.

2 Methods
2.1 A global model for gene regulatory system

In biological organisms, gene expression can be controlled and
regulated by various factors, such as transcription factors,
microRNAs, or even their own methylation status. Restricted by
technology, not all of them are known or detectable in a biological
experiment, and only few thousands of TFs and microRNAs are
known by now. Keeping this in mind, we assume that there are
many unknown regulators that involve in shaping the expression
level of target genes but that are not detected, as depicted in Fig. 1.
These regulators can be comprehensively discovered using
dictionary learning, a data mining model widely applied in pattern
recognition and signal processing fields. Mathematically, we
represent a gene expression matrix Y in the following formula

Y = DX + ε (1)

where D represents the expression matrix of the regulators, X
represents a sparse coefficient matrix of the regulators on target
genes, and ε represents random noise subjecting to an i.i.d.
Gaussian distribution with the mean of zero. The regulators could
be known or latent. To mine the regulators for a given Y, we need
to find both proper D and X, i.e. to solve (1) means to
simultaneously optimise D and X given Y. 

Fig. 1  Global gene regulatory model for target genes with known and unknown regulators
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2.2 Simultaneously learning known and hidden regulator
signals

We approximate the solutions of (1) using the following
optimisation problem: (see (2)) where xi is the ith column of X, p
the number of the target genes, and ti a small positive constant
referred to as sparsity parameters. Suppose n samples, we have
D ∈ ℛn × l and X ∈ ℛl × p where l is the number of LRs. The
minimisation problem (2) is not convex on both D and X together
and solving this problem is NP-hard because of the l0-norm
constraint. Currently, there are no immediate solutions available for
the optimisation problem. Practically, it is desirable to find local
minima for such optimisation problems [62]. We developed a
modified k-SVD algorithm (Supplementary material) to
approximate the global optimum solution. The algorithm iterates
between the sparse approximation and the dictionary learning steps
until convergence. A proof for the convergence of the optimisation
algorithm is given in Supplementary material.

2.3 Inferring regulatory relationships from signal dictionary

As described above, the gth column of X
~
, x~g, specifies the

regulatory coefficients of all regulators on the target gene g, whose
non-zero elements represent a regulatory relationship. Suppose that
the vector x~g has ng non-zero elements whose subscripts are
f (1), f (2), …, f (ng), respectively, it can be inferred out that for
gene g, there could have ng regulators whose expression levels are
the ng columns of D

~
, Rd = d

~
f (1), d

~
f (2), …, d

~
f (ng) , as illustrated in

Fig. 2. 
Considering all possible regulators, known or unknown,

detectable or undetectable, are encapsulated in Rd for target gene g,
one can intuitively determine if a known regulator specifically
regulate and mediate the expression of gene g by matching with
Rd. Suppose a known transcription factor tf whose expression
levels are dtf and Γ represents the distribution of the correlation
coefficients of tf with the resulted regulators, e.g. linear Pearson
correlation or non-linear Spearman correlation. We estimate the
regulation confidence of tf on target gene g as follows:

CStf → g = CΓ
−1 α (3)

where C−1 represents the inverse (i.e. quantile) function of Γ, and
0 ≤ α ≤ 1 represents a given quantile point. One can vary α for a
proper estimation of regulation confidence, of which larger values
lead to more sensitive results. We take α = 1 to calculate the
confidence score for a high recognition sensitivity. Finally, we call
the transcription factor tf to be a regulator of the target gene g, if
the following equation holds

CStf → g ≥ T (4)

where 0 < T ≤ 1 is a confidence cut-off value and was set to be 0.8
for a high confidence of regulatory relationship.

2.4 Measures for evaluation

To evaluate the power of mining hidden regulatory signals, two
measures, i.e. recovery rate and precision, were used. Suppose k
true regulators in background networks, d1, d2, …, dk and l
recovered regulators by OURM, d

~
1, d

~
2, …, d

~
l, we define the

recovery rate and precision as follows:

Recovery rate = 1
k ∑

i = 1

k
I ∑

j = 1

l
I ρ di, d

~
j ≥ 0.99 > 0 × 100%

Precision = 1
l ∑

j = 1

l
I ∑

i = 1

k
I ρ d

~
j, di ≥ 0.99 > 0 × 100%

(5)

where I( ⋅ ) is an indicator function valued 1 if the statement is true
and 0 otherwise.

Additionally, two measures, i.e. area under the receiver
operating characteristic (AUROC) curve and area under the
precision–recall (AUPR) curve, were adopted to assess the
performance of different algorithms in recognising regulatory
relationships. Receiver operating characteristic (ROC) curves plot
false-positive rates against true-positive rates, while precision–
recall (PR) curves plot precisions against recalls.

2.5 Data sets

We evaluated the proposed method on both simulation data and
real gene expression data. The simulation data were generated as
follows: assume total k = 50 regulators, p = 1500 target genes, and
n samples. First, we simulated the expression profiles of the k
regulators in the n samples D ∈ ℛn × k by randomly sampling from
a standard normal distribution. Second, we created background
networks with a connection matrix X ∈ ℛk × p, where non-zero
elements represent a regulatory relationship between the
corresponding regulator and target gene and were sampled from a
standard normal distribution. Considering the scale-free property of
natural GRNs, we let 50, 25, 15, and 10% of target genes be
regulated by 2, 3, 4, or 5 regulators, respectively. Third, we
synthesised the expression profiles of target genes Y by Y = DX
plus Gaussian noise. To mimic different levels of noise, the signal-
to-noise ratio (SNR) was varied among SNR = 10, 15, 20, 25, 30,
or 40. Meanwhile, to mimic the influence of sample size, the
number of samples was varied among n = 20, 30, 50, 100, or 200.
So, there are totally 30 (=6 × 5) scenarios containing 6 different
intensities of noise and 5 different sample amounts. To avoid
randomness, in each setting of (n, k, SNR), we randomly generated
20 data sets and evaluated algorithms using average results.

We also downloaded a synthesised non-linear gene expression
data set as well as two real gene expression data sets from
DREAM5 (http://www.the-dream-project.org/). The synthesised
data contains the synthesised expression profiles of 1643 genes, of
which 195 are TFs, in 805 chips, and was produced from a real
regulatory network of E. coli consisting of 4012 experimentally
verified TF–TG gene interactions. For the detail of the generation
procedure for the synthesised data set, refer to the literature [6, 63].
The two real data sets are about two model organisms E. coli and S.
cerevisiae, respectively: one consists of the expression profiles of
4511 target genes and 334 TFs in 805 samples and the other the
expression profiles of 5950 genes, of which 333 are TFs across 536
chips. For the two real data sets, 2066 and 3940 experimentally
verified TF–TG gene interactions were obtained from RegulonDB
database [64] and Zhu et al. [65], for algorithm evaluation in this
study, respectively.

3 Results
3.1 Evaluation on simulation data

We first evaluated the performance of GRN reconstruction on the
simulated data. For comparison, we also applied four previous
methods, GENIE3 [54], CLR [14], ARACNe-AP [15], and
ARACNE [42, 66], to analyse the simulation data. The DPI
parameter in ARACNE, which marked as ‘eps’, was varied among
0, 0.05, 0.15, and 0.2 for fully comparison. Table 1 lists the results
of OURM and the four previous methods on the simulated data sets
of n = 20. From Table 1, the following conclusions can be drawn:
first, generally speaking, the proposed algorithm achieves the
highest average AUROCs and AUPRs across almost all data sets
(shown in bold) with different settings of l. Second, large ls, e.g.
not less than the number of regulators in the network (50), led to
high average AUROC and average AUPR. These results suggest
that a large value of l (e.g. larger than the number of regulators)
can be recommended for accurate GRNs reconstruction in practice.

The power of the proposed method in recovering hidden
regulatory signals on the simulation data was subsequently
calculated. Considering the parameter l is an important parameter
which specifies the number of hidden signals to be mined, we
varied the parameter l = 25, 50, 100, 150 to learn hidden regulatory
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signals. Fig. 3 shows the changes of the average recovery rates as
well as precisions with l on all the simulation data scenarios. 

From Figs. 3a–f, it can be seen that when the value of parameter
l is set to be 50, i.e. the number of regulators in the networks, both
average recovery rates and average precisions are larger than 80%,
irrespective of sample size and noise level. When l is larger than
the number of regulators, e.g. l = 100 and 150, the average recovery
rates continued to increase up to 100%, but the average precisions
began to drop: the average recovery rates approximate 100%,
indicating that almost all of the 50 regulators are successfully
recovered in the l mined signals, while the average precisions
approximated to 50/l, e.g. 50% with l = 100 and 30% with l = 150,
suggesting a decrease in average precisions with increasing l. In

contrast, when l is less than the number of regulators, e.g. l = 25,
both average recovery rates and average precisions are always in a
lower level, e.g. lower than 10% (Figs. 3a–f). These results indicate
that the value of l around the number of regulators tends to a best
performance of recovering hidden regulatory signals and larger
values will be preferred to a smaller value in practice.

Fig. 3 also reveals that when the data is highly noisy, the
number of samples (n) also took substantial impact on the
regulatory signal recovery ability of OURM as expected (Fig. 3a).
From Fig. 3a, it can be clearly seen that both average recovery
rates and precisions varied largely from n = 20 to 200, and the
change amplitude enlarged as l increases. However, high SNRs
dwarf the improvements of average recovery rates and average

(D
~ , X

~) = arg min
D, X

∥ Y − DX ∥2
2 s . t . ∥ xi ∥0 ≤ ti, i = 1, …, p (2)

Fig. 2  Illustration of regulatory relationships inference
 

Table 1 Performances of different GRN inference methods on the simulated data of n = 20
Data set Method AUROC AUPR
(n, SNR) Mean Std Mean Std
(20, 10) GENIE3 0.811 0.0049 0.538 0.0077

CLR 0.810 0.0029 0.577 0.0042
ARACNe-AP 0.626 0.0145 0.137 0.0537

ARACNE (eps = 0) 0.780 0.0024 0.574 0.0048
ARACNE (eps = 0.05) 0.804 0.0045 0.554 0.0046
ARACNE (eps = 0.1) 0.814 0.0050 0.553 0.0052
ARACNE (eps = 0.2) 0.818 0.0043 0.552 0.0053

OURM (l = 25) 0.749 0.0073 0.186 0.0112
OURM (l = 50) 0.857 0.0049 0.430 0.0101
OURM (l = 100) 0.855 0.0041 0.478 0.0089
OURM (l = 150) 0.849 0.0042 0.494 0.0099

(20, 20) GENIE 0.820 0.0051 0.561 0.0061
CLR 0.819 0.0036 0.598 0.0053

ARACNe-AP 0.642 0.0061 0.186 0.0377
ARACNE (eps = 0) 0.791 0.0019 0.610 0.0046

ARACNE (eps = 0.05) 0.810 0.0035 0.574 0.0060
ARACNE (eps = 0.1) 0.820 0.0047 0.572 0.0068
ARACNE (eps = 0.2) 0.826 0.0041 0.572 0.0073

OURM (l = 25) 0.733 0.0092 0.168 0.0129
OURM (l = 50) 0.904 0.0049 0.540 0.0121
OURM (l = 100) 0.908 0.0051 0.598 0.0101
OURM (l = 150) 0.906 0.0039 0.627 0.0117

(20, 30) GENIE 0.819 0.0051 0.560 0.0078
CLR 0.817 0.0044 0.595 0.0069

ARACNe-AP 0.641 0.0132 0.192 0.0703
ARACNE (eps = 0) 0.789 0.0055 0.605 0.0075

ARACNE (eps = 0.05) 0.809 0.0061 0.567 0.0111
ARACNE (eps = 0.1) 0.819 0.0046 0.565 0.0106
ARACNE (eps = 0.2) 0.825 0.0062 0.564 0.0110

OURM (l = 25) 0.734 0.0078 0.168 0.0112
OURM (l = 50) 0.915 0.0059 0.569 0.0150
OURM (l = 100) 0.922 0.0052 0.629 0.0132
OURM (l = 150) 0.920 0.0041 0.658 0.0099
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precisions by increased numbers of samples, as shown in Figs. 3b–
f. This implies that an increased number of samples is preferred for
overcoming noise contamination of data.

For clearly observing the influence of noise, we further
examined the changes of the average recovery rates and precisions
with the level of SNR in each data scenario of l and n, as shown in
Fig. 4. From Fig. 4, we can clearly see that average recovery rates

and precisions generally increase as SNR increases in all data
scenarios as expected, irrespective of l and n. The tendency is more
obvious in the cases of smaller sample sizes, e.g. n = 20, 30, and
larger values of l, e.g. l = 50, 100, 150, as shown in Figs. 4a and b. 

Fig. 3  Average recovery rates and precisions of the proposed approach on simulated data
(a) SNR = 10, (b) SNR = 15, (c) SNR = 20, (d) SNR = 25, (e) SNR = 30, (f) SNR = 40

 

Fig. 4  Influence of SNR on average recovery rates and average precisions on simulation data
(a) n = 20, (b) n = 30, (c) n = 50, (d) n = 100
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3.2 Application to synthesised non-linear gene expression
data

We next evaluated the performance of the proposed method in
GRN reconstruction on the synthesised non-linear gene expression
data. Results are shown in Table 2. Considering the network size in
this scenario, i.e. total 1643 genes, l was set to be 150, 200, 300,
400, or 500. Generally speaking, as can be seen in the table,
AUROC and AUPR scores first increase with l changing from 150
to 200 and then both rapidly go down with l becoming larger. More
interestingly, the optimal value of l seems to be around 200, which
approximates the number of transcription factors of the background
network, i.e. 195, confirming the guidance of choosing l above. For
comparison, we also applied four previous methods, GENIE3 [54],
CLR [14], ARACNe-AP [15], and ARACNE [42, 66], to analyse
the simulation data and the previous methods. The DPI parameter
in ARACNE, i.e. ‘eps’, was varied among 0, 0.05, 0.1, and 0.2 for
fully comparison with the proposed method. From this table, we
can clearly see that our method with l = 200 achieves the highest
AUROC scores (0.826) among these methods. 

3.3 Applications to two real gene expression data

We also evaluated our approach based on two real gene expression
data sets, E. coli and S. cerevisiae. Considering the network sizes
of the two model organisms and the complexity of gene regulation
in real world, l was varied among 150, 200, 300, 400, and 500 in
the experiments. Experimental results of OURM and the four
previous methods on these two data sets are listed in Table 2,
showing that OURM achieved comparative performance with the
three previous methods on both of the data sets and specially, on
the S. cerevisiae data, OURM achieves the highest AUROC and
AUPR among the four algorithms. For the E. coli data, our method
achieved its highest AUROC (0.682) and AUPR (0.0193) when l = 
200 and 300, respectively, while for the S. cerevisiae data, our
method achieved its highest AUROC (0.537) and AUPR (0.0033)
when l = 500. This could imply that more LRs are involved in the
S. cerevisiae data than in the E. coli data, suggesting a more
complex molecular system in eukaryotic organisms than in
prokaryotic organisms.

Fig. 5 shows the structures of the GRNs inferred by OURM on
the two real gene expression data sets. The network (Fig. 5a) of E.
coli consists of 633 genes (including 27 TFs) and 957 regulatory
links. The network (Fig. 5b) of S. cerevisiae consists of 818
regulations among 436 genes, 27 of which are TFs. Besides, we
found that there are totally nine feedback loops in the inferred E.
coli network (Fig. 5a) and ten in the inferred S. cerevisiae network
(Fig. 5B). These inferred feedback loops are marked in green in the
subfigures. For fair comparison, we trimmed the GRNs inferred by
the other three previous methods to have the same number of
edges, i.e. 957 for E. coli and 818 for S. cerevisiae, by taking
proper thresholds of regulation coefficients. To exemplifying the
differences in GRN inference abilities among the five algorithms
OURM, GENIE3, CLR, ARACNe-AP, and ARACNE (eps = 0), we

illustrate the inferred target genes of two transcription factors, i.e.
gadX from E. coli and YBR240C from S. cerevisiae, in Figs. 6a–e.
The former has been biologically recognised as an acid resistance
regulon transcriptional activator [67], while the latter is involved in
transcriptional regulation of thiamine biosynthesis [68]. From this
figure, we can clearly see that OURM successfully recognised 10
of all the 13 experimentally verified targets of gadX, which are
more than those by CLR (6), ARACNe-AP (3), and ARACNE (2)
though slightly <11 (GENIE3). For the transcription factor
YBR240C, OURM successfully recovered most known target
genes (2/8) and wrongly identified no target genes compared with
the four previous methods. These results demonstrated the superior
performance of OURM in inferring gene regulations on real gene
expression data sets. 

4 Discussions and conclusions
We have proposed a new computational method, OURM, for
reverse engineering GRNs based on dictionary learning. The
method factorised a transcriptomics data matrix of targets into a
regulatory space. A modified version of k-SVD was developed for
mining hidden regulatory structures between regulators and target
genes, and a new statistic CS was then formulated for measuring
regulatory relationships. Experimental results on simulation data
and real-world data sets demonstrated the effectiveness and
efficiency of OURM for GRN inference.

Most existing models do not consider LRs often resulting in a
degraded performance of GRNs inference. In the proposed method,
we discovered the hidden regulator signals using dictionary
learning followed by quantifying regulatory relationships. The
recovery power was verified on the simulation data. On the other
hand, we also noticed that the power can be influenced by the
parameter l. Future works will be focused on the guidance of
choosing the parameter in practice and evaluations on more real-
world data sets.
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Table 2 Comparison results of different methods on synthesised non-linear and real-world data sets
Method Synthesised non-linear data E. coli S. cerevisiae

AUROC AUPR AUROC AUPR AUROC AUPR
GENIE3 0.815 0.284 0.717 0.0211 0.529 0.0031
CLR 0.743 0.226 0.587 0.0112 0.524 0.0022
ARACNe-AP 0.682 0.156 0.566 0.0061 0.516 0.0002
ARACNE (eps = 0) 0.642 0.243 0.539 0.0102 0.505 0.0029
ARACNE (eps = 0.05) 0.739 0.199 0.515 0.0074 0.488 0.0019
ARACNE (eps = 0.1) 0.755 0.192 0.597 0.0078 0.505 0.0021
ARACNE (eps = 0.2) 0.757 0.191 0.617 0.0080 0.530 0.0022
OURM (l = 150) 0.815 0.227 0.679 0.0042 0.530 0.0021
OURM (l = 200) 0.826 0.232 0.682 0.0043 0.535 0.0022
OURM (l = 300) 0.715 0.117 0.627 0.0193 0.530 0.0031
OURM (l = 400) 0.722 0.132 0.653 0.0124 0.520 0.0030
OURM (l = 500) 0.709 0.129 0.652 0.0111 0.537 0.0033
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