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Abstract
In the presence of a non-local potential arising from electron–electron interaction, the
conventional definition of current density Jc = (e/2m)([(p − eA)ψ]∗ψ − ψ∗[(p − eA)ψ])
cannot satisfy the condition of current conservation, i.e., ∇ · Jc �= 0 in the steady state. In order
to solve this problem, we give a new definition of current density including the contribution due
to the non-local potential. We show that the current calculated based on the new definition of
current density conserves the current and is the same as that obtained from the
Landauer–Büttiker formula. Examples are given to demonstrate our results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

With the recent development of nano-technology, predictions
on transport properties of nano-devices such as current are
becoming increasingly important. It is equally important for us
to understand how current flows inside the nano-devices since
the current distribution or current density J gives information
about the heat dissipation [1]. The divergence of current
density ∇ · J(r, t) represents the rate at which electrons are
lost from the surrounding volume. It satisfies the current
continuity equation ∂tρ(r, t) + ∇ · J(r, t) = 0, where ρ(r, t)
is the electron density4. At steady state, ∂tρ(r, t) = 0,
the divergence of current density has to be zero in order
to satisfy current conservation. The general expression for
current density is usually defined as Jc = (e/2m)([(p −
eA)ψ]∗ψ − ψ∗[(p − eA)ψ]) [2], where p = −ih̄∇ is the
momentum operator, A is the vector potential due to the
magnetic field, and ψ the electron wavefunction. In most
cases, this expression for current density is appropriate and the
current calculated from Jc is conserved as long as ∇ ·Jc(r, t) is
equal to zero at steady state. However, as will be discussed in
detail below, in the presence of a non-local potential V (r, r′)
4 In the present paper, we assume that the strong electron–electron interaction
can be neglected and the interaction is treated at mean field level.

the current calculated from the conventional current density
Jc defined above is not conserved. Why do people care
about the non-local potential? Actually, in the first principles
calculations of transport properties of nano-devices such as the
density functional theory + non-equilibrium Green’s function
theory [3], there are a number of cases where the non-local
potential is present. For instance, the exchange–correlation
energy functional is non-local if one wants to go beyond the
local density approximation [4]. The non-conserved current
density cannot give a correct current. In addition, the non-local
pseudo-potential is another source of non-local potential [5].
Due to the presence of non-local potential in the ab initio
calculation [5], first principles calculation of conventional
current density can give errors for current as large as 20% for
molecular devices [6]. Due to the importance of the quantum
transport problem in nano-devices, there is clearly a need to
modify the conventional definition of the current density Jc so
that the current calculated from the current density gives the
correct value. In general, there are two ways of calculating the
current or conductance:

(1) Define the Green’s function of the scattering region and
then calculate the transmission coefficient and hence the
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current from Landauer–Büttiker formula [7],

Iα = (2e/h)
∑

β

∫
dE( fα − fβ)Tr[Gr�αGa�β] (1)

where Gr is the retarded Green’s function.
(2) Calculate the current density in the scattering region, and

then the current is obtained by integrating the current
density J(r) over the interface between the scattering
region and the lead α,

Iα =
∫

dσ α · J(r). (2)

Obviously, the currents calculated from these two approaches
must be equal. It is easy to see that the current obtained from
equation (1) is conserved since

∑
α Iα = 0 regardless of the

presence of non-local potentials. Note that the conventional
definition of current density in the absence of magnetic field
and non-local potential is given by

Jc(r, t) = ieh̄

2m
[ψ(r, t)∇ψ∗(r, t) − c.c.]. (3)

The condition that the current calculated from equation (2)
is conserved is given by ∇ · J(r) = 0. It will be shown
later (see equation (8) below) that this condition is violated
when a non-local potential is present. The purpose of this
paper is to define a new current density in the presence of
a non-local potential so that the current calculated from the
current density is correct. In section 2, we provide such a
formalism. In section 3, examples are given that demonstrate
the conservation of current. Finally, our results are also
summarized in section 3.

2. Theoretical formalism

In the presence of a non-local potential V (r, r′), the
wavefunction obeys the following Schrödinger equation:

ih̄
∂

∂ t
ψ(r, t) = − h̄2

2m
∇2ψ(r, t) +

∫
dr′V (r, r′)ψ(r′, t) (4)

where the gradient operator ∇ operates only on r. The complex
conjugate of the above equation can be written as

−ih̄
∂

∂ t
ψ∗(r, t) = − h̄2

2m
∇2ψ∗(r, t)+

∫
dr′V ∗(r, r′)ψ∗(r′, t).

(5)
From ψ(r, t)× equation (5)−ψ∗(r, t)× equation (4), we
obtain

−∂tρ(r, t) = ∇ · Jc(r, t) + ρn(r, t) (6)

where ρ(r, t) = e|ψ(r, t)|2 is the electron density and Jc(r, t)
is the conventional current density in the absence of magnetic
field defined in equation (3). Here we have introduced a new
quantity, the non-local electron density ρn(r, t), due to the non-
local potential,

ρn(r, t) = e

ih̄

∫
dr′[ψ(r, t)V ∗(r, r′)ψ∗(r′, t)− c.c.]. (7)

Note that this non-local electron density ρn(r, t) has the
dimension of volume current density not charge density. In
the steady state, ∂tρ(r, t) = 0. Equation (6) becomes

∇ · Jc(r)+ ρn(r) = 0. (8)

If the potential is local, i.e., V (r, r′) is a diagonal matrix, the
quantity ρn(r) vanishes. The current calculated from Jc is
conserved since ∇ · Jc(r) = 0. However, in the presence
of a non-local potential, the quantity ρn(r) is nonzero, and
therefore ∇ · Jc(r) �= 0. As a result, the current calculated
from the current density Jc is not conserved. Therefore, we
need to modify the conventional definition of current density
to include the contribution of ρn(r) induced by the non-local
potential.

We define the new current density in the presence of a non-
local potential as

J(r) = Jc(r)+ Jn(r) (9)

where Jn(r) is the non-local current density defined as

Jn(r) = −∇ϕn(r) (10)

and ϕn(r) is determined by the following Poisson equation,

∇2ϕn(r) = −ρn(r). (11)

Note that Jn(r) is a local quantity. We call it the non-
local current density because it is solely due to the non-local
potential. Once ρn(r) is known the quantity ϕn(r) and hence
Jn(r) can be calculated by solving the Poisson equation with
proper boundary conditions. It is obvious that the newly
defined current density satisfies ∇ ·J(r) = 0, and therefore the
current calculated from this current density satisfies the current
conservation.

In the following we show that the current calculated from
equation (2) using the new definition of current density is the
same as that obtained from the Landauer–Büttiker formula,
equation (1). To do that, we express the conventional current
density and non-local electron density in terms of Green’s
functions. This has been done in [2] when the non-local
potential is absent, and we will be following exactly the
same approach as that of [2]. We divide the system into
three parts: the central scattering region and two leads. The
influence of the lead on the scattering region is considered
by the self-energy 	r,a . The retarded Green’s function of the
scattering region is defined as Gr = 1/(E − H − 	r). The
density matrix of the central scattering region is the lesser
Green’s function −iG< that can be obtained by replacing
the scattering wavefunction in the central region ψ(r)ψ∗(r′)
with (−i/2π)G<(r, r′) (see [2]). With this observation, the
conventional current density Jc(r) can be expressed as

Jc(r) =
∫

dE

2π
Jc(r, E) (12)

where

Jc(r, E) = − eh̄

4πm
[(∇ − ∇′

)G<(r, r′, E)]r=r′ , (13)

2
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the same expression as obtained in [2]. Using the same
approach, the non-local electron density can also be obtained,

ρn(r, E) = e

2π h̄

∫
dr′[V (r, r′)G<(r, r′, E)

− V ∗(r, r′)G<(r′, r, E)]. (14)

Now we have expressed all the quantities needed in terms
of non-equilibrium Green’s functions Gr and G<, where
G< = Gr	<Ga from the Keldysh equation and 	< =
i
∑

α �α fα [8]. Here �α is the linewidth function of lead α
and fα = f (E − qvα) is the Fermi distribution function of
lead α with bias vα . Thus once the Green’s functions for the
system are calculated, we can obtain the local current density
Jc(r, E) and the non-local electron density ρn(r, E).

From equation (13), the divergence of current density can
also be written as

∇ · Jc(r, E) = − eh̄

4πm
[(∇2 − ∇′2)G<(r, r′, E)]r=r′ . (15)

Since ρn = ∇ ·Jn , combining equations (14) and (15), we have
∫

dE

2π
∇ · J(r, E) = e

h
[H G< − G<H ]rr (16)

where J(r, E) = Jc(r, E) + Jn(r, E), H = −(h̄2/2m)∇2 +
V (r, r′)5, and G<(r, r′) = ∫

(dE/2π)G<(r, r′, E). Using the
relation [2]

H G< − G<H = Gr	< −	<Ga − 	rG< + G<	a (17)

equation (15) becomes
∫

dE

2π
∇ · J(r, E) = e

h

∑

α

[Gr	<
α −	<

α Ga

− 	r
αG< + G<	a

α]rr (18)

where
∑

α 	
γ
α = 	γ with γ = r, a,< and 	< is the

lesser self-energy. The terminal current can be obtained by
integrating the current density over the cross-section of the
corresponding contact α:

Iα = 2
∫ [∫

J(r, E) · dσα

]
dE (19)

where the factor of two comes from spin degeneracy.
Alternatively, the terminal current can also be calculated by

Iα = 2e

h

∫
dE Tr[Gr	<

α −	<
α Ga −	r

αG< + G<	a
α] (20)

which is the Landauer–Büttiker formula. Taking the trace
over both sides of equation (18) gives the relation between the
currents calculated from the current density and the Landauer–
Büttiker formula. In addition, equation (18) ensures the
conservation of current calculated using either equation (19)
or (20).

Using the relation

G< = iGr�Ga fL + i Gr�RGa( fR − fL ) (21)

5 Here the non-local Hamiltonian means Hψ(r) = −(h̄2/2m)∇2ψ(r) +∫
dr′V (r, r′)ψ(r′).

we can partition the current density into two parts: equilibrium
and non-equilibrium contributions. In the absence of magnetic
field, the equilibrium current density (contributed from the first
term of equation (21)) is zero. In the presence of magnetic
field, it is nonzero but does not contribute to the transport
current. From now on, we keep only the non-equilibrium
part of the current density. With this in mind we rewrite
equations (13) and (14) as follows.

Jc(r, E) = ieh̄

4πm
[(∇ − ∇′

)DR(r, r′, E)]r=r′( fL − fR) (22)

and

ρn(r, E) = ie

2π h̄

∫
dr′[V (r, r′)DR(r, r′, E)

− V ∗(r, r′)DR(r′, r, E)]( fR − fL) (23)

where DR ≡ Gr�RGa . Note that if we are only interested
in the current density in the linear response regime at zero
temperature, the calculation is simplified drastically since the
integral over energy is no longer needed due to the δ function
∂E f (E) from the expansion of fα .

To summarize briefly, in the presence of a non-local
potential the current density consists of two parts: conventional
current density and non-local current density. They can be
calculated as follows: (1) We first calculate the conventional
current density Jc(r, E) and the non-local electron density
ρn(r, E) according to equations (22) and (23). (2) We
then solve the Poisson equation, equation (11), with proper
boundary conditions to find the non-local current density
Jn(r, E). (3) The total current density is given by J(r) =∫
(dE/2π)[Jc(r, E)+ Jn(r, E)].

3. Numerical implementation

To illustrate this procedure we discuss two examples in the
following by calculating the current density in the linear regime
so that both current and current density are proportional to the
bias voltage, i.e., I = G(vL − vR). In the first example,
the non-local potential is present only in the scattering region
and is zero in the lead. In the second example, in addition
to the non-local potential in the central region a periodic non-
local potential is present in the lead. The boundary conditions
are different in these two examples. We first consider a
system with non-local potential in the central scattering region
connected by two ideal leads without non-local potential, as
shown in figure 1(a). To match the boundary conditions, we
have added part of the leads into our central simulation box
(see figure 1(a)). The non-local potential in the central box is
nonzero when x is from 5 to 25 along the x-direction. The non-
local potential is chosen as V (x, y; x ′, y ′) = 0.2 sin[π(x −
5)/20](δx+1,x′ +δx−1,x′ )δy,y′ in the shadowed region in figure 1.
In the calculation, the energy is measured in e.u. (energy units),
which is h̄2/2ma2, the length is measured in a which is the
lattice constant, and the current is measured in (2e2/h) V. In
the numerical calculation, we first calculate the self-energy
of both leads using a transfer matrix method [9] and then
obtain the Green’s functions for the system. Once the Green’s
functions are obtained, we can calculate the conventional

3
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Figure 1. (a) Schematic picture of the model. The shadowed region
represents the scattering region with a non-local potential and the
dashed line marks our central simulation box in the numerical
calculation. (b) The coupling between the lead and the simulation
box is labeled by arrows. In the figure, the lead couples to the
simulation box through three layers of lattice sites.

current density Jc(r) at each point according to equation (22).
The non-local current density Jn can be calculated by solving
the Poisson equation with the Neumann boundary condition
where the normal derivative of the function is specified on all
boundaries. In our system, we have chosen the dashed line in
figure 1(a) as our boundaries.

In the first example, the normal derivatives of function ϕn

in equation (11) are zero on the four boundaries, i.e., x̂α ·Jn =
x̂α · ∂ϕn = 0, where x̂α is the normal direction of a particular
interface located at xα . The reason is the following. On the
up and down boundaries, the normal derivative of the function
ϕn is along the y-direction and there is no current flow along
the y-direction across the up and down boundaries. On the left
and right boundaries, there are no non-local potentials near the
boundaries. Therefore the non-local current density Jn is zero
on the left and right boundaries. Hence, in this case, we have
JnL = Jn R = 0 and x̂U · JnU = x̂D · JnD = 0.

In the second example, we allow a non-local potential in
the lead. In this case, we also choose Neumann boundary
conditions in solving the Poisson equation. On the up and
down boundaries, the normal derivative of the function φn is
along the y-direction and equal to zero, so we have x̂U ·JnU =
x̂D · JnD = 0. Now we consider the case where periodic non-
local potentials are present in the left and right leads. Here
again we include a portion of the lead into the simulation
box. Obviously, Jn is nonzero on the left and right boundaries
because a non-local potential is present in the leads. We will
determine their values through the relation J = Jc + Jn . The
conventional current density Jc(x, y) can be calculated on the
left and right boundaries. The total current density J(x, y)

can also be determined by the transmission function at the
boundaries. Therefore the normal derivatives of the function ϕn

on the left and right boundaries are determined by Jn(x, y) =
J(x, y)− Jc(x, y). Now we explain how to obtain x̂α ·J(x, y)
at the boundary xα from the transmission function for a two-
probe structure. We define a position-dependent transmission
coefficient Tα(r) in the coupling region between the scattering
region and the lead α:

Tα(r) = [Gr�βGa�α]rr (24)

where r labels all the sites of the scattering region that are
coupled to the lead α and β �= α. Note that the coupling
region depends on the unit cell of the lead. For the tight binding
model, the coupling region contains just one layer of lattice
sites. For graphene, the coupling region contains two layers of
lattice sites. The physical meaning of Tα(r) is the transmission
probability from the lead α to the site r inside the scattering
region. Obviously

∑
r Tα(r) is the transmission coefficient. The

current density at the interface α with the site labeled by y is
obtained from Tα(r) with r = (x, y):

x̂α · J(y) = 2e

h

∫
dE( fα − fβ)

∫
dx[Gr�βGa�α]rr (25)

where the summation is over all the sites with the same y-
coordinate in the coupling region (see the solid line in the
scattering region of figure 1(b) for illustration). For the tight
binding model on a square lattice, the linewidth function
couples only to the boundary sites. Hence x̂α · J(y) =
(2e/h)

∫
dE( fα − fβ)[Gr�βGa�α]yy.

In order to demonstrate the current conservation,
we calculate the current across different cross-sections
perpendicular to the x-direction inside the simulation box. The
current is obtained by summing over the current density at all
the y points on a cross-section at a fixed x inside the scattering
region. We define the conventional current across the cross-
section located at x as Ic(x) = ∫

dyx̂ · Jc(x, y) and the non-
local current In(x) = ∫

dyx̂·Jn(x, y). If the total current of the
system is conserved, the total current I (x) = ∫

dyx̂ · J(x, y)
should be a constant independent of x and must be equal to the
current obtained from the Landauer–Büttiker formula.

In figure 2, we plot the conventional current Ic and non-
local current In across different cross-sections along the x-
direction. Here we have fixed the energy of the incoming
electron to be 1 e.u., so that there are ten subbands participating
in the transport. Due to the scattering of non-local potential,
the conductance is less than eight. Importantly, we see that the
conventional current varies at different x . Since the simulation
box includes part of the lead where the non-local potential is
absent, the conventional current is a constant in the lead region
x = [1, 4] and x = [26, 31]. When the non-local current
is included, the total current I (x) obtained from the current
density is a constant in the whole simulation box. We have
also confirmed numerically that the current obtained from the
current density inside the scattering region is the same as the
current calculated from the Landauer–Büttiker formula. This
indicates that the current calculated from the new definition
of current density is conserved in the presence of a non-local

4
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Figure 2. Local current Ic, non-local current In and total current I
along the x-direction when there are no non-local potentials in the
leads. Here the diamond symbol indicates the current calculated from
the Landauer–Büttiker formula. The unit for the current is
2(e2/h)(vL − vR) and the distance x is measured in units of lattice
constant a.
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Figure 3. Distribution of current density J(x, y) in the x–y plane.
For illustration purposes, we have added impurity potentials in the
regime x = 15 and y = [10, 20] with impurity strength 2 e.u. The
distances x and y are measured in units of lattice constant a.

potential. In figure 3, we plot the distribution of current density
in the presence of a non-local potential only in the central box
but not the leads. For illustration purposes, we have added
impurity potentials in a small region6. We can see the current
pattern in the scattering region. When there are non-local
potentials in the leads, we can also calculate current density
Jc and non-local current density Jn. For the convenience of
solving the Poisson equation, the non-local potential in the
leads is chosen as periodic7. Figure 4 plots the conventional
current Ic, non-local current In , and total current I versus
positions along x when the energy of the incoming electron is
1 e.u. We see that the total current calculated from the current
density is again a constant that is equal to the current calculated
from the Landauer–Büttiker formula.

6 The impurity potential is a diagonal potential added on all the lattice points
in the regime (x = 15, 10 � y � 20). The amplitude of the impurity potential
is chosen as 2 e.u.
7 The non-local potential in the leads is chosen as V (x, y; x ′, y′) =
0.1δx+1,x ′δy,y′ when x is an odd number and V (x, y; x ′, y′) = 0 when x
is an even number.
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Figure 4. Local current Ic, non-local current In and total current I
along the x-direction with periodical non-local potentials in the
leads. In the figure the diamond symbol indicates the current
calculated from the Landauer–Büttiker formula. The units of current
and distance are the same as in figure 2.

4. Summary

In summary, we have addressed the issue of current density
in the presence of a non-local potential. We found that the
current density using the conventional definition is not suitable
for describing the current density in the presence of a non-local
potential. A new definition of current density is suggested.
With this definition, the current inside the scattering region
across any interface perpendicular to the direction of current
flow is a constant and is equal to the current calculated from the
Landauer–Büttiker formula. We have numerically confirmed
the above conclusion by studying two examples.
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