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H I G H L I G H T S

• A novel algorithm is developed to solve weak peaks in X-ray fluorescence analysis.

• The hybrid algorithm has higher accuracy, better stability and faster convergence.

• This is a promising method that can be used to determine heavy metals in other grains.
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A B S T R A C T

Accurate measurement of cadmium content in rice is of utmost importance to determine if the inspected rice
product is safe to people. X-ray fluorescence analysis is frequently used for multi-element analysis because it has
characteristics of fast, accurate and nondestructive. However, due to the low content of cadmium in rice, its
corresponding characteristics energy peak is relatively weak and is sensitive to the background information in
the X-ray energy spectrum. Thus, it is very tough to obtain the accurate values of cadmium content by utilizing
traditional X-ray fluorescence analysis. In this paper, the identification of weak peaks of cadmium is much
improved by proposing a hybrid algorithm combining genetic algorithm (GA) and Levenberg-Marquardt algo-
rithm (LM). The hybrid algorithm not only takes full advantages of GA and LM respectively but also inhibits their
unwanted properties: poor local search ability of GA and locally convergent of LM. The proposed hybrid algo-
rithm is employed to identify weak peaks in X-ray spectra of six contaminated rice samples with different
contents of cadmium. Two comparative experiments are conducted to compare the performance between GA,
LM and the proposed hybrid algorithm. One of the comparative experiments has the relative error varying with
the number of calculations, which aims to verify the accuracy and stability. The results show that the hybrid
algorithm is a better option in terms of accuracy and stability. Another comparative experiment of which the
average relative error varies with the number of iterations is conducted to verify the computing efficiency. The
experiments show that the hybrid algorithm exhibits a faster convergence rate. Two numerical experiments
demonstrate that the proposed algorithm can well resolve the identification issue of the cadmium in the X-ray
spectra and significantly improve the content measurement accuracy of cadmium in the quality evaluation
experiment of rice products.

1. Introduction

The detection for heavy metal cadmium in rice has been listed as an
important indicator of the national routine monitoring. Metal cadmium
and its compounds can penetrate the body through the digestive and
respiratory tract, and they will accumulate in kidneys and liver,

eventually lead to the lesions of an immune system, nervous system and
reproductive system (Williams and David, 1976; Nogawa et al., 1983;
Watanabe et al., 2002; Simmons et al., 2005; Kobayashi et al., 2009).

The determination of cadmium content in rice has attracted great
attention of many scholars. The graphite furnace atomic absorption
spectrometry (GFAAS) (Holcombe and Borges, 2004; Fang et al., 1994)
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was one of the most commonly used methods for measuring the cad-
mium in rice. However, the general heating time was too long, which
affected the speed of analysis. Other analysis methods such as electro-
thermal vaporization atomic fluorescence spectrometry (XiaoDong
et al., 2009), UV–vis spectrophotometry (Keawkim and
Chuanuwatanakul, 2013), were also applied to analyze the cadmium in
rice. But there are so many problems in the above methods, such as
time-consuming, complex structure of detection instruments, harsh
conditions, and high cost.

X-ray fluorescence analysis, with the characteristics of non-pollution
and non-destructive, is a rapid, accurate and economical method for
multi-element analysis (He et al., 1993; Ao et al., 1997; Sbarato and
Sánchez, 2001; Myint et al., 2003; Revenko, 2002; Hall et al., 2010).
The elements in solid, liquid, powder and even gas samples can be
qualitatively and quantitatively analyzed by this technology (Sbarato
and Sánchez, 2001; Revenko, 2002; Potts et al., 1984). It has become
one of the most popular methods of spectral analysis in China. How-
ever, due to the low content of cadmium in rice, its corresponding
characteristics energy peak is relatively weak and is sensitive to the
background information. Meanwhile, most weak peaks cannot be cor-
rectly identified by the traditional spectral method in the process of X-
ray fluorescence analysis. In many cases, identifying weak peaks ac-
curately is a key technology in X-ray fluorescence analysis.

In this paper, a pioneer study is reported to identify the weak peaks
in the X-ray fluorescence analysis. In order to improve the content
measurement accuracy of cadmium in rice products, a hybrid algorithm
combining genetic algorithm (GA) and Levenberg-Marquardt algorithm
(LM) is developed to resolve the identification issue of cadmium in X-
ray spectra.

2. Description of the algorithm

In the process of traditional X-ray fluorescence spectrum analysis,
the peak's centroid position and peak's boundaries are firstly obtained
by the peak detection algorithm, such as the first derivative method, the
symmetric zero-area conversion method, the convolution method, and
so on. Then the peak's area can be calculated by the total peak area
method (TPA), Wasson method or Covell method. However, these al-
gorithms are often used to solve strong peaks. For weak peaks, its
corresponding characteristics energy peak is sensitive to the back-
ground information. Thus, it is very tough to identify some weak peaks
by the traditional spectral methods.

In order to solve this kind of problem and to avoid the influence of
the noise, the fitting method has been proposed in the spectrum ana-
lysis. Because the measured spectrum can be fitted against a fitting
model expressed as a linear combination of full-energy-peaks from
several individual nuclides. Therefore, the best parameters of the fitting
model can be obtained by minimizing the difference between a mea-
sured spectrum and the fitted spectrum. Thus, some optimization al-
gorithms are usually used to minimize the difference between the
measured spectrum and the fitted spectrum.

2.1. Parametric model

The observed X-ray fluorescence spectrum can be approximately
modeled as a linear combination of full-energy-peaks from several in-
dividual nuclides and be superimposed on a background (Meier, 2005;
Ying-jie et al., 2016). Each peak can be simply modeled by a Gaussian
curve, which consists of the amplitude Ai, the centroid position pi and
the half width σi, so the energy spectrum can be expressed as:
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where the independent variable x is the number of channels of the

spectrum,
∧

f X( ) represents the estimated counts on the corresponding

channel, N is the number of Gauss peaks. B(x) stands for the function of
the background, which is obtained by fitting in the form of Ying-jie
et al. (2016):
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When the estimated count
∧

f X( ) on the corresponding channel is
obtained, the corresponding error equation is acquired:
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where L is the count in channel i of the measured spectrum, V is the
difference between the measured spectrum and estimated spectrum,
then the sum of squares of residuals R is:
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It is a common computational optimization problem that to mini-
mizes minimize R, The most common method for nonlinear least-
squares minimization is the LM algorithm. However, the LM algorithm
is locally convergent. The iterative divergence occurs when the initial
guess is poor (Moré, 1978). In order to solve this kind of problem and to
relax the constraints on initial guess, the GA is utilized to generate in-
itial guess for LM algorithm because of its global optimization, strong
adaptability, and strong robustness. Therefore, a hybrid algorithm
combining GA and LM algorithm is proposed to improve its accuracy,
stability and convergence speed.

2.2. Genetic algorithm

The genetic algorithm is probabilistic methods mimicking ‘‘real
life’’, which is a stochastic optimization algorithm based on natural
selection and genetic law with characters of global optimization, strong
adaptability, strong robustness, and so on. It is widely used in many
fields such as function optimization, nonlinear parameter estimation,
pattern recognition, image processing and so on (Houck et al., 1995;
Fleming and Fonseca, 1993; Freeman et al., 1999; Rennard, 2000; Li,
2006). But it has the weakness of premature and poor ability of local
searching. It may wastes much time for local optimum value when the
population is near the optimization.

The genetic algorithm is formed by a population of individuals of
randomly chosen parameter values. Potential solutions are referred to
as individuals and are encoded into binary strings which represent
chromosomes. For our specific application, individuals represent the
adjustable parameters of the amplitude, the centroid position, the half
width and background coefficients. Each parameter can be forced to
assume values inside a predefined range according to the model.
Several operators inspired by the evolutionary biology, such as in-
heritance, mutation, selection and crossover, act on in the population of
evolutionary. The process of parent selection, mating, crossover, and
mutation through successive generations is called evolution. With the
evolution of solutions, increasingly stronger solutions are generated.
The parameter values that minimize R are known as the ultimate so-
lutions.

In the genetic algorithm, the probability of the individual genetic to
the next group depends on the value of individual fitness. In our case
the fitness function is:
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The larger the fitness value of individual is, the smaller the differ-
ence between the measured spectrum and estimated spectrum is. The
general step of the genetic algorithm as follows:

1. Initialize parameters.

a) Set the range of centroid position, amplitude, peak width and
background coefficients.
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b) Set iter=0, where iter is the current number of generations.
c) Set NIND =200 as the size of the population.
d) Set MAXGEN=800 as the maximum generation.
e) Set px=0.75 as crossover probability and pm=0.001 as mutation

probability.
f) Set GGAP=0.95 as the generation gap.

2. Calculate the corresponding fitness value for each individual of the
population.

3. Genetic Operators.

a) Select the higher fitness value of the individual, stochastic universal
sampling is used to determine the probability of various individuals
genetic to the next generation in population.

b) Generate new individuals, single-point crossover algorithm between
pairs of individuals is employed with a probability of px.

c) Mutate the offsprings produced during crossover with probability
pm.

4. Calculate the fitness value, and record the best individuals in the iter
generation. iter= iter+1.

5. If iter=MAXGEN, terminate the calculation, otherwise, go to 3.

2.3. Levenberg-Marquardt algorithm

The Levenberg-Marquardt (LM) algorithm is the most widely used
optimization algorithm. It outperforms simple gradient descent and
other conjugate gradient methods in a wide variety of problems.
However, the LM algorithm is locally convergent, and the iterative di-
vergence occurs when the initial guess is poor (Moré, 1978;
Ranganathan, 2004; Transtrum and Sethna, 2012). In order to solve this
kind of problem and to relax the constraints on initial guess, the GA is
utilized to generate initial solutions for LM algorithm. At the end of the
GA, the parameter estimation value Xk is acquired which can be used as
the preliminary solution of the LM algorithm. Then the first order ap-
proximation of f(X) at Xk is:

+ = + = + ⋅f X X L V f X J X X( Δ ) ( ) ( ) Δk k k (6)
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Damping factor λk is introduced to the process of iteration:
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where λk is any constant greater than zero. If the error goes down fol-
lowing an update, it implies that the measured value is close to the
estimated value and λk is reduced (usually by a factor of 10). On the
other hand, if the error goes up, in order to follow the gradient more
and so λk is increased by the same factor. The general step of LM al-
gorithm as follows:

1. Initialize parameters.

a) Set the number of iterations N=1000.
b) Initialize the damping factor λk = 0.01.
c) Set iter=0, where iter is the number of iterations.

2. Calculate Jacobian matrix Jk, XΔ , and X′ according to formula (7),
(8).

3. Calculate R′ at the new parameter vector and evaluate the error
= ′ −R R RΔ .

If >RΔ 0, then increase λk by a factor of 10, then go to step 3 and try
an update again.
If <RΔ 0, then accept the step and decrease λk by a factor of 10. iter
= iter+1.

4. If iter=N, terminate the calculation, otherwise, go to step 2.

2.4. Hybrid algorithm

The genetic algorithm has characters of global optimization, strong
adaptability, and strong robustness, but it is poor in local search ability,
which may wastes much time for local optimum value and the result of
each calculation is unstable. The LM algorithm is the most widely used
optimization algorithm, but it is locally convergent, the iterative di-
vergence occurs when the initial guess is poor. In order to solve this
kind of problem and to relax the constraints on initial guess, the GA is
utilized to generate initial guess for LM algorithm. Therefore, a hybrid
algorithm combining GA and LM algorithm is proposed to improve both
its success rate and convergence speed. The hybrid algorithm takes full
advantages of GA and LM respectively. The detailed process is shown in
Fig. 1.

3. Experimental details

3.1. Apparatus

Measurements are performed with a CIT-3000SM EDXRF instru-
ment (made by Sichuan New XianDa Technology and Control Co., Ltd.)
with an energy resolution of 130 eV, and the energy range of recorded
spectra from 1 to 40 keV. The instrument consists of high-voltage
power, X-ray tube, SDD semiconductor detector, preamplifier, multi-
channel analyzer, vacuum system, recording and display. The sche-
matic structure of the instrument is shown in the Fig. 2:

3.2. Sample

In this paper, six contaminated rice samples with different contents
of cadmium (listed in Table 1) are prepared. Each rice sample has a
mass weight of grams and a sequence from S1 to S6, measured for 300 s.

Fig. 1. Flow chart of hybrid algorithm.
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3.3. Measurement

Calibration measurements need to be taken before each measure-
ment, and calibration is performed using calibration samples. Six con-
taminated rice samples with different contents of cadmium are mea-
sured by the CIT-3000SM EDXRF instrument. The spectrum of each
standard sample is obtained, named and saved. Fig. 3 shows one of the
standard rice sample's experimental X-ray fluorescence spectrum, in
which the abscissa is the channel number and the ordinate is the count
rate. The local amplification region in the diagram is the weak peak of
cadmium determined by multiple experiments. The SNR value of the
weak characteristics energy peak is less than 5. At the same time, it is
easily influenced by the background information due to the low content
of cadmium in rice as explained previously.

4. Results

The proposed hybrid algorithm is employed to identify weak peaks
in X-ray spectra of six contaminated rice samples with different con-
tents of cadmium. The comparative analyses in accuracy, stability and
convergence speed between GA, LM and the hybrid algorithm is con-
ducted to verify the identification performance of the proposed algo-
rithm. All algorithms are implemented based on the MATLAB pro-
gramming environment with a version of 2013. And the Genetic
Algorithm Toolbox developed by the University of Sheffield was used in
this paper (Chipperfield and Fleming, 1995).

4.1. Accuracy and stability assessment

Six contaminated rice samples with different contents of cadmium
described in Section 3.2 are employed to quantify the performance of
the hybrid algorithm. For each rice sample, the initial parameters X
consists of centroid position, amplitude, peak width and background
coefficients are given firstly. After continuous iterations of the hybrid
algorithm, the final parameters X are obtained when the R is the
minimum. Two comparative experiments are conducted to verify the
accuracy, stability and convergence speed of the proposed algorithm:
the comparative analyses between GA, LM and the hybrid algorithm.
Each spectrum was repeatedly calculated 20 times using GA, LM and
the hybrid algorithm respectively (Table 2 and Fig. 4). In this paper, the
accuracy of the algorithm is evaluated by relative error defined as:

= =
−

×δ Δ
L

E L
L

100%
(9)

where, δ is the relative error, E is the calculated content of cadmium in
sample, and L is the reference content of cadmium in the sample.

Table 2 shows the average contents of cadmium in six contaminated
rice sample obtained by repeated calculation 20 times using GA, LM
and the hybrid algorithm respectively. Comparison results show that
iterative divergence occurs when the LM algorithm is used in-
dependently. That is because the LM algorithm is locally convergent,
the iterative divergence occurs when the initial guess is poor. It can be
found that the average relative error of cadmium calculated by the
proposed hybrid algorithm is less than 10% (except S2). Hence, the
hybrid algorithm exhibits a better accuracy rate comparing with the
GA. It also shows that the hybrid algorithm has a better stability per-
formance. As shown in Fig. 4, the relative error of cadmium in six
contaminated rice samples varies with 20 repeated calculations. It is
obvious that a consistent result can always be obtained for each cal-
culation by the hybrid algorithm, while the result obtained by the GA
has greater uncertainty, mainly due to the genetic algorithm has a poor
local searching ability, and it is difficult to obtain a stable local op-
timum value. In fact, the LM algorithm is locally convergent, and it has
a faster rate of convergence. However, in practical applications, we
prefer to get a stable result at one time, rather than a result with a larger
uncertainty. So, in terms of stability and accuracy performance, the
hybrid algorithm is a better option.

4.2. Efficiency comparison

In addition to consider the accuracy and stability, another crucial
factor to verify the performance of an algorithm is the computing ef-
ficiency, namely the computing time. Because in practical applications,
it is preferred to get experimental results immediately. Therefore, a
comparative verification of which the average relative error varies with
the number of iterations is conducted between GA and hybrid algo-
rithm. It can be found that the hybrid algorithm demonstrates a faster

Fig. 2. Schematic structure of CIT-3000SM EDXRF instrument.

Table 1
Contents of cadmium in six contaminated rice sample (mg/kg).

Rice sample S1 S2 S3 S4 S5 S6

Cadmium content 0.122 0.225 0.332 0.446 0.563 0.768

Fig. 3. Experimental X-ray fluorescence spectra.

Table 2
Comparison of average cadmium contents in six rice sample obtained by three
different algorithms (mg/kg).

Rice sample S1 S2 S3 S4 S5 S6

Standard Value 0.122 0.225 0.332 0.446 0.563 0.768
Hybrid Algorithm 0.113 0.178 0.346 0.383 0.528 0.809
Relative Error 4.22% 17.89% 8.11% 10.98% 2.86% 3.63%

Standard Value 0.122 0.225 0.332 0.446 0.563 0.768
GA 0.157 0.196 0.315 0.384 0.518 0.750
Relative Error 41.50% 12.85% 8.67% 13.85% 8.05% 3.87%

Standard Value 0.122 0.225 0.332 0.446 0.563 0.768
LM Divergence Divergence 0.348 0.307 0.528 0.809
Relative Error ∞ ∞ 4.71% 31.28% 6.26% 5.38%
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convergence rate compared with the GA. As shown in Fig. 5, the hybrid
algorithm can reach a stable result after 800 iterations within 5.12 s and
a consistent result can always be obtained for different iterations, while
the GA need at least 3000 iterations with a time of 19.07 s to get a
relative stable result with a smaller change, because the genetic algo-
rithm wastes much time for local optimum value.

5. Discussions

The hybrid algorithm shows superiority in accuracy, stability and
speed of convergence. However, there are several factors that may have
a large influence on the calculation result, the most influential factors is
the cadmium content in unit peak area of the standard sample.
Therefore, in this experiment, in order to reduce the impact of statis-
tical fluctuations on the experimental results as much as possible, the

standard sample is firstly measured 10 times, and the spectrum for each
measurement is obtained, named and saved. Then the average cadmium
content in unit peak area is obtained by repeating calculation 20 times
using GA, LM and hybrid algorithm respectively. Another important
factor is the number of iterations. As discussed in Section 4.2, if the
number of iterations is less than 500 times, the hybrid algorithm may
not get a stable result or even lead to larger errors. It is worth noting
that when the number of iterations is higher than 800 times, increasing
the number of iterations does not improve the accuracy of the calcu-
lation. So in the actual calculation, 800 iterations are enough. Mean-
while, it is noted that the average relative error obtained by the GA
decreases with the increase of the number of iterations, when the
number of iteration is higher than 5000 times, the average relative
error calculated by the GA is close to or smaller than the result calcu-
lated by the hybrid algorithm. Besides, a phenomenon can be observed

Fig. 4. The relative error of cadmium varies with the number of calculations in six contaminated rice samples calculated by GA, LM and the hybrid algorithm
respectively. Rice sample with a cadmium content (a) 0.112mg/kg (b) 0.225mg/kg (c) 0.332mg/kg (d) 0.446mg/kg (e) 0.563mg/kg (e) 0.768mg/kg.

H. Du et al. Applied Radiation and Isotopes 141 (2018) 149–155

153



in Fig. 4, in some cases, the relative error calculated by the GA algo-
rithm is smaller than that calculated by the hybrid algorithm, which
means the local search ability of the LM algorithm is not the best.
However, the accuracy of the hybrid algorithm has been greatly im-
proved compared with that without using, which basically meets the
error requirements.

6. Conclusions

In this paper, the identification of weak peaks of cadmium was
much improved by proposing a hybrid algorithm combining the genetic
algorithm and Levenberg-Marquardt algorithm. The proposed hybrid
algorithm was employed to identify weak peaks in X-ray spectra of six
contaminated rice samples with different contents of cadmium. Two
comparative experiments were conducted to verify the identification
performance of the proposed algorithm. Results showed that the hybrid

algorithm has higher accuracy and better stability, because a consistent
result can always be obtained for each calculation. Besides, results also
showed that the hybrid algorithm exhibits excellent computing effi-
ciency, because a stable result can be gained with a faster convergence
rate. Two numerical experiments demonstrated that the proposed al-
gorithm can well resolve the identification issue of cadmium in X-ray
spectra and significantly improve the content measurement accuracy of
cadmium in the quality evaluation experiment of rice products. It can
also be used to determine the heavy metals in other grains, especially
those whose content is very low with weak characteristic peaks.
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