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The conventional k · p method fails to capture the full and essential physics of many symmetry
enriched multiple nodal line structures in the three dimensional Brillouin zone. Here we present a
new and systematical method to construct the effective lattice model of mirror symmetry protected
three-dimensional multiple nodal line semimetals, when the spin-orbit interaction is ignored. For
systems with a given pair of perpendicular nodal rings, we obtain all the effective lattice models and
eleven inequivalent nodal line Fermi surfaces together with their related constraints. By means of
first-principles calculations, we first propose a family of real materials, β phase of ternary nitrides
X2GeN2 (X = Ca, Sr,Ba), that support one kind of these novel Fermi surfaces. Therefore, our work
deepens the understanding of the nodal line structures and promotes the experimental progress of
topological nodal line semimetals.

Introduction.—Three-dimensional (3D) topological
semimetals, new gapless phases of quantum matter, have
attracted broad interest in condensed matter physics and
materials physics in recent years [1–4]. These topologi-
cal semimetals could be classified by topological invari-
ants of the band crossing points (both type-I and -II
Dirac and Weyl semimetals) or crossing lines (nodal line
or ring semimetals) in the Brillouin zone (BZ). It has
been shown that the nontrivial topology of discrete band
crossing points of Dirac and Weyl semimetals in momen-
tum space leads to surface Fermi arc states [5, 6], nega-
tive magnetoresistance [7–13], the chiral magnetic effect
[14–24], nonlocal transport [25], and other exotic electro-
magnetic responses [26–32]. Recently, nodal line or ring
semimetals have been predicted theoretically in a serials
of materials [33–48], and some of them have been con-
firmed experimentally through the angle resolved pho-
toemission spectroscopy (ARPES) in PbTaSe2 [49] and
ZrSiS [50–52], through de Haas-van Alphen quantum os-
cillations in ZrSiSe and ZrSiTe [53]. Remarkably, the
nearly flat drumhead-like surface states of nodal lines or
rings have extremely high surface density of states and
might account for the giant Friedel oscillation in the sim-
ple alkali earth metal beryllium [41].

The coexistence of different symmetries, including mir-
ror and inversion symmetry, could give rise to multiple
nodal rings and enrich the structure of Fermi surfaces
of nodal line or ring semimetals [54–70]. Specifically,
these nodal rings connect with each other in different
ways, forming the nodal link [61, 63–67], the nodal chain
[59, 69] and the nodal net [70] that distribute in a large
region of the BZ. Some simple k · p models near a single
point in the BZ were constructed to describe low-energy
physics of carriers near these novel Fermi surfaces [56, 64–
66, 69, 70]. However, unlike the Dirac and Weyl semimet-
als, these complicated Fermi surfaces of semimetals with
multiple nodal rings or lines usually subject to symme-
try constraints from multiple points in the BZ such that
these simple constructions hardly capture the full and

essential physics of carriers. Therefore, a systematical
method to construct the effective models for the Fermi
surfaces with multiple nodal rings or lines is highly de-
sirable and is crucial in unveiling the physical properties
and facilitating the material realization.

In this paper, we show a systematical procedure to
construct the effective lattice models of the Fermi sur-
faces with mirror symmetry protected multiple nodal line
structures in terms of sine and cosine functions. The ef-
fective models and corresponding inequivalent Fermi sur-
faces for systems with a pair of given perpendicular nodal
rings encircling a common point are obtained. We also
tabulate the relevant realization conditions. In addition,
we first point out that the β phase of ternary nitrides
X2GeN2 (X = Ca,Sr,Ba) can be candidates for one kind
of such novel Fermi surfaces.

Symmetry Analysis and Effective Model.— Symmetries
usually play a crucial role in the investigation of topolog-
ical semimetals [71]. For example, the four-fold degener-
ate Dirac points for Dirac semimetals require the coexis-
tence of inversion symmetry (P) and time reversal sym-
metry (T ) [72], while the Weyl nodes for Weyl semimetals
demand either P or T broken. Roughly, 3D nodal line
semimetals can be classified into two classes by symme-
tries [4]. In the first class, the coexistence of P and T
allows a snake like nodal line to appear in alkaline-earth
compounds BaSn2 family [38]. The other is that a nodal
line exists in the mirror invariant plane where two bands
with the opposite eigenvalues of mirror or glide mirror
cross with each other such as LaN [56] and PbTaSe2 [49].

Here, we would like to give a general method to con-
struct the effective lattice Hamiltonian for mirror sym-
metry protected nodal line fermions in centrosymmetric
systems with some mirror or glide mirror symmetries.
Note that SOC is ignored in the following discussions.
We start from the case with two nodal rings that encir-
cle a common point and are protected by two orthogonal
mirror planes. To be specific, we suppose that these two
rings, centering on the Γ point, lie in kx = 0 and ky = 0
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FIG. 1. (a) Schematic diagram of aMx protected nodal ring
in the kx = 0 plane. A band crossing point P appears on
any in-plane k-path, `, that connects the Γ point and the Z
(Y, M) point. (b)-(l) Birds-eye view of the possible nodal line
structures obtained from Eqs. (9)-(6) by setting m = −1 in
centrosymmetric systems with mirror symmetries. Here we
set t = −8,−2 and 0 for the three independent regions of t:
I, II, and III, respectively.

plane and are protected by Mx and My, respectively
(as shown in Fig. 1(b)). The mirror operations read as

Mx : (x, y, z) → (−x + αxax
2 , y +

βxay
2 , z + γxaz

2 ), and

My : (x, y, z) → (x +
αyax

2 ,−y +
βyay
2 , z +

γyaz
2 ), where

αx,y, βx,y and γx,y equal to 0 or 1, and ar with r = x, y, z
is the lattice constant along r-direction. One can find
that an extra symmetry operation of the combination of
Mx, My and P, PMyMx, is equivalent to the mirror
operation about the z direction Mz.

A general two-band Hamiltonian can be written as

H (k) = g0 (k) τ0 +

3∑
i=1

gi (k) τi, (1)

where τ0 is the identity matrix and τi with i = 1, 2, 3
are the three Pauli matrices. The coefficients gi (k) with
j = 0, 1, 2, 3 are real functions of k. To reduce the mathe-
matical complexity, we assume that kx and ky are equiva-

lent to each other, indicating the C4z symmetry. Because
g0 (k) does not affect the topological properties of nodal
rings, we hereafter drop the g0 (k) term.

Now, we consider the impacts of the mirror symme-
tries on the Hamiltonian. Invariance of mirror symme-
try Mr gives MrH (G+ qr)M−1r = H (G− qr), where
qr = kr −G with r = x, y, z and G = 0 or π. Under the
basis in which both H (kr = G) andMr are diagonal, we
can use a diagonal matrix, i.e. Mr = diag [mcr,G,mvr,G]
in the mirror invariant plane, where mc(v)r,G = ±1 and
the subscripts c and v denote the conduction band and
valence band, respectively. After a straightforward calcu-
lation, one gets g1,2 (G+ qr) are even or odd in qr when
mcr,G/mvr,G = 1 or −1, while g3 (G+ qr) is even in qr
and independent of the value of mcr,G/mvr,G.

When G = 0, a nodal ring in the kr = 0 plane requires
mcr,0/mvr,0 = −1, i.e. Mr = τ3, with r = x, y. However,
the matrix form of Mz still keeps undetermined. Next,
we consider two separate cases: mcz,0/mvz,0 = 1 (Case
A) and mcz,0/mvz,0 = −1 (Case B). For Case A, one
hasMx,y = τ3 andMz = τ0, indicating that g1,2 (k) are
odd in kx,y but even in kz, and g3 (k) is even in kr. It is
known that any period function can be expanded as a lin-
ear combination of sine and cosine functions. Thus, the
periodic functions gj (k) with j = 1, 2, 3 can be expanded
as

gj (k) =
∏
r=x,y

[∑
n

Cj,r,nsin (nkr/ξr)

]
×
∑
m

Cj,z,mcos (mkz/ξz) ,

g3 (k) =
∏

r=x,y,z

[∑
n

C3,r,ncos (nkr)

]
, (2)

where m and n are nonnegative integers and ξr ≡
1
2

∣∣∣mcr,0mvr,0
− mcr,π

mvr,π

∣∣∣ + 1 specifies the independent parities

of g1,2 (k) nearby kr = 0 and kr = π [73]. Similarly, for
Case B with Mr = τ3, the general form of gj (k) with
j = 1, 2 read

gj (k) =
∏

r=x,y,z

[∑
n

Cj,r,nsin (nkr/ξr)

]
. (3)

Meanwhile, since g3 (k) is even in kr and independent of
the value of mcr,0/mvr,0, g3 (k) in Case B takes the same
form as Case A. Note that g1 (k) does not essentially
differ from g2 (k) except some constant coefficients.

Nodal Line Structures.— Considering a single nodal
ring in the kx = 0 plane, one then has the effective Hamil-
tonian in this plane, H (k) = g3 (k) τ3. Let us expand
g3 (k) in terms of cos(nkr) and keep the leading terms
with n = 0 and 1,

g3 (kx = 0) ≈ m0 + C
′

1cosky + C
′

2coskz + C
′

3coskycoskz.

Since non-zero C
′

3 as well as different values of C
′

1 and C
′

2

only modifies the shape of the nodal ring such that one
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TABLE I. Parameters
{

mcz,0
mvz,0

; ξx,y; ξz;R (t)
}

of 24 kinds of effective lattice models and corresponding Fermi surfaces. Because

several effective Hamiltonians with different parameters may correspond to a common Fermi surface, only eleven inequivalent
nodal line structures exist as shown in Fig. 1(b)-1(l).

mcz,0
mvz,0

1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1

ξx,y 2 2 1, 2 2 1 1 1 1, 2 2 2 2 1 1 1

ξz 1, 2 1 1, 2 2 1 2 1, 2 1, 2 1, 2 2 1 2 1 1, 2

R(t) I II III II II II I III I II II II II I

Fermi Surface (b) (b) (b) (c) (g) (h) (i) (d) (e) (e) (f) (j) (k) (l)

could further simplify g3 (kx = 0) to m + cosky + coskz.
The corresponding energy spectrum of the Hamiltonian
reads ± |g3 (kx = 0)|, which can be labeled by the eigen-
values of Mx = τ3, i.e. ±sgn [g3 (kx = 0)]. In the kx = 0
plane, one has the values of g3 (kx = 0) at different high
symmetry points in the BZ as g3 (Γ) = 2+m, g3 (Z) = m,
g3 (M) = −2 + m and g3 (Y) = m. It is clear that when
−2 < m < 0, only g3 (Γ) is positive, the mirror eigen-
values labeling the valence band and conduction bands
switch partners by evolving smoothly from Γ to Z (M,
Y) along any in-plane k-path `. Consequently, a band
crossing point (P) on ` always occurs. Therefore, there
exists a nodal ring that separates the Γ point and the
other time-reversal invariant points in the kx = 0 plane,
as shown in Fig. 1(a). Furthermore, the corresponding
Hamiltonian in the ky = 0 plane can be obtained in a
similar way.

Since g3 (k) should reduce to be m+ cosky,x+ coskz in
the kx,y = 0 plane, we express g3 (k) as follows:

g3 =
1

t+ 1

(
C +

∑
r=x,y,z

coskr + tcoskxcosky + tcoskz

)
,(4)

with C = m (t+ 1) − 1 and −2 < m < 0. In addition,
one can expand g1,2 (k) and keep the leading terms, for
Case A,

gj (k) =

[
cos

kz
ξz

+ Cj,z

] ∏
r=x,y

sin
kr
ξr
, (5)

with Cj,z = sj (2− ξz) and j = 1, 2. Similarly, for Case
B one has

gj (k) =
∏

r=x,y,z

sin
kr
ξr
. (6)

It is clear that a one-dimensional nodal line structure
can exist in the kr = G plane only when g1,2 (G+ qr) are
odd functions in qr. Thus, one hasH (k) = g3 (k) τ3 in all
of such mirror invariant planes. As discussed above, the
nodal line structures in these planes can be well-defined
by sgn [g3 (k)]. Some straightforward calculations show
that only sgn [g3 (π, π, 0)] and sgn [g3 (π, π, π)] keep ad-
justable. Specifically, one has sgn [g3 (π, π, 0)] < 0 for

−1 < t < (2−m)
(2+m) and sgn [g3 (π, π, π)] > 0 for (4−m)

m <

t < −1. It gives rise to three independent regions of t: (I)

t < (4−m)
m or (2−m)

(2+m) < t, (II) (4−m)
m < t < −1, and (III)

−1 < t < (2−m)
(2+m) . Summarily, the effective Hamiltonians

of the possible nodal line structures can be well charac-

terized by a set of parameters as
{
mcz,0
mvz,0

; ξx,y; ξz;R (t)
}

,

whereR (t) stands for the three regions of t above. Hence,
one gets 24 kinds of effective Hamiltonians as well as
eleven nodal line structures in Figs. 1(b)-1(l). From the
viewpoint of the building block, one could recognize three
basic blocks among these nodal line structures: a pair of
perpendicular nodal rings near the Γ point in every fig-
ure or near the corners in the kz = 0 plane in Figs. 1(i)
and 1(l), a single nodal ring in each mirror invariant plane
perpendicular to the kz direction, and a pair of nodal line
penetrating each surface BZ parallel to the kz direction
as reported in [35]. We tabulate all the lattice Hamiltoni-
ans and the corresponding nodal line structures in Table
I. It is one of the main results in this work.

Material Realization.—Let us turn to discuss the con-
crete material realization of these nontrivial Fermi sur-
faces. In fact, the nodal line structure in Fig. 1(d), has
been predicted in Cu3PdN [54, 55], rare earth monop-
nictide LaN [56], 3D graphene networks [57], and CaTe
[58]. In this work, we first demonstrate that β phase of
ternary nitrides X2GeN2 (X = Ca,Sr,Ba) whose crystal
structures are depicted in Fig. 2(a) possess the novel
nodal line structure in Fig. 1(b). β–Sr2GeN2 had been
synthesized experimentally in 2005 [9]. And our first-
principles calculations of phonon spectra show that β–
Ca2GeN2 and β–Ba2GeN2 are dynamically stable [75].
We shall take β–Sr2GeN2 as an example to investigate
the nontrivial nodal line structure in β–X2GeN2.

The energy band structure of β–Sr2GeN2 without the
SOC effect is depicted in Fig. 2(b) [75]. The band-project
analysis reveals that both the valence band and conduc-
tion band are mainly composed by px and pz orbits of
Ge and N atoms, indicating a tiny SOC effect. Further
band structure calculations demonstrate that there are
two nodal rings in ΓZTY and TYX1A1 plane, respec-
tively. The Fermi surface in Fig. 2(c) gives a visual
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FIG. 2. (a) Crystal structure of β–X2GeN2. (b) Band struc-
ture calculated by GGA-PBE of β–Sr2GeN2 when SOC is
ignored. The weights of the px and pz orbits of Ge and N on
valence band and conduction bands are highlighted in green
and purple, respectively. +/− denote the eigenvalues of the
mirror symmetry, i.e. Mãb : (x1, x2, x3) −→ (−x2,−x1, x3),
where xi is the position under the basis 〈a, b, c〉. (c) The Fermi
surface of β–Sr2GeN2 indicates two nodal lines perpendicular
to each other near the Y point in the first BZ. (d) The Fermi
surface obtained from our model Hamiltonian with parame-
ters {1; 1; 1; III} [75]. (e) Isoenergy band contours of (110)
surfaces at 20 meV relative to the Fermi level. A surface
flat band inside the projected circle indicates the existence of
a drumhead-like surface state. (f) Isoenergy band contours
of (001) surface. Only a cross formed by the projected bulk
states remains in the surface BZ.

recognition of the unique nodal line structure. Both of
the two nodal rings center on the Y point and connect
with each other at two points D1 and D2 that locate
above and below the Y point along the k3 axis. Fig.
2(d) clearly shows that the effective Hamiltonian with
parameters {1; 1; 1; III} could produce the Fermi surface
in Fig. 2(c).

The remarkable feature of a topological nodal ring is
the drumhead-like state in the surface BZ, which can
be probed by various experimental techniques, such as
the scanning tunneling microscope and the ARPES. For
the (110) surface in Fig. 2(e), a surface flat band resides
inside the projected circle. The other nodal ring will be a
line in Fig. 2(e) as the two nodal rings are perpendicular
to each other. Nevertheless, since both of the two nodal
rings perpendicular to (001) surface, the isoenergy band
contour of the (001) surface will be a cross just as shown
in Fig. 2(f). Thus, the detection of the surface states

in this system would be strongly affected by its crystal
orientation.

Conclusion.—In summary, we introduced a systemat-
ical method to build the effective Hamiltonians of 3D
multiple nodal line semimetals. It has been shown that
there exist eleven distinct kinds of symmetry protected
nodal line structures in systems with inversion symmetry
and perpendicular crystalline mirror planes when SOC
is ignored. These corresponding effective Hamiltonians
can be fully determined by four parameters. In addi-
tion, we first found that β–X2GeN2 (X = Ca,Sr,Ba) are
candidates for 3D semimetals with the novel nodal line
structure in Fig. 1(b).

It should be emphasized that our method can be ap-
plicable to bosonic systems as well, such as photons and
phonons. The recent experimental advances of nodal line
and nodal chain semimetal in photonic crystals [76, 77]
would inspire the investigation of these new nodal line
structures in bosonic systems. Furthermore, our idea can
be generalized to systems with and without T .
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SUPPLEMENTARY MATERIAL FOR “MIRROR PROTECTED MULTIPLE NODAL LINE
SEMIMETALS AND MATERIAL REALIZATION”

This supplemental material contains the first-principles calculations of the band structures of β–
X2GeN2 (X = Ca,Sr,Ba), the impact of the SOC effect, constructions of the effective Hamiltonians, and the dynamical
stability.

Methods and Material.— To clearly understand the electronic properties of β–X2GeN2, we performed first-principles
calculations by using the Vienna ab-initio simulation package (VASP) based on the generalized gradient approximation
(GGA) [1] in the Perdew-BurkeErnzerhof (PBE) exchange-correlation functional [2, 3]. A Γ-centered k-mesh 7×7×5
is used to sample the Brillouin zone. The nonlocal HeydScuseria-Ernzerhof hybrid functional calculations (HSE06)
[4, 5] are also used to check the band structures. The maximally localized Wannier functions (MLWF) [6, 7] projected
from the bulk Bloch wave functions and wann tools [8] are used to extract the topological surface states.

The crystal structure of β–X2GeN2 is shown in Fig. 3(a)-Fig. 3(b). This crystal structure belongs to the Cmce
space group (No. 64). The lattice parameters a = b = 6.369Å and c = 12.312Å are fully optimized. The angle
between lattice vectors a and b is about 129.3◦. This crystal structure possesses three independent symmetries, i.e.
one mirror symmetry Mãb : (x1, x2, x3) −→ (−x2,−x1, x3) and two glide mirror symmetries Mab : (x1, x2, x3) −→
(x2 + 1/2, x1 + 1/2, x3 + 1/2) and Mc : (x1, x2, x3) −→ (x1 + 1/2, x2 + 1/2,−x3 + 1/2), where xi is the position
under the basis 〈a, b, c〉. Combining these three symmetries in different means, one could have identity symmetry,
inversion symmetry, one twofold rotation symmetry, and two twofold screw symmetries. In addition, the corresponding
bulk and surface Brillouin zones are depicted in Fig. 3(c).
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FIG. 3. (a) Side-view and (b) Top-view of the crystal structure of β–X2GeN2 (X = Ca,Sr,Ba). All the atoms can be found
in the (110) plane. Here, the balls in sapphire, purple and gray represent X, Ge and N atoms, respectively. (c) Bulk Brillouin
zone is given in sapphire, and the projected surface Brillouin zones of (110) and (110) planes are given in shadow.

Energy Band Structures.— As discussed in the main text, the energy band structure of β–X2GeN2 obtained by
GGA-PBE indicates this family material can be candidates for multiple nodal line semimetals consisting of two
perpendicular nodal rings encircling the Y point. However, the GGA-PBE calculation sometimes can not produce
the precise band gap. Hence, we perform HSE06 calculations to check the band structures of β–X2GeN2. The HSE06
results in Fig. 4(b)-4(d) demonstrate that β–Ca2GeN2 supports the multiple nodal line structure. The existences of
multiple nodal line structures in β–Ba2GeN2 and β–Sr2GeN2 require a slight compress strain, e.g. 2%.
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FIG. 4. (a) Band structure of β–Sr2GeN2 calculated by GGA-PBE. (b)-(d) Band structure calculated by HSE06 of β–Ba2GeN2

and β–Sr2GeN2 with a 2% compress strain and β–Ca2GeN2. All of the β–X2GeN2 (X = Ca, Sr,Ba) ( 2% compress strain for
β–Ba2GeN2 and β–Sr2GeN2) have the similar band structures as β–Ba2GeN2 calculated by GGA-PBE. The band structures
from k · p Hamiltonian Eqs. (7)-(9) with parameters in Table II are plotted in green.

SOC Effect.— We turn to discuss impacts of the SOC effect on the energy band structures of β–X2GeN2. Since
a mirror operation acts both on the spatial and the spin spaces, a mirror operation, e.g. Mz can flips the x and y
components of spin but the spin component along the mirror axis remains intact. Hence, the eigenvalue of mirror
symmetryMz reads m2

z = (−1)
2S

, where S = 1/2 and 1 refer to the cases with and without SOC effect, respectively.
The doubly degenerate conduction or valence band should be labeled by mz(i,−i). Since the energy bands with the
same eigenvalues of mirror symmetry would repulse each other. As a result, the mirror symmetry protected nodal
line when the SOC effect is neglected will be gapped out when the SOC effect is taken into account.

En
er

gy
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V
)

Γ Y T YX1

1

0.5

0

-1

-0.5

non-SOC
SOC

FIG. 5. Comparison of Band structures of β–Sr2GeN2 with and without SOC effect. The negligible SOC effect only leads to
a small correction to the band structures of β–Sr2GeN2.

Since the relevant bands mainly consist of px and pz orbital of the light elements N and Ge, the SOC effect in
β–X2GeN2 may be negligible. We show the band structure of β–Sr2GeN2 with and without SOC effect in Fig. 5. The
results indicates that the band crossing along the two nodal rings gapped out slightly (less than 10 meV). Hence, the
family of materials even with the SOC effect can be regarded as nodal line semimetals as proposed in the main text.

Model Hamiltonian.— It has been shown that β–X2GeN2 possesses the nodal line structure schematically shown in
Fig. 1(b) in the main text. Based on the eigenvalues of the mirror symmetries from the first-principles calculations,
we only need to expand lattice model Hamiltonian

H (k) = g0 (k) τ0 + g1 (k) τ1 + g2 (k) τ2 + g3 (k) τ3, (7)

and remain the second order terms in kα with α = x, y, z. In the case with parameters {1; 1; 1; III}, the corresponding
coefficients are given as

g1 (k) = g2 (k) = sinkxsinky, g3 = coskx + cosky + coskz +m. (8)

Moreover, the time-reversal symmetry takes the form as T̂ = Kτ0, and K is the complex conjugate operator.
ÔH (k) Ô−1 = H (−k) leads to g2 = 0, where the Ô is the inversion operation or time-reversal operation. Then,
the remaining coefficients of the effective k · p Hamiltonian are

g0 = a0 + a1k
2
x + a2k

2
y + a3k

2
z , g1 = bkxky, g3 = d0 + d1k

2
x + d2k

2
y + d3k

2
z , (9)
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TABLE II. Parameters of the k ·p Hamiltonian fitted by the first-principles calculations. The percentages in this Table indicate
the strength of compress strain.

a0 a1 a2 a3 b d0 d1 d2 d3

System/ Method/ Strain (eV) (eV · Å2) (eV · Å2) (eV · Å2) (eV · Å2) (eV) (eV · Å2) (eV · Å2) (eV · Å2)

β–Sr2GeN2/ GGA/ 0% 0.045 -6.28 -0.25 -0.28 -4.25 -0.15 0.54 23.57 1.67

β–Ba2GeN2/ HSE06/2% 0.069 38.94 -0.58 -0.17 -8.16 -0.09 0.69 134.4 1.87

β–Sr2GeN2/ HSE06/ 2% 0.063 -11.39 -0.39 -0.34 -4.74 -0.10 0.57 35.78 2.03

β–Ca2GeN2/ HSE06/ 0% 0.052 -9.74 -0.18 -0.42 -5.88 -0.25 0.64 49.08 2.21

with kx = k1 + k2 , ky = k2− k1 and kz = k3. Here these parameters aj , b and dj with j = 0, 1, 2, 3 are used to fit the
band structures of real materials and given in Table II. The corresponding Fermi surface from this k · p Hamiltonian
is shown in Fig. 2(d) in the main text.

In the kx = 0 plane and ky = 0 plane, we can get two functions, i.e. d2k
2
y + d3k

2
z = −d0 and d1k

2
x + d3k

2
z = −d0

from the equality of the two eigenvalues of the Hamiltonian. When djd0 < 0 with j = 1, 2, 3, each of the two functions
can determine an ellipse, giving rise to two nodal rings in the My and Mx planes. Moreover, the two ellipses cross

with the k3 axis at D1,2 =
(

0, 0,±
√
−d0/d3

)
points. In other words, the two nodal rings connect each other at D1,2

located above and below the Y point in Fig. 2(c) in the main text.
Dynamical Stability.— In fact, β–Sr2GeN2 had been successfully synthesized in experiments [9]. So far, there is no

experimental synthesis of β–Ca2GeN2 and β–Ba2GeN2. Here, we would like to study the stability of β–Ca2GeN2 and
β–Ba2GeN2 by calculating their phonon spectra. As shown in Fig. 6, no imaginary frequency point in the phonon
spectra suggests that both two materials are dynamically stable and may be synthesized in laboratories.
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FIG. 6. Phonon spectra of β–Ba2GeN2 in (a) and β–Ca2GeN2 in (b) indicate their stabilities.
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