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Abstract This paper describes an efficient method called Riccati discrete time transfer ma-
trix method of multibody system (MS-RDTTMM) for studying the dynamic modeling and
anti-swing control design of a two-dimensional overhead crane system, which consists of a
trolley, rope, load, and control subsystem. Regarding the rope as a series of rigid segments
connected by hinges, a multibody model of the overhead crane system can be developed
easily by using MS-RDTTMM. Then three separate fuzzy logic controllers are designed
for positioning and anti-swing control. For improving the performance of the predesigned
fuzzy control system, the genetic algorithm based on MS-RDTTMM is presented offline
to tune the initial control parameters. Using the recursive transfer formula to describe the
system dynamics, instead of the global dynamics equation in ordinary dynamics methods,
the matrices involved in this method are always very small, and the computational cost of
the dynamic analysis and control system optimization can be greatly reduced. The numeri-
cal verification is carried out to show the computational efficiency, numerical stability, and
control performance of the proposed method.

Keywords Multibody system dynamics · Discrete time transfer matrix method · Fuzzy
control · Overhead crane · Genetic algorithm

1 Introduction

Overhead crane plays an important role in many factories and harbors, which transports a
load from one place to another. Crane acceleration, deceleration, and disturbances always
induce undesirable load swing, and decrease the crane performance. Such problems de-
crease the work efficiency and in some cases cause damage to the loads and cause safety
accidents [1–4]. As the high positioning accuracy, small swing angle, short transportation
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time, and high safety are required, operating an overhead crane is hard work, and various
attempts have been made to control the load swing and the trolley position, which is of-
ten not a simple task since an overhead crane has fewer control inputs than its degrees of
freedom (DOF). Lee (2001) used the fuzzy logic anti-swing controller and position servo
controller for positioning and swing damping [5]. Karkoub (2002) developed modeling and
energy based nonlinear control for crane lifters [6]. Matsuo (2004) used the PID+Q-based
controller to minimize the crane sway [3]. Fang (2003) employed a dynamic crane model
to determine an optimal speed that minimized load swing [7]. Liu (2005) used Lagrange
method for dynamic modeling of a two-dimensional overhead crane, and then proposed an
adaptive sliding mode fuzzy control approach for anti-swing control [8]. Chang (2008) stud-
ied fuzzy projection control law and its application to the overhead crane [2]. Park (2008)
presented an adaptive fuzzy sliding-mode control for the robust anti-swing trajectory track-
ing of overhead cranes subject to both system uncertainty and actuator nonlinearity [4]. Yu
(2011) proposed a novel fast control strategy including a normal proportional and derivative
regulator and a fuzzy cerebellar model articulation controller to realize position tracking
and anti-swing of an overhead crane [9]. Tuan (2013) studied an adaptive sliding mode con-
trol of a crane system in the case of no prior knowledge of the payload mass and damped
elements [10]. Pezeshki (2015) employed a model-free adaptive controller using feedback
linearization and an adaptive fuzzy sliding mode controller using fuzzy approximation to
control an underactuated overhead crane system [11]. Zhang (2017) considered a finite-time
regulation controller for 2-dimensional underactuated crane system with both constant and
varying cable length [12].

The nonlinear crane system is a controlled multibody system essentially, which consists
of a trolley, rope, load, and other components interacting with some control subsystems.
In general, when studying dynamics and control design of a controlled crane system, one
must establish the global dynamics equations firstly by using multibody dynamics meth-
ods [13–17], such as Wittenburg, Kane, Lagrange, and so on. Then based on that, various
control methods can be attempted to design the crane control system. As the order of the
global dynamics equations by ordinary dynamics methods increases with the DOF of the
system, the computational cost of high-DOF model would be expensive and it is difficult
to satisfy the real-time control. Thus, for solving the problem of computational consump-
tion and real-time control, most existing literature sources often have to adopt reduced crane
system model to deal with its dynamics and control design. For example, the dynamics of
rope in a crane system is quite complex and difficult, and its dynamics model can be usually
described by the continuum models or by some discrete modeling methods, such as finite
segment, finite element, and so on. Then the dynamic equations of rope can be written as
the complex partial differential equations or differential equations, and the computational
cost for solving these dynamic equations is very high, especially when using the discrete
modeling methods to study the rope dynamics. So in order to improve the computational
efficiency, when deducing the dynamic equations of overhead crane system, most existing
literature takes no account of the effect of rope on dynamics and control [1, 2]. However,
the reduced dynamic model is sometimes difficult to reflect the dynamic performance of the
real system, and leads to low accuracy or even instability of control system.

The transfer matrix method (TMM), which doesn’t need the system global dynamic equa-
tions and has low system matrix order [18], has been used widely in structure mechanics
and rotor dynamics for the purpose of saving computational cost. Rui et al. (2005, 2010)
presented the discrete time TMM of multibody system (MS-DTTMM) to study general
multibody dynamics [19, 20]. For different dynamics problems, He (2007), Wang (2012),
and Rong (2014) introduced Riccati transform to improve the numerical stability of TMM
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[21–23]. This method provides a potential means for efficient dynamics modeling and con-
trol design of complex crane systems.

In this paper, combining the MS-DTTMM and Riccati transform technology, an ef-
ficient method called Riccati discrete time transfer matrix method of multibody system
(MS-RDTTMM) is presented to study the dynamic modeling and control design of a two-
dimensional overhead crane system. Three separate fuzzy logic controllers are predesigned
for positioning and anti-swing control, and their control parameters are tuned offline by
genetic algorithm (GA) based on MS-RDTTMM. Some numerical simulations will show
that the proposed method is a very useful method for dynamic analysis and control system
optimization of controlled crane systems because of its simplicity and numerical efficiency.

2 Dynamic modeling of two-dimensional overhead crane system
by MS-RDTTMM

As shown in Fig. 1, the two-dimensional overhead crane is regarded as a nonlinear un-
deractuated multibody system, and consists of a trolley, rope, load, and control subsystem.
A servomotor is used to control the trolley position and the load swing. For convenience,
rope elasticity and rail friction are ignored, and the rope length is usually kept constant when
the overhead crane is in motion. In this study, trolley and load are regarded as rigid bodies.
The rope is modeled as a series of rigid segments connected by smooth hinges [24–26]. As
Kamman and Huston (2001) pointed out, the multibody modeling of the rope has distinct
advantages over traditional continuum rope models, because the nonlinear and large-motion
effects of the rope can be studied conveniently with multibody models [24]. The numbers
1 ∼ (2n + 3) in Fig. 1 denote the serial numbers of elements. n is the total number of the
rope’s segments. Combining the MS-DTTMM and Riccati transform technology, by de-
ducing new transfer equations of controlled elements, an efficient MS-RDTTMM will be
presented for dynamics modeling of the controlled crane system in this section.

2.1 Linearization of dynamic equations of elements

As the transfer equation and transfer matrix of each element used in our method are obtained
by linearizing its dynamics equations, the common linearization methods need to be simply
introduced first in order to facilitate reader understanding, and their details can be seen in
[19–22]. The motion parameters ξ̈ and ξ̇ in the dynamic equations of each element at time
ti [19–22] are expressed as

ξ̈(ti) = χ1ξ(ti) + χ2,ξ , ξ̇(ti) = χ3ξ(ti) + χ4,ξ (1)

where ξ denotes the position coordinates x, y or orientation angle θ ; ξ̇ and ξ̈ are the first
and second derivatives of ξ with respect to time. χ1, χ2,ξ , χ3, and χ4,ξ will have different
expressions for different numerical integration methods. For Newmark-β method [27], they
can be expressed as:

χ1 = 1

β�T 2
Ik, χ2,ξ = − 1

β�T 2

[
ξ(ti−1) + �T ξ̇(ti−1) +

(
1

2
− β

)
�T 2ξ̈(ti−1)

]
, (2)

χ3 = γ χ1�T, χ4,ξ = ξ̇(ti−1) + �T
[
(1 − γ )ξ̈(ti−1) + γχ2,ξ

]
. (3)
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Fig. 1 Controlled overhead crane system and rope dynamic model

�T = ti − ti−1 is the time step, β and γ are the coefficients of Newmark-β method. Bold
capital symbol Ik is the unit matrix, and the subscript k denotes its order. If γ ≥ 1/2 and
β ≥ γ /2, the formulas are unconditionally stable.

Based on the Taylor expansion, the trigonometric functions and multinomial [19–22] in
the dynamic equations of each element at time ti can be expressed as

sin θ(ti) = cos θ(ti−1)θ(ti) + G2 + o
(
�T 2

)
,

(4)
cos θ(ti) = − sin θ(ti−1)θ(ti) + G1 + o

(
�T 2

)
,

a(ti)b(ti) = a(ti−1)b(ti) + a(ti)b(ti−1) − a(ti−1)b(ti−1) + ȧ(ti−1)ḃ(ti−1)�T 2 (5)

where

G1 = cos θ(ti−1) + θ(ti−1) sin θ(ti−1) − 1

2
cos θ(ti−1)

[
θ̇ (ti−1)�T

]2
,

G2 = sin θ(ti−1) − θ(ti−1) cos θ(ti−1) − 1

2
sin θ(ti−1)

[
θ̇ (ti−1)�T

]2
.

(6)

ξ(ti−1), ξ̇(ti−1), and ξ̈(ti−1) are all known at time ti . Thus, the quantities χ1, χ2,ξ , χ3, χ4,ξ ,
s̄, c̄, etc., are all definable for any element at time ti , and hence the above formulations are
valid [19–22].

2.2 State vector, transfer equation and transfer matrix of each element

For the multibody model of the two-dimensional overhead crane system shown in Fig. 1, one
can define the state vector of connection point between any rigid body and hinge [19, 20] as

z = [x, y, θ,m,qx, qy,1]T (7)

where m, qx , and qy are the interior moment and interior forces of the connection point with
respect to the inertial reference system, respectively.

2.2.1 Transfer matrix of controlled rigid body moving in a plane

A rigid body moving in a plane with control moment and control force is shown in Fig. 2.
Points I , O , and C denote the inboard point, outboard point, and mass center of rigid body,
respectively; O2x2y2 is the body-fixed reference system whose origin O2 is on point I ,
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Fig. 2 Rigid body moving
in plane with control

oxy is the inertial reference system. (bp,1, bp,2) are the position coordinates of point p with
respect to the body-fixed reference system. For any point p, the following geometrical equa-
tions can be obtained:

xp = xI + xIp, yp = yI + yIp, θp = θ (8)

where (xp, yp) are the position coordinates of point p with respect to the inertial reference
system. xIp = bp,1cI − bp,2sI , yIp = bp,1sI + bp,2cI , sI = sin θI , and cI = cos θI .

The dynamic equations of the controlled rigid body moving in a plane [19–22] can be
obtained as

mẍC = qx,I − qx,O + fx,C + uc,x, mÿC = qy,I − qy,O + fy,C + uc,y, (9)

JI θ̈I + mxICÿI − myICẍI = mO − mI + mC + qx,OyIO

− qy,OxIO − fx,CyIC + fy,CxIC + τC (10)

where m is the mass of rigid body, qx,I , qy,I are the internal forces of the inboard point,
qx,O , qy,O are the internal forces of the outboard point, mI , mO are the internal moments
of the inboard and outboard points, respectively, fx,C , fy,C , and mC are the external forces
and external moment acted on mass center. JI is the moment of inertia with respect to
point I ; uC,x , uC,y , and τC are the control forces and control moment acted on mass center,
respectively. These control moment and control forces can be designed by the corresponding
control law. For the two-dimensional overhead crane shown in Fig. 1, the controlled trolley
moves along a rail, and only control force uC,x is considered, which will be described in
Sect. 3.

Linearizing Eq. (8) by Eq. (4), then one obtains

xO = xI − yIO(ti−1)θI + bO,1G1 − bO,2G2,

yO = yI + xIO(ti−1)θI + bO,1G2 + bO,2G1.
(11)

Substituting Eq. (8) into Eq. (9), and linearizing by using Eqs. (1) and (4), one gets

qx,O = −mχ1xI + mχ1yIC(ti−1)θI + qx,I + u57 + uc,x, (12)

qy,O = −mχ1yI − mχ1xIC(ti−1)θI + qy,I + u67 + uc,y . (13)

Substituting Eqs. (12) and (13) into Eq. (10), and linearizing by using Eq. (1), one obtains

mO = u41xI + u42yI + u43θI + mI + u45qx,I + u46qy,I + u47 + τC. (14)
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Define the control input acted on the controlled rigid body as

uC = [uc,x, uc,y, τc,1]T. (15)

Combining Eqs. (8), (11)–(14), the transfer equation of planar controlled rigid body
[19–22] is obtained as

zO = UzI + HuC. (16)

Transfer matrices are

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −yIO(ti−1) 0 0 0 bO,1G1 − bO,2G2

0 1 xIO(ti−1) 0 0 0 bO,1G2 + bO,2G1

0 0 1 0 0 0 0
u41 u42 u43 1 u45 u46 u47

−mχ1 0 mχ1yIC(ti−1) 0 1 0 u57

0 −mχ1 −mχ1xIC(ti−1) 0 0 1 u67

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 −1 0
1 0 0 0
0 1 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

where the state vectors zI and zO are defined as in Eq. (7):

u41 = mχ1(yIO − yIC), u42 = mχ1(xIO − xIC),

u43 = −mχ1xIC(ti−1)xIO − mχ1yIC(ti−1)yIO + JIχ1,

u45 = −yIO,

u47 = −mC + u67xIO − u57yIO + JIχ2,θ + (mχ2,yI
− fy,C)xIC + (fx,C − mχ2,xI

)yIC,

u46 = xIC, u57 = fx,C − mχ1(bC,1G1 − bC,2G2) − mχ2,xC
,

u67 = fy,C − mχ1(bC,1G2 + bC,2G1) − mχ2,yC
,

xIp(ti−1) = (bp,1cI − bp,2sI )
∣∣
ti−1

, yIp(ti−1) = (bp,1sI + bp,2sI )
∣∣
ti−1

.

(18)

Especially, for the discrete rope model shown as Fig. 1(b), each rigid segment can be
regarded as a rigid body moving in plane without control, so according to Eq. (16), the
transfer equation of each rigid segment moving in plane without control can be obtained as

zO = UzI . (19)

Here, the transfer matrix U has the same form as Eq. (17).

2.2.2 Transfer matrix of smooth pin hinge

The model of smooth pin hinge [19–22] is shown in Fig. 3. The symbols I and O denote
the inboard and outboard ends of a smooth pin hinge j , respectively, and j − 1 and j + 1
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Fig. 3 Smooth pin hinge model

denote its inboard body and outboard body, respectively. Neglecting the mass and size of a
smooth pin hinge, one gets

xO = xI , yO = yI , qy,O = qy,I , qx,O = qx,I , mO = mI = 0. (20)

If the outboard end of the outboard rigid body connects smooth pin hinge or has free bound-
ary, from the transfer equation of outboard rigid body of smooth pin hinge, one can obtain

0 = u41xO + u42yO + u43θO + u45qx,O + u46qy,O + u47 (21)

where u41, u42, u43, u45, u46, u47 are elements of the transfer matrix of outboard rigid body,
shown as Eq. (18).

Combining Eqs. (20) and (21), the transfer equation of the smooth pin hinge [19–22] can
be obtained as

zO = UzI (22)

with the transfer matrix

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0

− u41
u43

− u42
u43

0 0 − u45
u43

− u46
u43

− u47
u43

0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

The state vectors zI and zO are defined as in Eq. (7).

2.3 Dynamics solution of the controlled overhead crane system

From Eqs. (16), (19), and (23), the following transfer equations of elements can be obtained

zO,P =
{

UpzI,p + HpuC (p = 1),

UP zI,P (p = 2,3, . . . ,2n + 3),
(24)

where the subscript p denotes the serial number of the element. U1 and H1 are the transfer
matrices of controlled trolley 1, defined by Eq. (17); U2 is the transfer matrix of smooth
hinge 2, defined by Eq. (23); U2n+3 is the transfer matrix of load 2n+3, defined by Eq. (19).
n is the number of the rope segments. U2i+1 and U2i+2 (i = 1,2, . . . , n) are the transfer
matrices of rigid segment (2i + 1) and smooth hinge (2i + 2), defined by Eqs. (19) and (23),
respectively.
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When using the ordinary MS-DTTMM [19], considering Eq. (24), the overall transfer
equation of the controlled crane system shown in Fig. 1 can be assembled as

zO,2n+3 = U2n+3

n∏
i=1

(
U2i+2U2i+1

)
U2U1zI,1 + U2n+3

n∏
i=1

(U2i+2U2i+1)U2H1uC. (25)

Applying the boundary conditions of a system into Eq. (25), considering transfer
Eqs. (24) of elements and numerical integration expression (1), all motion quantities at
time ti can be obtained. Then the entire procedure can be repeated for time ti+1, and so
on [19, 22]. As pointed out in [21, 22], recursive multiplication of transfer matrices leads to
the propagation of round-off errors by the ordinary MS-DTTMM, and if the number of rope
segments is large, numerical instability will appear. For solving this problem, the following
Riccati transform technology [21, 22] is introduced.

Rearrange the state vector (7) into three parts as

z = [
zT
a , zT

b , 1
]T

(26)

where za and zb include the known and unknown state variables in the inboard boundary of
system, respectively. For the crane system shown in Fig. 1, one can let za = [y, θ, qx]T and
zb = [x, m, qy]T.

Thus, Eq. (24) can be rearranged as

[
za

zb

]
O,p

=
[

Ū11 Ū12

Ū21 Ū22

]
p

[
za

zb

]
I,p

+
[

H̄a

H̄b

]
p

uC +
[

Ū13

Ū23

]
p

(p = 1),

[
za

zb

]
O,p

=
[

Ū11 Ū12

Ū21 Ū22

]
p

[
za

zb

]
I,p

+
[

Ū13

Ū23

]
p

(p = 2,3, . . . ,2n + 3).

(27)

Based on the partition of za and zb , Ūjk (j = 1,2; k = 1,2,3), H̄a , and H̄b can be obtained
easily.

Letting

Pp = (Ū21,pSp + Ū22,p)−1, Qp = −(Ū21,pep + Ū23,p) (28)

and substituting the Riccati transform [21, 22]

za(I,p) = Spzb(I,p) + ep (p = 1,2, . . . ,2n + 3) (29)

into Eq. (27), one obtains

zb(I,p) =
{

Ppzb(O,p) + PpQp − PpH̄b,puC (p = 1),

Ppzb(O,p) + PpQp (p = 2,3, . . . ,2n + 3),

za(I,p+1) = Sp+1zb(I,p+1) + ep+1

(30)

where the following recursive formula holds:

Sp+1 = (Ū11,pSp + Ū12,p)Pp,

ep+1 =
{

Ū11,pep + Ū13,p + Sp+1Qp + [H̄a,p − Sp+1H̄b,p]uC (p = 1),

Ū11,pep + Ū13,p + Sp+1Qp (p = 2,3, . . . ,2n + 3).

(31)
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Fig. 4 Control block diagram of the controlled crane system

As the input boundary conditions of system are za(I,1) = 0 and zb(I,1) �= 0, the starting con-
dition of Eq. (31) is

S1 = 0, e1 = 0. (32)

By using Eq. (31) repeatedly, the matrix S and e at any connection point can be obtained,
especially at the output boundary point of system

za(O,2n+3) = S2n+4zb(O,2n+3) + e2n+4. (33)

The unknown state variables of the output boundary point of system at time ti can be ob-
tained by solving the algebraic Eq. (33). Then by Eq. (31), the state vectors of any connec-
tion point at time ti can be obtained. The velocity, angular velocity, acceleration, and angular
acceleration quantities at time ti are obtained by numerically integrating Eq. (1). Then the
entire procedure can be repeated for time ti+1 until to the required time. This method avoids
solving the global stiff differential or differential-algebraic equations which have too high
matrix orders if the number of DOF of the system is large (especially, when using ordinary
dynamics methods), and only needs to solve the algebraic recursive transfer equations, thus
simplifying the algorithm of dynamics analysis. Moreover, the order of matrices involved
in this method is independent of the number of DOF of the system, only (3 × 3) for planar
chain controlled multibody system dynamics, which greatly improves the computational
efficiency.

3 Control strategy

The overhead crane control is a problem with two objectives: trolley positioning and pay-
load anti-swing. The control objective is to drive the trolley to transport the load safely from
an initial position to the destination in short time without residual swing. In this section, a
nonlinear fuzzy control strategy is proposed to control the crane. Generally, when designing
a fuzzy controller, the error variables and their differentials are often applied to be the an-
tecedent parts of the fuzzy controller. However, for a multivariate fuzzy control system, this
simple design would result in complicated fuzzy rules and huge time cost [28, 29]. Suppose
that the trolley position xtr , trolley velocity ẋtr , swing angle α, and swing angular velocity α̇,
which were all divided into five fuzzy linguistic sets, were selected as the input variables of
a fuzzy controller, then we would need 54 rules to fulfill a fuzzy controller, which would
reduce the computational efficiency [1, 2]. Here, the swing angle α is the angle between the
plumb line and the line connecting the load centroid and the hanging point of the trolley.
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Fig. 5 Basic structures of fuzzy controllers

In order to improve the efficiency of the fuzzy controller and realize the high-
performance control of load swing and crane position, the following fuzzy control method
[29] shown in Fig. 4 is presented. In this fuzzy control method, three separate fuzzy con-
trollers (trolley position fuzzy controller, trolley velocity fuzzy controller, and anti-swing
fuzzy controller) are designed for controlling the load swing and crane position. The total
control force uC,x acted on the trolley is obtained by

uC,x = R1uC,1 + R2uC,2 + R3uC,3 (34)

where uC,1, uC,2, and uC,3 are the control outputs of the trolley position fuzzy controller,
trolley velocity fuzzy controller, and anti-swing fuzzy controller, respectively. R1, R2, and
R3 are the scale factors.

3.1 Design of each fuzzy controller

The basic structures of the trolley position fuzzy controller, trolley velocity fuzzy controller,
and anti-swing fuzzy controller [29] are shown in Fig. 5. The trolley position error e and its
derivative ec are used to be the input variables of the trolley position fuzzy controller and
trolley velocity fuzzy controller, respectively. The swing angle α and swing angular velocity
α̇ are used to be the input variables of the anti-swing fuzzy controller. K1, K2, K3, and K4

are the quantization factors. The dynamic ranges of variables E, EC, α̃, ˜̇α, uc,1, uc,2, and uc,3

are all [−4, 4]. The fuzzier is a mapping from a real-valued point to a fuzzy set. In a fuzzy
inference engine, fuzzy logic principles are used to combine the fuzzy IF-THEN rules in the
fuzzy rule base into a mapping from the domain of input variables to the domain of output
variables. Defuzzification is the process of converting a fuzzy demand of output variables
into a crisp demand. After fuzzification, inference, and defuzzification procedures, each
fuzzy controller will derive a proper control output, according to its corresponding inputs.
In this study, five fuzzy sets (NB, NS, ZO, PS, and PB) are used for each input and output
variables. Here N (negative), P (positive), S (small), B (Big), and ZO (zero) are used as
abbreviations to represent each qualitative meaning. The triangle function is adopted as the
membership function for each input and output variables, as shown in Fig. 6. The centroid
defuzzifier is used to convert the control output obtained from the fired fuzzy rules to a real
number [1, 2]. The fuzzy rules of the proposed three fuzzy controllers are shown in Tables 1
and 2.

The centroid method computes the center of gravity of the entire fuzzy command. The
resulting real number, in some sense, summarizes the elastic constraint imposed on the pos-
sible value of the output variables by the fuzzy sets. Taking the anti-swing fuzzy controller
as an example, the actual control output uc,3, which sums up all the consequents parts of the
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Fig. 6 Membership function of the fuzzy input and output variables

Table 1 Fuzzy control rules of trolley position fuzzy controller and trolley velocity fuzzy controller

Trolley position fuzzy controller Trolley velocity fuzzy controller

e NB NS ZO PS PB ec NB NS ZO PS PB

uc,1 NB NS ZO PS PB uc,2 NB NS ZO PS PB

Table 2 Fuzzy control rules
of anti-swing fuzzy controller uc,3 α

NB NS ZO PS PB

α̇ NB NB NB NB NS NB

NS NB NS NS NS NB

ZO NS NS ZO PS PS

PS PS PS PS PS PB

PB PB PB PB PS PB

fuzzy rules, can be given by

uc,3(t) =
(

25∑
j=1

qj min
(
μAj (α̃),μBj ( ˜̇α)

))/(
25∑

j=1

min
(
μAj (α̃),μBj ( ˜̇α)

))
(35)

where μAj and μBj are the membership functions of α and α̇, respectively, and Aj and Bj

are the fuzzy sets of α and α̇. qj represents the greatest value of linguistic terms in the fuzzy
set Cj of uc,3.

3.2 Optimization of fuzzy controllers using genetic algorithms

The fuzzy controller described above was designed based on the intuition of the problem,
and therefore, it could not work optimally due to the complex nature of the control problem.
For example, the scale factors, quantization factors, and parameters of membership functions
would greatly affect the stability and performance of the control system [28, 29]. In this
section, GA technique [30–32] is employed to optimize the parameters of the fuzzy control
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system offline, and here only the scale factors and the quantization factors are coded in a
chromosome using a binary coding scheme:

X = (K1,K2,K3,K4,R1,R2,R3). (36)

Supposing X1,X2, . . . ,Xpop as the Npop individuals in the current population, let-
ting fg,1(X

i) = ∫
e2(t)dt , fg,2(X

i) = ∫
α2(t)dt , fg,3(X

i) = ∫
u2

C,x(t)dt , and hg,j (X
i) =

max{|fg,j (X
1)|, |fg,j (X

2)|, . . . , |fg,j (X
Npop)|}, (j = 1,2,3), the normalized object function

can be defined as

gg,j

(
Xi

) = fg,j

(
Xi

)
/hg,j

(
Xi

)
(j = 1,2,3). (37)

Then the multi-objective optimization problem of controller parameters can be expressed as

min
{
gg,1

(
Xi

)
, gg,2

(
Xi

)
, gg,3

(
Xi

)} (
Xi ∈ X ∈ R7

)
. (38)

The point of this multi-objective optimization problem is to find all possible tradeoffs among
multiple objective functions that are usually conflicting [30]. There are many genetic algo-
rithms for solving a multi-objective optimization problem, and here the objective weighting
method is adopted, which would transform a multi-objective optimization problem into a
single objective optimization by defining the fitness function used to evaluate the status of
each solution as

F
(
Xi

) = wf,1gg,1

(
Xi

) + wf,2gg,2

(
Xi

) + wf,3gg,3

(
Xi

)
(39)

where wf,1, wf,2, and wf,3 are positive weight coefficients, which decide the weight pro-
portion of each control objective in the comprehensive function (39), and finally affect the
search direction of the optimal solution of multi-objective GA. In order to simplify the op-
timization algorithm, one can determine these target weight coefficients according to spe-
cific engineering experience directly. Since the search direction would be constant in the
multi-dimensional objective space when a constant weight is assigned to each of the mul-
tiple objective functions, if engineering experience is lacking, one has to tentatively test
the weight coefficients several times for obtaining a satisfactory optimization result [30]. In
order to solve this problem, one can use the random weight [30] or adaptive weight [31]
methods to change the weight coefficients, and achieve the various search directions in the
multi-dimensional objective space. Taking the random weight method as an example, a ran-
dom real number to each weight is assigned as follows when each pair of parent strings are
selected for a crossover operation [30].

wf,j = rndj /

3∑
k=1

rndk (j = 1,2,3) (40)

where rndj are non-negative random real numbers, which are generated for the weights
wf,1, wf,2, and wf,3 to calculate the weighted sum in (39) when each pair of parent strings
is selected.

On the basis of defining the chromosomes (36) and fitness function (39), according to
the GA, the initial population of chromosomes with a fixed number of random individuals
from the whole solution space can be configured first. Then one can select a pair of highly
adaptive individuals from the current population to produce new individuals for the next
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Fig. 7 Flow chart of offline
parameters optimization by using
GA based on the MS-RDTTMM

population by the roulette wheel method, in which the probability of choosing a certain
individual is proportional to its fitness [20], that is,

Prob
[
Xi is selected

] = F
(
Xi

)
/
∑

F
(
Xk

)
. (41)

This selection procedure is iterated Nselection times in each generation for selecting Nselection

pairs of parent strings for a crossover operation [30]. If using the random weight [30]
method, the weights wf,1, wf,2, and wf,3 defined by Eq. (40) are not constant but vari-
able at each of the Nselection iterations, and the selection probability of each string is also
variable even in a single generation, various search directions in the genetic algorithm could
be realized.

The crossover and mutation are further applied to produce new children individuals and
new generation. In order to avoid destroying optimal individuals in a genetic operation, the
elitist preservation policy [30] could also be used. Repeating the above process until the
number of generations reaches a specified maximum limit, the final set of Pareto optimal
solutions will be obtained, form which a single optimal solution X∗ can be selected by
the decision maker’s preference as the final solution. The flow chart of offline parameters
optimization by using GA based on the MS-RDTTMM is shown in Fig. 7.

The computational cost of the above optimization process mainly depends on the pop-
ulation size, fitness evaluation efficiency, genetic operators efficiency (including selection,
crossover, and mutation), and so on [20]. The fitness evaluation involves all individuals, and
each evaluation needs to solve the system dynamics. As the proposed MS-RDTTMM has
higher computational efficiency, under the same population size and genetic operators algo-
rithms, the computational time of the parameter optimization process can be greatly reduced,
that is, the proposed method is advantageous to the controller optimization design. It must
be pointed out that the optimization solution and robustness of the optimization algorithm
are closely related to both the maximum generation and population size. For any determin-
istic problem, when the population size is too small, even if the maximum generation is
set very large, the entire optimization process is often prone to premature convergence and
local optimum; with the increase of population size, the global search ability of the algo-
rithm is relatively enhanced, the convergence algebra is smaller, and the robustness is also
better. Therefore, in the implementation of the GA, the maximum generation and population
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Table 3 Input values for the
genetic algorithm used in
optimization

Population size 70 Range of K1 [0.05, 5]

Maximum generation 30 Range of K1 [0.1, 10]

Generation gap 0.80 Range of K3 [0.05, 5]

Crossover probability 0.65 Range of K4 [0.1, 15]

Mutation probability 0.035 Range of R1, R2,R3 [5, 200]

size should be set reasonably according to the problem complexity (the optimized param-
eter’s number). The maximum number of generations and the population size are often set
according to the experience, so far there is no specific method, and for different optimiza-
tion problems one has different requirements. In this study, considering the computation
efficiency and convergence, under the proper setting for the crossover and genetic probabil-
ities, the population size is enough when setting it 8–12 times larger than the number of the
optimized parameters, and the maximum number of generations in this case can be set to 30.

4 Numerical simulation

For the two-dimensional controlled overhead crane as shown in Fig. 1, the mass of the trol-
ley, rope and load are mtrolley = 30 kg, mrope = 2.159 kg, mload = 10 kg, respectively. The
length of rope is lrope = 3 m, and the rope is divided into 50 rigid segments. The initial
position of trolley is 0 m, and the initial swing angle of load is zero degrees. The control
objective is to drive the trolley to transport the load safely from an initial position to the
destination (18 m) in short time without residual swing. First of all, the above GA is used to
optimize the parameters of the fuzzy control system designed in Sect. 3.1, the correspond-
ing input values for the GA used in optimization are set as in Table 3. Then based on the
optimized fuzzy controllers, the dynamics analysis of this system is presented by solving
the transfer equation deduced by the proposed method and by directly integrating the global
dynamic equations of the system deduced by Lagrange method [15], respectively.

The time history of the position of trolley obtained by the two methods is shown in Fig. 8.
The time history of the swing angle of load obtained by the two methods is shown in Fig. 9.
It can be seen clearly that the results obtained by the two methods have good agreement. The
overshoot and steady state error of the trolley position are 0.55% and 0.065%, respectively.
The maximal swing angle of the load is less than 0.09 rad during the trolley motion, and will
go zero at time 11.5 s. The proposed method and control strategy guarantee not only prompt
damping of the load swing but also accurate control of the crane position, and they achieve
the trolley position tracking and anti-swing control perfectly. When dividing the rope into
50 rigid segments, a computational efficiency comparison of this dynamics simulation by
the proposed and Lagrange methods (described by the global differential equation) [7, 15]
under the same simulation platform is shown in Table 4. The ratio in Table 4 is equal to the
CPU time of the involved method divided by the minimum CPU time of the two methods.
It can be seen clearly that the calculated consumption ratio of the two methods is nearly
11.5:1, and the proposed method can greatly improve the calculation speed while keeping
the accuracy.

With a gradual increase in the number of the rope segments, the computational stabil-
ity of different methods is shown in Table 5. Compared with Lagrange method or ordinary
MS-DT-TMM (see Eq. (25)), the proposed method has a lower matrix order, which means
fewer computer storage requirements and the resulting higher computing efficiency. As the
recursive multiplication of transfer matrices may lead to the propagation of round-off errors
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Fig. 8 Time history of the
position of the trolley

Fig. 9 Time history of the swing
angle of the load

Table 4 Computational time
comparison Method Lagrange method The proposed method

Computational time ratio 11.491 1

by the ordinary MS-DTTMM (see Eq. Equation (25)), when the number of rope segments is
large, the numerical instability of the ordinary MS-DTTMM would appear, which will have
a negative impact on the computational accuracy and even cause the algorithm to become
divergent or completely ineffective, as shown in Table 5. Once the algorithm diverges or
becomes completely ineffective, it means computational failure (“F” in Table 5); otherwise
the numerical calculation is stable (“S” in Table 5). In the proposed MS-RDTTMM, by in-
troducing the Riccati transformation, the two-point boundary value problems which are nu-
merically unstable can be transformed into initial value problems, and the system dynamics
is solved by the recursive transfer equation (see Eq. (31)) instead of recursive multiplication
of transfer matrices of elements, thus its numerical stability can be improved [33]. By using
the proposed method, the computation result can be obtained even if the number of DOF of
the system is more than 10 000.

5 Conclusions

In this paper, regarding the rope as a series of rigid segments connected by hinges, the
multibody dynamic modeling and anti-swing control design of a two-dimensional overhead
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Table 5 Contrast of computational stability and memory requirement

Number
of rope
segments

DOF of
system

Method

Lagrange method Ordinary MS-DT-TMM The proposed method

System
matrix order

Stability System
matrix order

Stability System
matrix order

Stability

5 7 7 S 7 S 3 S

12 14 14 S 7 S 3 S

50 52 52 S 7 F 3 S

80 82 82 S 7 F 3 S

200 202 202 S 7 F 3 S

500 502 502 S 7 F 3 S

1000 1002 1002 S 7 F 3 S

2000 2002 2002 S 7 F 3 S

5000 5002 5002 S 7 F 3 S

10 000 10 002 10 002 S 7 F 3 S

crane system is studied by using MS-RDTTMM. Three separate fuzzy logic controllers
are designed for positioning and anti-swing control. For improving the performance of the
fuzzy control system, a genetic algorithm based on the MS-RDTTMM is designed offline
to tune the initial control parameters. The numerical verification is also carried out to show
the computational efficiency, numerical stability, and control performance of the proposed
method.

By using the recursive transfer formula to describe the system dynamics, instead of
the global dynamics equation in ordinary dynamics methods, the matrices involved in this
method are always very small, and the computational cost of dynamic analysis and control
system optimization can be greatly reduced. In the illustrative simulation, when dividing the
rope into 50 rigid segments, the calculated consumption ratio of the Lagrange and proposed
method is nearly 11.5:1; and the proposed method can greatly improve the calculation speed
while keeping the accuracy. In addition, by introducing the Riccati transformation, the nu-
merical stability of the proposed method is substantially improved, which makes the appli-
cation of the transfer matrix method to the large-scale multibody system dynamics possible.

In view of the importance of further practical test verification of the performance of
the proposed fuzzy controller, the corresponding study on the experimental tests will be
conducted in the following article.
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