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Abstract
Selective laser melting (SLM) is one of the most important and successfully additive manufacturing processes in 3D metal
printing technologies. Critical quality issues such as porosity, surface roughness, crack, and delamination continue to present
challenges within SLM-manufactured parts. Monitoring and in-process defect diagnosis are the key to improving the final part
quality. Currently, it greatly hinders the adaptability and the development within the defect detection system since the setup
restricts the vision and photo diode applications in the SLM process monitoring. Additionally, defect detection with traditional
classification approaches makes the system rather complex due to introducing a series of steps. To meet these needs, this study
proposes a novel method for the defect detection within the SLM parts. The setup was flexibly conducted using a microphone,
and the defect detection was obtained by the framework of deep belief network (DBN). It is implemented by a simplified
classification structure without signal preprocessing and feature extraction. The experimental results showed that the utilization
of acoustic signals was workable for quality monitoring, and the DBN approach could reach high defect detection rate among five
melted states without signal preprocessing.
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1 Introduction

Selective laser melting (SLM) technology is one of the most
promising processes of metal-based additive manufacturing
(AM) technology [1]. It can directly achieve components with
long fatigue life, fine surface finish, and high density from a
metal powder bed layer by layer. However, critical product
quality issues such as irregular porosity, crack, and delamina-
tion continue to present challenges among SLM-
manufactured parts [2]. Feedback controls subsequent to the
quality monitoring of the SLM process could generally mini-
mize this variability for improving the quality of metal parts.
Nevertheless, it is impeded by lacking process monitoring

techniques. Therefore, it is necessary to develop in situ pro-
cess measurement methods to facilitate the monitoring of the
SLM process.

The primary quality issues are balling, warp, crack, and
delamination in components from the SLM process. The
balling effect is generally caused by insufficient wetting, over
wetting, or sparking [3]. It will result in the increase of pores
inside the powder layers [1], squeezed voids between layers
[4], and surface roughness. When the liquid viscosity is high,
warp of the parts will occur due to overheating, especially on
the first few layers. This is because the internal stresses are
caused by the large temperature gradient between the part and
the platform. The warp of SLM parts will lead to cracks be-
tween adjacent lines or delamination between neighboring
layers [5]. In addition, cracks or delamination will also happen
since higher cooling speed results in more formation of the
brittle martensitic phase [6]. Both balling and overheating
phenomena lead to building failure about the part density,
mechanical properties, and dimensional accuracy during the
SLM process, so detecting balling and overheating phenome-
na is the primary task in the monitoring.

Many attempts have been studied to correlate the process
measurements to the part quality [7]. The SLM process is a
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non-stationary thermal process accompanied by optical,
acoustic, electron, and other signals. Various process monitor-
ing techniques have been implemented for detecting the
melted sates from the SLM process. Kruth et al. developed a
series of monitoring and control approaches for melting pool
using combined cameras and photo diodes on the SLM system
[8, 9]. Off-line experiments illustrated that there was a good
correspondence between the in situ monitoring result and the
actual quality in the products. The results indicated that the
pores in the parts could be linked to melting pool variations.
Lane et al. [10] conducted multiple sensor detections on a
commercial LPBF machine during fabrication of a nickel al-
loy 625 AM part. Synchronized data was obtained by measur-
ing a building part with an overhang structure. Residual heat
and cooling rates were observed using thermal and visible
cameras. Additionally, there appeared a relationship between
frequency of photo detector signal and melt pool motion.
Rieder et al. [11] demonstrated an online monitoring system
using ultrasonic to inspect the built-up components. The cap-
tured signals offered inferred information for qualitative eval-
uation of residual stresses and porosity within finished parts.
Kanko et al. [12] developed a morphology-based defect de-
tection approach through an inline coherent imaging setup to
monitor the melt pool morphology variations coaxially. The
result showed that the melt pool fluctuations strongly influ-
enced the final track quality and process defects resulting from
poor parameter regimes.

All the monitoring methods above are either using coaxial
setups or using off-axial monitoring setups. Using coaxial
setups, the laser could be affected by the lens characteristics
in a Lagrangian reference frame. Using off-axial monitoring
setups, the laser is easily affected by issues such as the
clamping position, angle, and distance even though the setup
receives intense signals in a Eulerian reference frame. Acoustic
sensors have many advantages in the monitoring of the SLM
process since they are non-contact, non-destructive, and flexi-
ble. Setups using acoustic sensors have been widely used in
laser welding processes, in which acoustic signals were used to
identify the keyhole, no-keyhole, and cutting models success-
fully [13, 14]. However, acoustic signals have not been suc-
cessfully used for the SLM process monitoring yet. The melt-
ing process of the SLM is inside a sealed chamber, so the
environment noise is relatively stable compared to welding
processes. Therefore, it is workable for using acoustic signals
to monitor the SLM process. To overcome this problem, Ye
et al. [15] applied a microphone to collect the acoustic signal
for monitoring the characteristics during the SLM process. The
forming mechanism of acoustic signal was investigated, and a
good mapping between acoustic signals and laser power or
laser scanning speed was found during the SLM process.

For the current methods, such as [9–12, 15], the monitoring
methods mostly focused on the experimental setup and vari-
able measurement, but fewer studies conducted the intelligent

process monitoring and defect detection. Quicker speed,
higher recognition accuracy, and fewer computation amounts
are required in the in situ monitoring process. Hence, a proper
intelligent recognition method is required to monitor the track
formation during the SLM process. Intelligent methods have
been widely applied in manufacturing process monitoring and
defect detection. Among them, neural networks (NN) are the
most studied method [16] and have been utilized for the IC
engine fault detection [17], machine tool wear classification
[18], welding defect recognition [19], and gearbox bearing
fault detection [20]. Another effective and efficient intelligent
method is support vector machine (SVM), with applications in
rotating machinery component fault diagnosis [21] and tool
condition monitoring for milling process [22]. All these intel-
ligent methods above must make data preprocessing,
denoising, and feature extraction, introducingmany sequential
steps. The sequential steps are accompanied with complex
structures and low processing speed, and it is inconvenient
in the in situ SLM process monitoring and defect diagnosis.
Hence, a simplified monitoring framework is necessary. The
lately developed deep belief networks (DBN) [23] could meet
this need. In the DBN, it is performed to design features with
generative pre-training and slightly adjust the features with
discriminative fine tuning to achieve better recognition from
raw signals. The DBN method has been recently applied for
acoustic recognition due to the powerful learning capability of
the higher-order topological features and good discrimination
between classes of interest [24, 25]. However, the promising
DBN method has yet to be employed for the monitoring and
defect diagnosis of SLM process.

In this paper, the DBN is put forward to monitor the quality
of the components using original acoustic signals from the
SLM process. In Section 2, it is clarified the rationale and
feasibility of defect detection by DBN using acoustic signals
in the SLM processing. In Section 3, experimental setup is
designed to verify the proposed monitoring method. In addi-
tion, results from multilayer perceptron (MLP) and SVM
methods are used to compare with that from DBN in the di-
agnosis recognition. The conclusions in Section 4 are provid-
ed for the monitoring of SLM process.

2 SLM monitoring and defect detection
with DBN using acoustic signals

2.1 The rationale of monitoring SLM process
with acoustic signals

During the SLM processing, there exist melting pool, plasma,
and spatter. Plasma is generated by laser energy irradiating the
vaporization from the process, which changes with the laser
energy density. The fluctuation of plasma during laser pro-
cessing can strongly change the propagation of radiation by
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reflection or refraction [26]. Underheating or overheating over
metal powder by laser processing is accompanied with dy-
namic variation of plasma. The plasma density NP goes up
with ion density N and vapor density NM as surface tempera-
ture T increases.

Np ¼ 3NMdΔNexp − E−φð Þ=kTð Þ ð1Þ

where d is the laser radiation focal spot diameter, Δ is the
cross section for atoms, E is the ionization potential of an
atom, φ is the work function of a metal Δ, and k submits to
the expression kd = π/2. As the increasing plasma adds the
plasma density NP, the atmosphere pressure P, which deter-
mines the intensity of the acoustic signal, fluctuates surround-
ing the melt pool. The acoustic intensity I can be formulated as

I ¼ P2

f NPð Þv ð2Þ

where the air density f(NP) is a function of plasma density and
v is the sound speed. The air density, which is collected by the
microphone near the melting site, is determined by the dynam-
ics of the plasma density NP. The behavior of laser processing
in the SLM technology is connected with the variation of the
plasma. Therefore, acoustic signals have relationships with the
track formation during the SLM process.

2.2 The signal properties of acoustic signals

Figures 1 and 2 show acoustic signals with melting and with-
out melting in time and frequency domains separately. Signals
from without melting process were collected when the laser
was on but not melting the powder. In the time domain as
illustrated in Fig. 1, the amplitude with melting, which chang-
es during the formation transforming, is much larger than that
without melting. In the frequency domain of Fig. 2, there
exists a narrow frequency range, after which the signals can
be removed as noise. For the narrow frequency range, signal-

to-noise ratio (SNR) was fixed at 10 dB.We use fA to represent
the mean frequency of this transitional area, as highlighted in
Fig. 2. It is noted that fA largely depends on the formation
during the SLM process. Additionally, the numbers, size,
and location of the amplitude summits in the frequency do-
main are various as the track formations change.

In order to analyze the characteristics of the acoustic signal,
acoustic signals were converted into frequency domain by
power spectral density (PSD) as shown in Fig. 3. Red line
represents pure noise, which is collected without melting.
The noise is mainly from the machine operating, environment
noise, and their harmonic response, which is mostly among
the low frequency range. Acoustic signals with melting deter-
mine a wide frequency range (0~65 kHz for the case in Fig. 2).
In the following Section 3.2.1, it will perform the specific
analysis for the low frequency from 0 to 3000 Hz between
acoustic signals with melting and without melting.

Figure 4 indicates the different phenomena of balling and
cracks after various melting conditions, which produce acous-
tic signals with distinct properties. Molten states are relative to
the energy density E input into the powder, which is
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Fig. 1 Acoustic signals with melting and without melting in the time
domain, where acoustic signals with melting were at scanning speed
100 mm/s, layer thickness 50 μm, and laser power 100 W

Fig. 2 Acoustic signals with melting and without melting in the
frequency domain, where acoustic signals with melting were at
scanning speed 100 mm/s, layer thickness 50 μm, and laser power 100W
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Fig. 3 Acoustic signals with melting and without melting after PSD
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contributed by the scanning speed S, laser diameter D, hatch
distance H, layer thickness T, and laser power P, defined as
follows

E ¼ P
S � H � T � D

ð3Þ

The melted states are determined by the laser energy den-
sity to a degree. Nevertheless, when there are multiple vari-
ables changing, the melted states are also affected by other
factors such as the powder mass moving under the laser.
Hence, process monitoring for the SLM is more necessary.

In Fig. 4a, balls appear at the surface of the work piece,
which will result in building failure in squeezed voids, pores,
and surface roughness in a part. As shown in Fig. 4b, cracks
and delamination happen between layers in the part. All the
serious problems in Fig. 4 result from balling or overheating.
The formation of balling, slight balling, overheating, slight
overheating, and normal phenomena will be distinguished
by the DBN algorithm in the following.

2.3 Defect diagnosis using the DBN

Deep learning is a set of machine learning algorithms that
model high-level abstractions of input data by using complex
model architectures, mainly based on multiple layers of non-
linear transformations [23, 24]. Introduced by Hinton et al.
[23], the DBN is a probabilistic graphical model that contains
numerous layers for deep learning. Every layer progressively
captures more composite patterns of data for dimension reduc-
tion, pattern analysis, and classification [27]. During the past
several years, the DBN has made important influences on a
wide range of applications, especially in acoustic molding and
analysis. For instance, there are sound quality prediction [28],
speech synthesis [29], and audio feature extraction as well as
recognition [24, 25]. The key feature of the DBN learning
algorithm is its layer-by-layer training, which can be repeated
several times to learn a deep, hierarchical probabilistic model
efficiently. DBN learning algorithm is composed of a stack of
restricted Boltzmann machines (RBMs). An RBM is a net-
work with symmetrically coupled stochastic binary units. It
is determined by a set of visible units v ∈ [0, 1], hidden units
h ∈ [0, 1], and connections between the visible and hidden
neurons. The hierarchical structure of the DBN contains a
single visible layer v and L hidden layers h1, . …, hl, …, hL.

A DBN structure makes effective use of unlabeled data,
interpreting a probabilistic generative model, and alleviating
the problem of overfitting. The strategy of layer-wise unsu-
pervised training followed by supervised fine-tuning allows
efficient training of deep networks. Pre-training based on the
stacked-up RBMs has been found to work well regardless of a
large or small amount of training data [30]. The energy func-
tion of a joint configuration, which determines the probability
distribution by the weights of connections, the biases of visi-
ble units, and the biases of hidden units in a binary RBM of
the lth level, is defined as

E v;hð Þ ¼ −∑n
i¼1aivi−∑

m
j¼1bjh j−∑n

i¼1∑
m
j¼1vih jwij ð4Þ

where wij is the symmetric interaction term between the visi-
ble unit i and hidden units j, ai, and bj represent bias terms for
visible units and hidden units respectively. The variable set
θ = (w, a, b) is parameters to determine the RBM model, and
the target of RBM training is to find the optimum θ∗ that
represents the training samples.

The joint probability distribution for visible and hidden
units is defined as

p v; hð Þ ¼ e−E v;hð Þ

Z
ð5Þ

where

Z ¼ ∑v;he
−E v;hð Þ ð6Þ

is a normalizing factor or a partition function, and it is obtain-
ed by summing over all the possible pairs of visible and hid-
den vectors. Similarly, the probability that the network assigns
to a visible vector v is given by summing over all possible
hidden vectors

p vð Þ ¼ ∑he
−E v;hð Þ

Z
ð7Þ

The probability that the network assigns to a visible vector
will be increased by adjusting the weights and biases to de-
crease the energy of that vector, and contributes more to the
partition function. It can be updated by taking the derivative of
the log probability with respect to the weight

∂logp vð Þ
∂wij

¼ vih j
� �

data− vih j
� �

model ð8Þ

a b

Fig. 4 Balling (a) and crack (b)
appearance after SLM process
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where the angle brackets are used to denote expectations spec-
ified. As a result, a simple learning rule for performing sto-
chastic steepest ascent can be obtained

Δwij ¼ ε vih j
� �

data− vih j
� �

model

� �
ð9Þ

where ε is a learning rate.
As there are no direct connections between hidden units in

an RBM, it is convenient to get an unbiased sample of 〈vihj〉
data. Given a randomly selected visible vector v, the binary
state of the hidden unit hj is set to 1 with probability

p hj ¼ 1jv� � ¼ g bj þ ∑iviwij
� � ð10Þ

where g(z) = 1/(1 + exp(−z)) is the logistic sigmoid function.
The vihj is then an unbiased sample. Similarly, it is defined an
unbiased sample to the visible unit state under a given hidden
vector as

p vi ¼ 1jhð Þ ¼ g ai þ ∑ jh jwij

� �
ð11Þ

To get an unbiased sample of 〈vihj〉model, a faster learning
procedure was proposed in [30]. This starts by setting the
visible unit states as a training vector. Then, using Eq. (10),
the hidden binary states are all computed in parallel. Once
binary states were chosen for the hidden units, with a proba-
bility given by Eq. (11), a reconstructionmodel is produced by
setting each vi to 1. The increment of weight is then given by

Δwij ¼ ε vih j
� �

data− vih j
� �

recon

� �
ð12Þ

For the biases, it uses the same learning rule that uses the
states of individual units rather than pairwise products. The
DBN structure and model parameters θ = (w, a, b) are finally
trained and updated according to the following learning rules:

wij ¼ ηwij þ ε vih j
� �

data− vih j
� �

recon

� �
ð13aÞ

ai ¼ ai þ ε vih idata− vih imodel

� � ð13bÞ

bj ¼ bj þ ε h j
� �

data− hj
� �

model

� �
ð13cÞ

where the η is the regularization term for the weight.
Figure 5 shows the architecture of the DBN for defect rec-

ognition with the visible unit vi of acoustic signals from the
SLM process. The network consists of three hidden layers,
and the pre-training procedure consists of three stages of un-
supervised learning. During the final fine-tuning with back
propagation (BP), all the parameters are trained via a super-
vised learning rule using initial values obtained from the pre-
training.

3 Experiments, results, and discussions

3.1 Experimental design

As shown in Fig. 6, the experimental monitoring system con-
sists of an own custom-designed SLM system and an acoustic
signal acquisition system. This SLM system is composed by a
laser, a powder-spreading device, and a controller panel. The
controller panel can adjust the process parameters by
connecting to the powder-spreading device, laser power, and
gas cylinder. The acoustic signal acquisition system includes a
3780C1 PCB microphone fixed at an angle of 30° over the
platform and a SIRUSm data acquisition system as depicted
in Fig. 7. It has the frequency response from 0 Hz to 100 kHz.
A series of SLM experiments is conducted on the 304 stainless
steel powders with a modulated pulse laser. To easily ensure the
formation of each track line, the hatch distances are large up to
1.5 mm to eliminate the thermal effect between adjacent lines.
According to the relationships among acoustic signals, energy
densities, and the track formation, energy densities into the
powder are changed to obtain the melted states of overheating,
slight overheating, normal, slight balling, and balling as listed
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Fig. 5 An illustration of DBN with stacked RBMs for five-state
recognition in the SLM process
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Fig. 6 Schematic depicting the metal SLM process technology
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in Table 1. The parameters are changing from scanning speeds
of 600, 100, and 50 mm/s at laser power of 100 W to laser
power of 60 and 160 W at scanning speeds of 100 mm/s.

With the experimental configuration, varied parameters
were applied to obtain five different patterns. For each pattern,
10-mm lines at various conditions are repeated with 200 kHz
sampling frequency of the acoustic acquisition system to ob-
tain 3860 sets of balling, 4302 sets of slight balling, 5489 sets
of normal, 4776 sets of slight overheating, and 4321 sets of
overheating signals. In this experiment, different energy den-
sities were input into the same 50-um-thickness powder layers
at the same hatch distance with laser radiation focal spot di-
ameter 100 μm. Distinctive phenomena of class A, class B,
class C, class D, and class E were generated from different
laser energy densities. They are slight balling, balling, normal,
overheating, and slight overheating separated by the formation
phenomena and widths as demonstrated in Fig. 8.

3.2 Results and discussion

3.2.1 Defect pattern features and signal preprocessing

For the experimental observations of Fig. 8, the laser energy
density of class B is smaller than that of class A, while the
melted state is smoother. This is because the mass of the

powder moving into the melt pool decreases with the high
scanning speed increase. The phenomena were also shown
in [31] at the same laser energies with different scanning speed
and laser power. Therefore, laser energy density is just an
indication of the energy input when a singlemelting parameter
changes. The balling degree of classes A and B and their
wettability are apparent as depicted in Fig. 8. For class C,
the wettability is good and there are small balls generated from
powder spatter that can be melted by the adjacent remelting.
Large balls attached to the track surface appear in class D and
class E since more energy input induces more liquid spatters
falling back onto the melting sites. Recoil pressure on the
melting pool rises with the energy input growth so the number
and the size of balls attached to the track surface increase from
overheating class D to class E.

Besides the acoustic signals corresponding to class C as
demonstrated in Fig. 1, the signals in time domain correspond-
ing to the other four classes are shown in Fig. 9. The signals
are much more overlapped, which cannot be classified by a
simple algorithm. The frequency below fA dominates most
features and energy as shown in Fig. 3; thus, low frequency
from 0 to 3000 Hz was zoomed in for specific analysis as
shown in Fig. 10. Comparing acoustic signals with melting
and without melting after PSD, the peaks before 500 Hz were
basic noise amplified by resonated signals. The next peak at
1160 Hz was the resonance frequency from metal powder
processing by laser. Therefore, the sample window size of
acoustic signals (time domain) x(t) was 200 for a set depend-
ing on the frequency resolution and time resolution of the
acoustic signal. From this way, signals from five patterns of
normal, balling, slight balling, slight overheating, and
overheating were collected experimentally. Standardization
was used to make the collected data into normalization with
zero mean and unit variance, and therefore, all parameters had
the same scale for a fair comparison between them, avoiding
performance of inaccuracy and extensive data redundancy.
The location of frequency fA varied with the track formations
changing. Noise is distributed among all the frequency bands
(Fig. 2), but within the high frequency range, the energy of
noise was close to that of melting signals as depicted in Fig. 3.
Denoising was performed with a butter frequency band pass
filter from 500 to 90,000 Hz.

Microphone

Platform

Fig. 7 Experiment setups with an acoustic signal acquisition system

Table 1 Condition patterns of the melting results with various melting parameters

Defect class Defect pattern Hatch distance
(mm)

Layer thickness
(μm)

Laser diameter
(μm)

Scanning speed
(mm/s)

Laser power
(W)

Class A Balling 1.5 50 100 100 60

Class B Slight balling 1.5 50 100 600 100

Class C Normal 1.5 50 100 100 100

Class D Slight overheating 1.5 50 100 100 160

Class E Overheating 1.5 50 100 50 100
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3.2.2 DBN training and classification performance

1. The DBN training

According to the DBN modeling approaches in
Section 2.3, the DBN is trained in the following procedure:

(a) Train the first layer as an RBM that models the raw (fre-
quency domain) input v = x( f ) as its visible layer.

(b) Use that first layer to obtain a representation of the input
that will be used as data for the second layer. It can be
chosen as being the mean activations p(h1 = 1| v).

(c) Train the second layer as an RBM, taking the trans-
formed data as the visible layer of that RBM.

(d) Iterate (b) and (c) for the desired number of layers, each
time propagating upward either samples or mean values.

(e) Fine-tune all the parameters of this deep architecture with
respect to the learning criterion Eq. (13).

Fig. 8 Defect states of the SLM
process, in which a, b, c, d, and e
are balling, slight balling, normal,
slight overheating, and
overheating
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Fig. 9 Acoustic signals in the
time domain, which are
corresponding to classes A, B, D,
and E
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The classification with a DBN model was designed with
four-level RBMs. The model parameters were as follows: the
numbers to the units in all hidden layers of DBNwere 300 and
the number of units in the fourth output layer was also 300.
Classification procedure was produced by a 300-300-300-300
DBNmapping the data input. Numbers of pre-training epochs
of DBN were all 20 with an unsupervised learning rate of
0.001 and 100 batch size, and the number of fine-tuning
epochs of DBN was 200 with a supervised learning rate of
0.01 and 100 batch size as illustrated in Fig. 11.

2. Classification performances

With the deep presentation in the multiple RBMs, a
softmax layer [30] at the top is used to diagnose the defects
from the free energies of all the class-specific RBMs.
Specifically, the log probability that the RBM trained on class
c assigns to the test vector t is given in the softmax layer

logP class ¼ cjtð Þ ¼ e−Ec tð Þ−logZc

∑de−Ec tð Þ−logZd
ð14Þ

where Zc is the partition function of the corresponding RBM.

The 60% of total samples for training and 40% for testing
and validation were randomly separated before recognition
processing. They were acoustic signals of different track for-
mations, which were preprocessed by the original, the FFT, and
the FFT with denoising separately. The DBN structure with
larger numbers of RBM units as well as hidden layers would
lead to over fitting and huge computation burden, but the struc-
ture with few numbers of them could not learn the signal infor-
mation to make an effective model as shown in Fig. 12. Cross-
validation was performed to evaluate the recognition model
with no over fitting when the model was established. After five
times repeated cross-validation procedures, five results were
again averaged to produce a single classification rate. The av-
erage classification rates out of five repeated DBN structure
runs for the diagnosis approach were 72.43% with the original
data, 95.93%with the data after FFT, and 95.87%with the data
after FFT and denoising. There was a little decline when intro-
ducing a band pass filter since a band pass filter cut off infor-
mation within the removed frequency band.

3.2.3 Comparison with other related methods

Due to their close relation to the DBN and the populations in
defect detections, MLP and SVM recognition methods were
implemented for a comparison of the results. In the MLP
model, a three-layer feed-forward network with 10 neurons
in the hidden layer was created. As a similar method to the
DBN, MLP had connections with the previous layer. The first
layer had a connection from the network input, and the final
layer produced the network’s output. There was no feedback
between layers. Table 2 represents the averaged results of five
repeated runs of diagnosis with MLP. They are 46.07% with
the original data, 82.34% with the data after FFT, and 82.40%
with the data after FFTand denoising. The variation of the five
repeated results from MLP was larger than those from DBN
and SVM because there was no feature extraction beforeMLP

0 50 100 150 200
200 Epochs

10-2

10-1

100

Train
Best

Fig. 11 Performance of the fine-tuning with 200 epochs in the DBN
training with data after FFT. Best training performance is 0.024249 at
epoch 200

0-500Hz

1160Hz

Fig. 10 Acoustic signals with melting and without melting after PSD
from 0 to 3 kHz
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Fig. 12 Classification rate from the DBN recognition method with
various numbers of hidden units with data after FFT. The classification
rate is 96.03% at 300 hidden units for one run
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training, and the samples were not enough to model the fitting
function.

All the sampling acoustic signals x were set as signal fea-
tures, and the number of feature was large compared with the
samples. Therefore, linear kernel function was used in the
training of the SVM model. The classification rate and effi-
ciency of the diagnosis techniques were tested and validated
with the testing and validation datasets using the trained defect
diagnosis SVM model. The average classification rates out of
five repeated runs for the SVM diagnosis approach were
67.82% with the original data, 97.86% with the data after
FFT, and 98.01% with the data after FFT and denoising.

In all of three recognition methods, there was a little change
between the diagnosis using FFT combining denoising data
and that using FFT data. The weights of the same noise among
each feature became small when the recognition structures
were trained, so there was little influence on the classification
results. Therefore, the noise inside weakly affected the defect
diagnosis accuracy.

From the results presented in Table 2, DBN method pro-
vided the best classification rate of 72.43% in various defects
with the raw data. The results from the DBN method im-
proved 23.50% as the FFT was added, while those from
MLP and SVM increased 36.27 and 30.04%. The result
growth of the SVM and MLP methods was bigger than that
of the DBN. This was because the DBN had learnt features
from the raw data itself, and data processing played a small
role in the recognition process. Moreover, DBN could greed-
ily pre-train the initial data to obtain high-order information by
stacking RBMs before finally using the proposed algorithm to
tune the generative model actually, while the neural network
MLP just simply mapped the initial data to approximating
functions with multilayer perceptrons directly. Hence, the de-
viation values between the DBN and the MLP decreased from
26.36 to 13.59% as the FFT procedure was added. In addition,
the classification results from the DBN and MLP models be-
come closer when more data preprocessing was increased.

For the comparison between SVM and DBN, the result of
SVM was a little better than that of DBN when adding data
preprocessing inside, while it was poor for the raw data with-
out any data processing. SVM outperformed other methods in
pattern classification when there are balanced data set and
noise free or little since it is based on the statistical learning
theory. However, SVM cannot explicitly present the relation-
ships learned from data.

For these reasons above, the DBN constructs a deep archi-
tecture to learn deep features of the input data and capture the
correlation between features to obtain the high-level informa-
tion. Furthermore, it reduces the complexity and selects the
primary information of the input data. High-level learning by
the generative model is superior for discriminating the track
formations of interest when there is less preprocessing input.
As a result of this, DBNs canmake the real-timemonitoring of
the SLM process possible without any data preprocessing
using acoustic signals.

3.2.4 Generalization of the DBN

To show the generalization of the DBN structure to the SLM
process monitoring, more experiments 1, 2, 3, 4, and 5 were
added to the tests and validated the model. In these tests, there
are no identical melted states but states with similar trends
since the melted states vary at the same energy density of
different scanning speed and laser power as depicted in
Section 3.1. Experiments 1, 2, 3, 4, and 5 with random param-
eter combinations were employed for testing and validating.
There were uniformities within the balling, normal, and
overheating acoustic signals respectively so the states could
be classified into the closest ones. As shown in Table 3, the
classification rate 70.57% was obtained from the DBN model
using raw data. Differences of the classification rates between
using raw data and using other preprocessing methods de-
creased to 22.43 and 23.06% separately. Classification rate
from data after FFTand denoising was slightly better than that

Table 2 Comparison without and with data preprocessing

Peered method Data processing Classification rate (%) Difference (1) (%) Difference (2) (%)

DBN Raw data 72.43

Data after FFT 95.93 23.50

Data after FFT and denoising 95.87 23.44

MLP Raw data 46.07 26.36

Data after FFT 82.34 36.27 13.59

Data after FFT and denoising 82.40 36.33 13.47

SVM Raw data 67.82 4.61

Data after FFT 97.86 30.04 − 1.93
Data after FFT and denoising 98.01 30.19 − 2.14

Difference (1) is the classification rate difference between raw data and data with preprocessing. Difference (2) is the classification rate difference
between the DBN and peered methods
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from data after FFT. This illustrates that fA moves with the
formation changing during the SLM process as shown in
Section 2.2. The DBN model without data preprocessing per-
forms more superior in recognition during the SLM process.

4 Conclusions

In this paper, acoustic signals were proposed to detect the
defects by the DBN method during the SLM process.
Acoustic signals have relationships with the track formation
during the SLM process since the formation and acoustic sig-
nals are both connected with the plasma variation. The acous-
tic method detected the defect with less data collected from a
flexible setup. Acoustic signals were gathered from five defect
patterns and used for defect identification by the DBN meth-
od. The DBNmethod extracted the high hierarchical informa-
tion and relationship from the raw acoustic signals, which
avoided feature extractions and data preprocessing. It per-
formed superior compared with the utilities of SVM and
MLP intelligent methods, and there was a generalization
among the defect patterns from experiments with random pa-
rameter combinations. Hence, this research provides a conve-
nient and possible solution to realize the process monitoring
and defect detection during the SLM process.
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