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We present a numerical study of the impact energy decay in a composite granular chain containing two
heavy and one light sections. We observe a marked crossover in the power-law behavior of the impact-energy
decay. The average reflection frequency first increases with a decreasing acceleration, and arrives at its maxi-
mum at “crossing” time then decays almost exponentially. The analysis demonstrates that this phenomenon is
related to the structural transition from compression to dilation state in both heavy-particle sections. The
further calculations suggest the dependence relation of the power-law exponent ��cb� in compression state on

the mass ratio �m2 /m1� and the Hertz law exponent �n� of the composite granular chain �cb�� m2

m1
�1/�n+1�

.
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Granular materials have recently received increasing in-
terest because of their ubiquity around us and many known
applications, but it is difficult to understand their intrinsic
dynamic properties due to the strong nonlinearity of forces
between particles and the complex distributions. One-
dimensional chains of elastic spheres are the simplest granu-
lar systems and a very active area of research �1–15� . As
reported in the pioneering work of Nesterenko �1� the propa-
gation of an elastic impulse in a granular chain possesses
soliton-like features. Experimental �16� studies have con-
firmed the existence of such solitary waves. Despite large
progress has been made on this subject, the physics of granu-
lar matter remains interesting and new behaviors or effects
are to be found and investigated.

Granular materials have long been used to protect things
from impact, such as packing sandbags around bunkers. Re-
searchers are trying to develop more sophisticated granular
materials that provide better protection from blasts. Recently,
Hong �17� constructed a “granular container” using a series
of sections with particles and by theoretical analysis he pre-
dicted that this granular container can trap energy in a par-
ticular region and release the trapped energy little by little in
the form of separate solitary waves over time. Nesterenko
et al. �18� demonstrated experimentally the efficiency of soli-
tonlike and shocklike pulse trapping and disintegration in a
composite granular protector and proved that its efficiency
depends on the particle’s arrangements. Hong �17� studied
the decay law of the impulse energy in granular protectors
and found a very interesting universal power-law behavior in
time for leakage of the impulse energy remained inside vari-
ous granular containers ER=At−�, where the exponent � is a
universal dimensionless constant and the constant A depends
on the structure of the granular container, such as the length
of the container and the arrangement of the granules. This
power-law behavior originates from the decrease in the speed
of a solitary wave after the reflection accompanying trans-
mission at the interface from light into heavy granules. How-
ever, little is known of the exponent. If it is available that the
theoretical dependence relation of the exponent ��� on the

mechanical properties such as the elastic constant �k�, the
mass �m�, and the Hertz law exponent �n�, this should not
only be of great benefit to understand the dynamics of com-
posite granular chain and but also be crucial to design the
shock protector.

In this paper we revisit the leakage of impulse energy
trapped inside a composite granular chain. We observe a
marked crossover in this power-law behavior of the decay of
the trapped energy and find that the crossover links to the
structural transition from compression to dilation state in the
heavy-particle sections. We then extend our study by explor-
ing the influencing factors of the exponent in compression
state and obtain their dependence relation.

In the present work we modeled the symmetric granular
chain as a collection of spherical particles which contains
two sets of particles and is divided into two heavy and one
light sections as shown in Fig. 1. The particles on both heavy
regions �denoted by dark balls� have masses m1 and radii R1,
the particles of the light section �denoted by gray balls� have
masses m2 and radii R2. There exist two interfaces in the
granular chain. Both ends of the chain are free to move.
Initially, every particle is placed barely in touch with
one another. The particles repel one another only when they
are in contact. The contact force between neighboring
particles follows Hertz’s law �19�: F��i,i+1�=ki,i+1��i,i+1�3/2

if �i,i+1�0 and F��i,i+1�=0 if �i,i+1�0. The overlap
between two adjacent particles, �i,i+1, is written as �i,i+1
=Ri+Ri+1− �xi+1−xi�, xi is the position of grain i. The elastic
constant is denoted by k. Under no precompression and in
the frictionless medium, the equation of motion of particle i
is written as

d2xi

dt2 =
1

mi
�ki−1,i��i−1,i�3/2 − ki,i+1��i,i+1�3/2� . �1�

The governing parameters in Eq. �1� is the ratio of k and m,
that is, the decrease of elastic constant is equivalent to the
increase of mass. Therefore, as introduced by Sinkovits and
Sen �3� and adapted in the work of Hong �17�, we fixed the
elastic constant �k=5657� and changed the mass to discrimi-
nate different particles. The diameter is 100. An impulse de-
fined by an initial velocity at time t=0 was initiated at the*csliu@issp.ac.cn
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first �i=1� particle. The fifth-order Gear predictor-corrector
method �20� was used to integrate the particle equation of
motion and the time step was 1.25�10−5.

In Fig. 2, we present the log-log plot of the remained
energy �ER� inside the light-section particles versus the
elapsed time �t�. We make special note of the fact that the
dependences of the natural logarithm of ER on the natural
logarithm of t are linear over both, what we now call, the
compression and the dilation branches. The “crossing” time
tc��120� corresponds to the transition point from compres-
sion to dilation branch. This crossover has not been observed
before. The linearity clearly shows that, as reported by Hong
�17�, the remained energy inside the light-section particles
decays with the time in a behavior ER�t�=At−�. The cross-
over yields two power-law regions, the slow releasing of ER
in the compression and the fast releasing in the dilation. That
is, the exponent � in the compression branch is less than that
in the dilation branch �cb��db. The same crossover behav-
iors in the time dependence of ER have also been observed in
other granular chains with different details such as contact
force or grains number in the light section. Therefore, the
presently observed crossover behavior in the power-law de-
pendence of ER on time is universal in these granular con-
tainers.

As is well known recently, when the solitary wave passes
from heavier particles into lighter ones, it breaks into a train
of weaker, slower pulses �2,14,17�. On the other hand, when
a pulse moves from lighter particles to heavier ones, part of
it is reflected back through the interface. So the light-section
chains are filled with weak, slow pulses bouncing back and
forth between the two interfaces and release the trapped en-
ergy of the impact in both directions very slowly. It is both
heavy-light and light-heavy interfaces that lead to energy
trapping in the middle light section. Therefore, the decay of
remaining energy inside the light section is dependent on the
number of reflections at both interfaces. The number of the
reflections per unit time decreases with the decrease in the
speed of the solitary wave and decreases with the increase of
the length of the light section. Here, it can be ignored the
light-section length dependence of the reflections number.
Because the solitary-wave speed does not keep a constant but
decreases after reflection, the number of reflections per unit
time decreases with the time. On the basis of the power-law
behavior of ER, Hong �17� inferred that the averaged number
of reflections per unit time at interfaces �NR�t�� is inversely
proportion to the time NR�t��

1
t . That is, the result of

ER�t�=At−� originates from the relation of NR�t�=� / t. Our
calculations show that the NR�t� exhibits a much complex
behavior due to the appearance of second multipulse struc-
tures at the interfaces. But the average reflection frequency
�that corresponds to 1

t �t0
t NR�t�dt� shown by the dotted line in

Fig. 2 first increases with a decreasing acceleration when
t� tc; and arrives at its maximum at tc; then decays almost
exponentially when t	 tc. This behavior is in good agree-
ment with the crossover in the power-law behavior in the
impact-energy decay.

The recent experimental observation in one-dimensional
nonlinear composite granular chain has shown that the
energy-trapping effect in the granular chain is enhanced by
using a magnetically induced precompression �21�. The
physical explanation for such enhancement is related to the
gaps opening. In addition, gaps opening was also observed in
a one-dimensional granular chain in the process of solitary
wave collision, which is related to the generation of second-
ary solitary wave �22,23�. Using the numerical approach,
Vergara �24� has found that the scattering process of the soli-
tary wave is elastic at one interface, while at another inter-
face the transmitted solitary wave has stopped its movement
during a time that becomes longer with the increase in the
ratio between masses at the interfaces. He concluded that this
effect could be traced back to the phenomenon of gaps open-
ing. Therefore, an important issue to address is whether our
presently obtained result �cb��db is related to the gaps
opening in the granular chain too, even though our simulated
system has not be introduced precompression. To answer this
question and to explore the dynamic origin of the presently
observed crossover behavior, the parameter 
ij is introduced
and quantified as follows:


ij =
xj − xi − �Ri + 2�Ri+1 + ¯ + Rj–1� + Rj�

Ri + 2�Ri+1 + ¯ + Rj–1� + Rj
� 100 % ,

�2�

which represents the degree of compression or dilation of the
granular chain between particle i and j. The chain between
particle i and j is in dilation state if 
ij 	0, which means that
a series of gaps open between the particles, and in compres-
sion state if 
ij �0 and no gaps between particles. The initial
states of our simulated system corresponds to 
ij �0 for any
i and j.

Heavy Light Heavy

i = 1 2 120 121 300 301 420419

Interface Interface

FIG. 1. Schematic setup of the symmetric granular chain con-
taining two sets of particles.
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FIG. 2. The time dependence of the impact energy remained
inside the light-section particles �solid circles� and the average re-
flection frequency at both interfaces �dotted line�. Two solid lines
are guides to the eyes and correspond to the compression and dila-
tion branches, respectively, they intersect at time tc.
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Figures 3�a�–3�d� show 
ij as a function of time for heavy
�a� and light �b� particles nearby the heavy-light interface
and light �c� and heavy �d� particles nearby the light-heavy
interface, respectively. For those particles in the light section
as shown in �b� and �c�, whether they are close to the heavy-
light interface or close to the light-heavy interface, 
ij keeps
a positive value and increases with the time, indicating that
during the decay of the trapped energy the particles of the
light section are maintained in the dilation state and the di-
lation is enhanced with the time. In sharp contrast, for those
particles in both heavy sections and close to both interfaces,

ij increases with the time, at early times it is negative and at
late times it increases to be positive, the time when the sign
of 
ij changes from negative to positive is in good agreement
with the crossing time tc mentioned above. In other words,
inside both heavy sections, 
ij �0 before tc and 
ij 	0 after
tc, which is why we call two linear regions of Fig. 2 with
different slopes the compression and dilation branches.
Therefore, the crossover behavior in the dependences of ER
on t should resulted from the structural transition in both
heavy sections from compression to dilation state. In early
times �t� tc� the particles keep contact and the compression
between neighboring particles weakens with the time but al-
most no gaps appear, whereas in late times �t� tc� a series of
gaps open between them. tc corresponds to the transition
time from no gaps to gaps opening for particles in both
heavy sections. Gaps opening in both heavy sections leads to
the decrease in the reflected energy at both interfaces but the
increase in the transmitted energy, and thus enhances the
releasing of the trapped energy in the light section. In the
meantime, the structural transition gives rise to a great dif-
ference in the reflection frequency at the interfaces between
compression and dilation state.

We then extend our calculations about the dependence of
�cb and �db on the mass ratio of heavy to light particles
�m1 /m2� and the Hertz law exponent �n�. In the dilation re-
gime, with the change in the mass ratio of heavy to light
particles �db almost keeps a constant, so in Fig. 4 we only
display �cb as a function of the mass ratio for two cases with
various Hertz-law exponents. Note that we fixed the elastic
constant and changed the mass to discriminate different par-
ticles, and for convenience m2 is set to be 1. From this figure
we can clearly see the influence of m1 and n on �cb. With the
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FIG. 3. �Color online� The compression/dilation parameter 
ij as a function of the time for those heavy �a� and light �b� particles nearby
the heavy-light interface and light �c� and heavy �d� particles nearby the light-heavy interface.
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FIG. 4. �Color online� The power law exponent ��cb� in the
compression state as a function of the mass �m1� of heavy particles
for two cases with different Hertz law exponent �n�. The inset
shows the exponent �cb plotted against �1/m1�1/�n+1� illustrating the
dependence relation. The dotted lines correspond to the linear fits.
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increase of m1 �i.e., the increase in the mass ratio of heavy to
light particles� �cb decreases steeply and with the increase n
of �cb decreases. When �cb is replotted against � 1

m1
�1/�n+1� as

in the inset of Fig. 4, we find the linear fits are quite satis-
factory for n=1.5 and n=3. So an approximate expression of

the exponent �cb could be obtained �cb�� m2

m1
�1/�n+1�

. This
could be interpreted in terms of the dimensionless time and
velocity �= ẋ /v0 and �= t�k /m�1/�n+1�v0

�n−1�/�n+1�, which trans-
form the equation of motion into a dimensionless form �2�.

In summary, a numerical study has been performed on the
impact energy decay in a symmetric granular chain with two
interfaces and two sets of particles. We have observed an
interesting crossover in the universal power-law behavior of
the trapped energy versus time. That is, in early times the
log-log curve of the remained energy inside the light-section
particles versus the elapsed time changes linearly, at a certain
time it has a noticeable bend, then it varies linearly again and
becomes steeper. These two regions are called as the com-
pression branch and the dilation branch, respectively, be-
cause in the compression branch the heavy particles close to

both interfaces keep in contact whereas in the dilation branch
there exist a series of gaps between them. There exists a
great difference in the average reflection frequency between
compression and dilation state. The extended calculations
yield an approximate expression of the exponent

�cb�� m2

m1
�1/�n+1�

. The presently observed crossover in the
power-law behavior and the approximate dependence rela-
tion of the power-law exponent are important and deserve to
be further clarified in the sense that they do form the part of
the complete dynamics of the solitary waves in the compos-
ite granular chain and one hopes to find novel applications of
granular systems against the mechanical impacts.
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