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The two-dimensional (2D) kinetic ballooning theory is developed for the ion temperature gradient

mode in an up-down symmetric equilibrium (illustrated via concentric circular magnetic surfaces).

The ballooning transform converts the basic 2D linear gyro-kinetic equation into two equations: (1)

the lowest order equation (ballooning equation) is an integral equation essentially the same as that

reported by Dong et al., [Phys. Fluids B 4, 1867 (1992)] but has an undetermined Floquet phase

variable, (2) the higher order equation for the rapid phase envelope is an ordinary differential equa-

tion in the same form as the 2D ballooning theory in a fluid model [Xie et al., Phys. Plasmas 23,

042514 (2016)]. The system is numerically solved by an iterative approach to obtain the (phase

independent) eigen-value. The new results are compared to the two earlier theories. We find a

strongly modified up-down asymmetric mode structure, and non-trivial modifications to the eigen-

value. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.5003652]

I. INTRODUCTION

Even in this era of extensive simulations, linear plasma

theory is still important; it provides a benchmark to simula-

tions, and also the mode structure may be used in calculating

significant physical quantities such as the Reynolds stress

and group velocities. Both of these are, for instance, used in

zonal flow studies. It is surprisingly, however, seen that even

after 4 decades since the invention of the ballooning the-

ory,1–4 constructing a “sound linear theory” for fluctuations

in a two-dimensional (2D) tokamak equilibrium still remains

a challenge. For example, the so-far most advanced linear

theory for kinetic ion temperature gradient (ITG) mode is

built on the leading order ballooning equation alone;5,6 it has

zero Floquet phase.2 The class of modes predicted in such a

theory, as pointed out in Refs. 7 and 8, form a set of measure

zero, and are not generally accessible to realistic plasmas

(they were named “isolated modes” in Ref. 9).

From the numerical simulation perspective, the root

cause of the difficulty (in constructing a general 2D theory)

lies in the unknown 2D boundary condition. For local mode

(the mode localized around a rational surface like drift

wave), it must be a natural boundary condition—that must

follow from the physics of the theory, and not merely from a

simple-minded intuition.10 The theory of “isolated mode”

was recently advanced in the so-called weakly asymmetric

ballooning theory (WABT)10,11 based on the Fourier-

ballooning transform.7 We find that WABT is still poloidally

localized (outboard) and has a frequency not too far away

from that of the isolated mode (higher growth rate than the

general mode). The most important aspect of WABT is that

the stringent solvability condition for the isolated mode does

not pertain any longer; it is, in fact, replaced by an easier

constraint requirement—the existence of a second small

parameter. We would like to mention three distinctions in

contrast to the theory of “isolated mode” here. (1) the eigen-

values generally deviate from those of isolated mode, as

much greater than inverse of toroidal mode number; (2) the

2D physical mode structure is derived, generally up-down

asymmetric, and (3) it yields finite Reynolds stress driving

toroidal and poloidal rotations, which can be calculated by

making use of the obtained mode structure. We believe that

all the above mentioned features arise from the translational

symmetry breaking (TSB) terms ignored in the higher order

theory of the isolated mode.

The generalization of Refs. 11 and 10, however, was so

far limited to the fluid models; it is the purpose of this paper

to develop a 2D kinetic ballooning theory as exemplified by

the ITG model.

The paper is organized as follows. In Sec. II, the 2D

gyro-kinetic eigenmode equation for ITG mode is con-

structed using the Fourier-ballooning transform in an up-

down symmetric equilibrium with concentric circular mag-

netic surfaces. All the trapped ion effects are neglected and

velocity variables along unperturbed orbits are assumed to

be independent of spatial variables.5 The lowest order equa-

tion is consistent with the one-dimensional (1D) kinetic

equation in Ref. 6, but contains, in addition, a Floquet phase

variable. The integral equation will be solved numerically by

a spectral method in terms of Weber-Hermite functions. The

higher order equation is an ordinary differential equation,

containing all TSB terms up to second order, essentially

the same form as that presented in Ref. 12. An iterative

method is adopted to solve the two equations for the global

(Floquet phase independent) eigen-value and 2D mode struc-

ture in Sec. III. The global eigenvalue is then compared,a)Author to whom correspondence should be addressed: xietao@ustc.edu.cn
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respectively, with results of 1D gyro-kinetic theory6 and a

previous 2D fluid theory.12 The 2D mode structure is also

plotted for comparison with that of fluid ITG modes. Major

conclusions of this paper are summarized in Sec. IV. Some

definitions of symbols in the higher order equation are given

in Appendix A. The convergence conditions for wave func-

tions in iteration are discussed in Appendix B.

II. THE WEAKLY UP-DOWN ASYMMETRIC ITG MODE
IN THE KINETIC MODEL

In this section, we investigate a non-dissipative kinetic

ITG model pertaining to a large-aspect-ratio, up-down sym-

metric tokamak equilibrium with circular magnetic surfaces.

In the toroidal coordinates ðr; #; fÞ that corresponding,

respectively, to the radial, poloidal, and toroidal directions,

the toroidal mode, localized at the rational surface rj, is rep-

resented by

un r; #; fð Þ � exp inf� im#ð Þ
X

l

ul rð Þ exp �il#ð Þ; (1)

where n is the toroidal mode number, m ¼ nqðrjÞ is an inte-

ger denoting the poloidal mode number, and the integer l
labels the sidebands coupled to the central Fourier mode m.

The 2D Fourier-ballooning transform7,13

ul xð Þ ¼ 1

2p

ðp

�p
dk
ðþ1
�1

dkeik x�lð Þ�iklu k; kð Þ; (2)

defines the wave function uðk; kÞ in the Fourier-ballooning

space with x � nqðrjÞŝðr � rjÞ=rj.

One can readily see that the 2D Fourier-ballooning

transform is a natural generalization of Lee-Van Dam 1D

representation;2 the fixed Floquet phase is turned into a vari-

able followed by an integration over the phase variable

(phase mixing). The 2D wave function in Fourier-ballooning

space, then, obeys

L0 þ
iL1

n

@

@k
þ L2

n2

@2

@k2
þ � � � � X

� �
u k; kð Þ ¼ 0; (3)

where n � jnj, ð1=nÞð@=@kÞ is asymptotic expansion param-

eter that results from the TSB terms such as l=m and x=m. In

this representation, all terms preserving translational symme-

try depend only on the combination x� l.
To the lowest order, Eq. (3) is identified to be the stan-

dard ballooning equation10–12

L0 � X kð Þ
� �

v k; kð Þ ¼ 0; (4)

where vðk; kÞ is the eigenfunction of the ballooning operator

L0ðk; kÞ associated with local (Floquet phase dependent)

eigenvalue XðkÞ; it can be called Floquet-phase parameter-

ized 1D ballooning wave function, since L0ðk; kÞ does not

contain @=@k.

To construct a solvable model, let us assume that the 2D

wave function uðk; kÞ ¼ vðk; kÞwðkÞ, where vðk; kÞ is a

slowly varying function of k while @lnwðkÞ=@k� 1. If n

were sufficiently large [ð1=nÞð@ ln wðkÞ=@kÞ � 1], then the

equation obeyed by the fastly varying function could be

approximated as

d2

dk2
þ in �L1

�L2

d

dk
þ n2

�L2

X kð Þ � Xð Þ
� �

w kð Þ ¼ 0; (5)

where X is the eigenvalue associated with the 2D eigen-

mode, and �Li �
Ð1
�1 dkv�Liv=

Ð1
�1 dkv�v ði ¼ 1; 2Þ, v� is the

complex conjugate of v. It is this global eigenvalue X that

determines the stability of the mode.

In translating this formalism for the 2D gyro-kinetic

ITG eigenmode, we begin with the ion density response,

assuming an adiabatic electron response and quasi-neutrality

n̂i r; #; fð Þ ¼ �seun r; #; fð Þ þ
ð

dv3J0 að Þh r; #; f; vk; v?
� �

;

(6)

where se�Te=Ti, a�
ffiffiffi
2
p

k?qiv̂?¼
ffiffiffiffiffiffiffiffiffiffi
2s�1

e

p
k?qsv̂?, qi

�
ffiffiffiffiffiffiffiffiffi
miTi

p
=eB, qs�

ffiffiffiffiffiffiffiffiffiffi
miTe

p
=eB, v̂?� v?=vti, vti�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ti=mi

p
,

Te(Ti) is the electron (ion) temperature, k? is the perpendicu-

lar wave number of mode, n̂iðr; #; fÞ is the dimensionless

perturbed ion density normalized to equilibrium density,

unðr; #; fÞ is the normalized (to Te=e) perturbed electrostatic

potential, and J0ðaÞ is the Bessel function of zeroth order.

The distribution function hðr; #; f; vk; v?Þ in the non-

adiabatic response obeys the gyro-kinetic equation14

xþ ivdi � r þ ivkb � r
� �

h r; #; f; vk; v?
� �

¼ FM x� x̂�Tð ÞJ0 að Þun r; #; fð Þ; (7)

where vdi � ð2Ti=eBÞðb� jÞðv̂2
?=2þ v̂2

kÞ, b is the unit vec-

tor of magnetic field, j � ðb � rÞb, b � r � ð1=qðrÞRÞ½@=
@#þ qðrÞ@=@f	, x̂�T ¼ �s�1

e x�e½1þ giðv̂2
? þ v̂2

k � 3=2Þ	,
x�e � nqðrÞTe=eBLnr, FM � ðpv2

tiÞ
�3=2

exp ð�v̂2
k � v̂2

?Þ, v̂k
� vk=vti, k# � m=rj, Ln � �ðdlnni=drÞ�1

r , LTs
� �ðdlnTs=

drÞ�1
r , gs � Ln=LTs

(s ¼ i; e), and x is the mode frequency.

Here, niðrÞ is the plasma density in equilibrium, e is the unit

charge, and B 
 B0 and R 
 R0 are the magnetic field and

major radius on the magnetic axis, respectively.

Substituting Eq. (1) into Eq. (7) yields

x� x̂di �
vk

q rð ÞR x� lð Þ
	 


h x; l; vk; v?
� �

¼ FM x� x̂�Tð ÞJ0 að Þul xð Þ; (8)

where x � nqðrjÞŝðr � rjÞ=rj is a new radial variable, x̂di

� xdiðv̂2
?=2þ v̂2

kÞ, xdiulðxÞ � ðk#Ti=eBRÞ ½ðrj=rÞð1þ l=mÞ
�

þŝð@=@xÞ	ulþ1ðxÞþ ½ðrj=rÞð1þ l=mÞ� ŝð@=@xÞ	ul�1ðxÞg, k2
?

!�k2
#½ŝ2ð@2=@x2Þ�ðrj=rÞ2ð1þ l=mÞ2	, rj=r¼ð1þx=mŝÞ�1

.

In Ref. 5, the author directly invoked the existence of a

quasi-mode (a typical practice in the literature—generally

the ballooning wave function with the Floquet phase speci-

fied to be either 0 or p) demanding a zero Floquet phase, and

reduced the problem to a single integral ballooning equation,

½L0 � Xð0Þ	vðk; 0Þ ¼ 0. The 2D kinetic ballooning theory

presented in this paper, however, deals with the second

dimension (Floquet phase becoming a variable) squarely; the

resulting system consists of two equations: first is the same

102506-2 Xie et al. Phys. Plasmas 24, 102506 (2017)



ballooning equation parameterized with the Floquet phase

[of form Eq. (4)], and the other one is the envelop equation

of form Eq. (5).

For independent variables vk and v?,5 it is straightforward

to cast Eq. (8) into the ðk; kÞ space by substituting Eq. (2)

x� x̂di �
ivk

q rð ÞR
@

@k

	 

h k; k; vk; v?
� �

¼ FM x� x̂�Tð ÞJ0 að Þu k; kð Þ; (9)

where xdi ! ð2k#Ti=eBRÞ½ðrj=rÞð1þ k�Þcos ðk þ kÞ þ kŝ
sin ðkþ kÞ	, k2

? ! k2
#½ŝ

2k2þ ðrj=rÞ2ð1þ k�Þ2	 with k�� ð�i=
mÞð@=@kÞ, rj=r! ð1þ k�=ŝÞ�1

. In the derivation, use is

made of a linear qðrÞ profile qðrÞ :¼ qðrjÞ þ x=n, density pro-

file niðrÞ :¼ niðrjÞð1� tnx=mÞ, and temperature profile TsðrÞ
:¼ TsðrjÞð1� tTs

x=mÞ (s¼ i; e) with tn � rj=ŝLn0, tTs
� rj=

ŝLTs0
, Ln0�LnðrjÞ¼�ðdlnni=drÞ�1

rj
, LTs0�LTs

ðrjÞ¼�ðdlnTs=
drÞ�1

rj
. It is noticeable that the TSB term l=m corresponds to

operator k� in ðk;kÞ space. The following two rules are help-

ful to simplify derivation: (a) derivatives act only on wave

functions, not on equilibrium quantities; and (b) the TSB

term x=m can be replaced by l=m, because of @=@k�@=@k.

As a result, the 2D gyro-kinetic ITG eigenmode equation can

be written in the form of integral kernel asð1
�1

dk0K k; k0; k; k�Þu k0; kð Þ � Xu k; kð Þ ¼ 0;
�

(10)

with

K k; k0; k; k�ð Þ ¼ � iffiffiffi
p
p 1þ se0ð Þ

1þ seð Þ

ð1
0

ds
2
ffiffiffiffiffiffiffiffiffi
� sð Þ

p
1þ atð Þ

� exp ixs� at� sð Þ k � k0ð Þ2 � aþ
1þ atð Þ

� �

� I0

2a�
1þ atð Þ

	 

f k; k0; s; k�Þ;
�

(11)

X � 1þ se0ð Þ x
x�e0

; (12)

where

f k; k0; s; k�ð Þ � x
x�e0

sexþ x�e 1þ gi� sð Þ k � k0ð Þ2
h�

� 3gi

2

�
þ 2gix�e

1þ atð Þ 1� aþ
1þ atð Þ

�

þ 2a�
1þ atð Þ

I1

I0

�
; (13)

at � 1þ is
1

k � k0ð Þ

ðk

k0
dk00xdi; (14)

s � qR

vti

1

jv̂kj
sgn k � k0ð Þ k � k0ð Þ; (15)

� sð Þ � q2R2

v2
ti

1

s2
; (16)

aþ � q2
i k2

? þ k0
2
?

� �
; a� � q2

i k?k0?; (17)

where quantities with subscript “0” stand for the quantity at

rational surface, I0(I1) is the zeroth (first) order modified

Bessel function.

In order to describe contributions from TSB terms, we

perform Taylor expansion around the rational surface rj on

the integral kernel Eq. (11) to the second order with respect

to k�. It yields

L0v k; kð Þ ¼
ð1
�1

dk0K k; k0; k; 0ð Þv k0; kð Þ; (18)

�L1 kð Þ ¼ � 1

q0

ð1
�1

dkv� k; kð Þ
ð1
�1

dk0
dK

dk�

����
k�¼0

v k0; kð Þð1
�1

dkv� k; kð Þv k; kð Þ
; (19)

�L2 kð Þ ¼ � 1

2q2
0

ð1
�1

dkv� k; kð Þ
ð1
�1

dk0
d2K

dk�2

����
k�¼0

v k0; kð Þð1
�1

dkv� k; kð Þv k; kð Þ
;

(20)

where

K k; k0; k; 0ð Þ ¼ � iffiffiffi
p
p
ð1

0

ds0

2
ffiffiffiffiffi
�0
p

1þ at0ð Þ

� exp ixs0 � at0�0 k � k0ð Þ2 � aþ0

1þ at0ð Þ

� �

� I0

2a�0
1þ at0ð Þ

	 

f k; k0; s0; 0ð Þ; ð21Þ

f k; k0; s0; 0ð Þ � x
x�e0

se0xþ x�e0 1þ gi0�0 k � k0ð Þ2
��

� 3gi0

2

�
þ 2gi0x�e0

1þ at0ð Þ 1� aþ0

1þ at0ð Þ

�

þ 2a�0
1þ at0ð Þ

I1

I0

�
;

(22)

dK

dk�

����
k�¼0

¼ � iffiffiffi
p
p
ð1

0

ds0G k; k0; s0ð Þ 2
ffiffiffiffiffi
�0
p

1þ at0ð Þ

� exp ixs0 � at0�0 k � k0ð Þ2 � aþ0

1þ at0

� �

� I0

2a�0
1þ at0

	 

; (23)

d2K

dk�2

����
k�¼0

¼ � iffiffiffi
p
p
ð1

0

ds0H k; k0; s0ð Þ 2
ffiffiffiffiffi
�0
p

1þ at0ð Þ

� exp ixs0 � at0�0 k � k0ð Þ2 � aþ0

1þ at0

� �

� I0

2a�0
1þ at0

	 

: (24)

We notice that when k ¼ 0 the ballooning equation is consis-

tent with Eq. (11) in Ref. 6. The higher order equation is

found to have the same form as derived in Ref. 12. However,
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Eqs. (19) and (20) can only be calculated by resorting to

numerical integration, which will be introduced in detail in

Sec. III. In order to improve the readability, the definitions

of Gðk; k0; s0Þ and Hðk; k0; s0Þ will be given in Appendix A.

III. NUMERICAL RESULTS

An iterative integral code named KITG-WABT has

been developed to solve the system consisting of the inte-

gral equation (4), and the differential equation (5).

Equation (4) was solved numerically using the spectral

method. The base functions are chosen to be Weber-

Hermite functions, Hermite polynomials with a weight

function exp ð�k2=2Þ. The ballooning wave function, then,

is approximated by

v k; kð Þ 

XN

i¼0

Ai kð ÞHi kð Þexp �k2=2
� �

; (25)

where HiðkÞ is the Hermite polynomial of degree i, AiðkÞ is

the undetermined coefficient only related to k.

After multiplying by HjðkÞexp ð�k2=2Þðj ¼ 0; 1;…;NÞ
and integrating over k, Eq. (4) [with Eq. (18)] converts to a

system of linear algebraic equations

M� X kð ÞI½ 	A ¼ 0; (26)

where A � ðA0;A1;…;ANÞT , M is a ðN þ 1Þ � ðN þ 1Þ
dimensional matrix, and I is an unit matrix. The integrations

over s and k0 are performed with a Gaussian rule of even

order. The integration over k is carried out with a trapezoidal

rule. The same numerical integral scheme is also used to cal-

culate �L1ðkÞ and �L2ðkÞ.
Since the matrix M depends on the mode frequency x,

Eq. (26) needs to be solved numerically using an iterative

method. The concrete procedure is briefly described as fol-

lows. (1) An initial guess, xð0Þ, is substituted into the coeffi-

cient matrix M to solve Eq. (26) for XðkÞ using the QR

decomposition technique.15 (2) The inverse power method

is adopted to obtain A and vðk; kÞ. (3) vðk; kÞ is substituted

into Eqs. (19) and (20) for �L1ðkÞ and �L2ðkÞ. (4) Then, we

make use of the shooting method to solve Eq. (5) for the

global eigenvalue Xð1Þ. (5) Xð1Þ is substituted into Eq. (12)

for xð1Þ. (6) Repeat the steps (1)–(5) with xð0Þ replaced by

xð1Þ until the convergence condition j1� xðiþ1Þ=xðiÞj
< 10�4 is satisfied. The corresponding convergence condi-

tion for wave functions ju0ðxÞj (the wave function in ðx; lÞ
representation with l ¼ 0) is found to be j1� ju0ðxÞjðiþ1Þ=
ju0ðxÞjðiÞj 
 5� 10�4; it will be further described in

Appendix B.

The physical parameters, chosen here, corresponding to

the operating conditions on HL-2A (R ¼ 1:65 m, a ¼ 0:4 m,

Te0 ¼ Ti0 ¼ 250 eV, B ¼ 1:35 T),16 are k#qs0 ¼ �0:53, ŝ
¼ 1, q0 ¼ 2, gi0 ¼ ge0 ¼ 3:5, Ln0=R ¼ 0:12, and rj=a ¼ 0:6.

The corresponding toroidal mode number is n ¼ �53.

In Figs. 1(a)–1(d), the ballooning wave function vðk; kÞ
is plotted versus k for k ¼ 0, p=4, p=2, and �p=2 (with

N ¼ 10); the blue and red lines denote the real and imaginary

parts. The corresponding local eigenvalues are listed in

Table I. The local eigenvalue at k ¼ 0, xðk ¼ 0Þ=jx�e0j
¼ �0:42þ 0:42i, is consistent with Ref. 6. The global eigen-

value is iteratively calculated to be x=jx�e0j ¼ �0:40

þ0:34i with a growth rate obviously smaller than the local

one at k ¼ 0.

In order to compare with the weakly up-down asymmet-

ric ITG mode based on the 2D fluid model,12 another set of

parameters is chosen: k#qs0 ¼ �0:51, ŝ ¼ 0:9, q0 ¼ 1:7,

gi0 ¼ ge0 ¼ 3, and Ln0=R ¼ 0:1. The rest of the parameters

are the same as those used in Fig. 1. The corresponding toroi-

dal mode number is n ¼ �60. The global eigenvalues,

x=jx�e0j ¼ �0:27þ 0:28i for the gyro-kinetic, and x=jx�e0j
¼ �0:25þ 0:83i for the fluid model, show that the fluid

model greatly overestimates the growth rate.

The real (blue) and imaginary (red) parts of the envelop

function wðkÞ are plotted in Fig. 2. It is found that the devia-

tion of peak in wðkÞ from k ¼ 0 is greater than the result

obtained in the fluid model.12

The 2D mode structure is shown in Fig. 3 via the con-

tour plot of Re½unðr; #; 0Þ	. The radial position is deter-

mined by the mapping ð1þ x=mŝÞðrj=aÞ. The up-down

asymmetry of the mode structure is shown to be obviously

stronger than that of 2D fluid model.12 It is expected that

the weakly up-down asymmetric kinetic ITG mode can pro-

vide torque for intrinsic rotation comparable to that of the

FIG. 1. The real (blue line) and imaginary (red line) parts of ballooning

wave functions vðk; kÞ versus k for (a) k ¼ 0; (b) k ¼ p=4; (c) k ¼ p=2; (d)

k ¼ �p=2. The physical parameters are k#qs0 ¼ �0:53, ŝ ¼ 1, q0 ¼ 2,

gi0 ¼ ge0 ¼ 3:5, Ln0=R ¼ 0:12, and n ¼ �53.

TABLE I. The local eigenvalues corresponding to the ballooning wave func-

tions as displayed in Figs. 1(a)–1(d).

k xðkÞ=jx�e0j

0 �0:42þ 0:42i

p=4 �0:32þ 0:37i

6p=2 �0:19þ 0:13i
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2D fluid mode, even though its growth rate is smaller than

the latter.

To conclude this section, we should mention that con-

struction of the higher order theory for WABT requires a

second small parameter N � �L1ðk�Þ=2 �L2ðk�Þ with k� repre-

senting the localization of wðkÞ in k.10,11 The physics param-

eters used in the present paper were chosen to lie in the

region of validity. In particular, N is found to be less than

1/3, even though the tilt of the ballooning orientation (Fig. 3)

may give a different impression.

IV. SUMMARY

The 2D kinetic ballooning theory for the gyro-kinetic

ITG model, developed in this paper, provides the full mode

structure localized at the given rational surface (shown

in Fig. 3); it also predicts a global eigenvalue (�0:40

þ0:34i) somewhat different from the local eigen-value

(�0:42þ 0:42i) calculated, conventionally, at k ¼ 0. The

lower growth rate from the 2D kinetic model may be attrib-

uted to finite deviation of the envelop peak away from the

equatorial plane.

The ballooning theory, as an asymptotic theory, is not

expected to be able to make very accurate predictions. We

contend, however, that its use best should be in providing

natural boundary conditions for local modes in a tokamak.

For example, it would make sense to take the asymptotic

results of the kinetic ballooning theory as the natural bound-

ary condition for certain gyro-kinetic simulation, such as

routinely done via a code like GENE;17,18 we believe that it

will be better than using the flux tube boundary condition

based on the quasi-mode.

The Reynolds stress induced by the 2D gyro-kinetic ITG

mode can readily be calculated as was done for the fluid

ITG.12
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APPENDIX A: SOME DEFINITIONS IN THE HIGHER
ORDER EQUATION

In Eqs. (23) and (24), Gðk; k0; s0Þ and Hðk; k0; s0Þ are

defined as

G k; k0; s0ð Þ � h0 k; k0; s0ð Þf k; k0; s0; 0ð Þ þ f 0 k; k0; s0; 0ð Þ;
(A1)

H k; k0; s0ð Þ � g k; k0; s0ð Þ þ h0
2

k; k0; s0ð Þ
h i

f k; k0; s0; 0ð Þ

þ 2h0 k; k0; s0ð Þf 0 k; k0; s0; 0ð Þ þ f 00 k; k0; s0; 0ð Þ;
(A2)

where

h0 k; k0; s0ð Þ � 1

s0

ds
dk�
� 1

1þ se0ð Þ
dse

dk�
� 1

1þ at0ð Þ
dat

dk�

� �0 k � k0ð Þ2 dat

dk�
þ ix

ds
dk�
� d

dk�

aþ
1þ atð Þ

þ I1

I0

d

dk�

2a�
1þ atð Þ ;

(A3)

FIG. 2. The real (blue line) and imaginary (red line) parts of envelop func-

tion wðkÞ versus k.

FIG. 3. Level contours of the real parts of the 2D mode structure on a poloi-

dal cross section.
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f 0 k; k0; s0; 0ð Þ � x
x�e0

x
dse

dk�
þ dx�e

dk�
1þ gi0�0 k � k0ð Þ2 � 3gi0

2

� �
þ x�e0

dgi

dk�
�0 k � k0ð Þ2 � 3

2

� ��

� 2gi0x�e0

1þ at0ð Þ2
dat

dk�
1� aþ0

1þ at0ð Þ þ
2a�0

1þ at0ð Þ
I1

I0

� �
þ 2

1þ at0ð Þ
d gix�eð Þ

dk�
1� aþ0

1þ at0ð Þ þ
2a�0

1þ at0ð Þ
I1

I0

� �

þ 2gi0x�e0

1þ at0ð Þ �
d

dk�

aþ
1þ atð Þ þ

2a�0
1þ at0ð Þ 1� I2

1

I2
0

 !
d

dk�

2a�
1þ atð Þ

" #)
; (A4)

g k; k0; s0ð Þ � 1

s0

d2s
dk�2
� 1

s2
0

ds
dk�

	 
2

� 1

1þ se0ð Þ
d2se

dk�2
� 1

1þ se0ð Þ
dse

dk�

	 
2
" #

� 1

1þ at0ð Þ
d2at

dk�2
� 1

1þ at0ð Þ
dat

dk�

	 
2
" #

��0 k � k0ð Þ2 d2at

dk�2
þ ix

d2s
dk�2
� d2

dk�2
aþ

1þ atð Þ þ
d

dk�

I1

I0

d

dk�

2a�
1þ atð Þ

	 

; (A5)

f 00 k;k0;s0;0ð Þ � x
x�e0

x
d2se

dk�2
þ d2x�e

dk�2
1þ gi0�0 k� k0ð Þ2� 3gi0

2

� �
þ 2

dx�e
dk�

dgi

dk�
�0 k� k0ð Þ2� 3

2

� ��

þd2gi

dk�2
�0 k� k0ð Þ2� 3

2

� �
þ 4

1þ at0ð Þ
d gix�eð Þ

dk�
� d

dk�

aþ
1þ atð Þþ

2a�0
1þ at0ð Þ 1� I2

1

I2
0

 !
d

dk�

2a�
1þ atð Þ

" #

� 2gi0x�e0

1þ at0ð Þ2
d2at

dk�2
1� aþ0

1þ at0ð Þþ
2a�0

1þ at0ð Þ
I1

I0

� �
� 4gi0x�e0

1þ at0ð Þ2
dat

dk�
� d

dk�

aþ
1þ atð Þþ

2a�0
1þ at0ð Þ 1� I2

1

I2
0

 !
d

dk�

2a�
1þ atð Þ

" #

� 4

1þ at0ð Þ2
dat

dk�

d gix�eð Þ
dk�

1� aþ0

1þ at0ð Þþ
2a�0

1þ at0ð Þ
I1

I0

� �
þ 2

1þ at0ð Þ
d2 gix�eð Þ

dk�2
1� aþ0

1þ at0ð Þþ
2a�0

1þ at0ð Þ
I1

I0

� �

þ 4gi0x�e0

1þ at0ð Þ3
dat

dk�

	 
2

1� aþ0

1þ at0ð Þþ
2a�0

1þ at0ð Þ
I1

I0

� �
þ 4gi0x�e0a�0

1þ at0ð Þ2
1� I2

1

I2
0

 !
d2

dk�2
2a�

1þ atð Þ

þ 2gi0x�e0

1þ at0ð Þ �
d2

dk�2
aþ

1þ atð Þþ 1� I2
1

I2
0

 !
d

dk�

2a�
1þ atð Þ

	 
2

þ 2a�0
1þ at0ð Þ

I1

I0

2I2
1

I2
0

� I2

I0

� 1

 !
d

dk�

2a�
1þ atð Þ

	 
2
" #)

;

(A6)

with

ds
dk�
¼ s0 1þ 1

2
tTi

	 

;

dse

dk�
¼ se0 tTi � tTeð Þ; (A7)

dat

dk�
¼ � 2is�1

e0 s0en0

k � k0ð Þ sin k þ kð Þ � sin k0 þ kð Þ
� �

2þ ŝ � 1

ŝ
� 1

2
tTi

1þ ŝð Þ
� �

� ŝ k cos k þ kð Þ � k0 cos k0 þ kð Þ
� �

1� 1

2
tTi

	 
( )
;

(A8)

dx�e
dk�
¼ x�e0 1� 1

ŝ

	 

� tn ge0 � 1ð Þ

� �
;

dgi

dk�
¼ tngi0 gi0 � 1ð Þ; (A9)

d gix�eð Þ
dk�

¼ gi0x�e0 1� 1

ŝ

	 

þ tn gi0 � ge0ð Þ

� �
; (A10)

daþ
dk�
¼ s�1

e0 k2
#q

2
s0 4 1� 1

ŝ

	 

� tTi

2þ ŝ2k2 þ ŝ2k0
2

� �� �
; (A11)

da�
dk�
¼ s�1

e0 k2
#q

2
s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ŝ2k2ð Þ 1þ ŝ2k02ð Þ

p 1

1þ ŝ2k2ð Þ 1� 1

ŝ

	 

þ 1

1þ ŝ2k02ð Þ 1� 1

ŝ

	 

� tTi

" #
; (A12)

d

dk�

aþ
1þ atð Þ ¼

1

1þ at0ð Þ
daþ
dk�
� aþ0

1þ at0ð Þ
dat

dk�

� �
; (A13)

d

dk�

2a�
1þ atð Þ ¼

2

1þ at0ð Þ
da�
dk�
� 2a�0

1þ at0ð Þ2
dat

dk�
; (A14)

d2s
dk�2
¼ tTi

1þ 3

4
tTi

	 

;

d2se

dk�2
¼ 2se0tTi

tTi
� tTeð Þ; (A15)
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d2at

dk�2
¼ � 2is�1

e0 s0en0

k � k0ð Þ sin k þ kð Þ � sin k0 þ kð Þ
� ��

� 2 1� 1

ŝ

	 
2

� tTi
2þ ŝ � 1

ŝ

	 

� 1

4
t2
Ti

1þ ŝð Þ

" #

þŝ k cos k þ kð Þ � k0 cos k0 þ kð Þ
� �

tTi
1þ 1

4
tTi

	 

;

(A16)

d2x�e
dk�2

¼�2x�e0

1

ŝ
1� 1

ŝ

	 

þ tn ge0� 1ð Þ 1� 1

ŝ

	 
�

þt2
n ge0� 1ð Þ

#
; (A17)

d2gi

dk�2
¼ 2gi0tntTi

gi0 � 1ð Þ; (A18)

d2 gix�eð Þ
dk�2

¼ 2gi0x�e0 �
1

ŝ
1� 1

ŝ

	 

þ tn gi0 � ge0ð Þ

�

� 1� 1

ŝ

	 

þ t2ngi0 gi0 � ge0ð Þ

�
; (A19)

d2aþ
dk�2

¼ 4s�1
e0 k2

#q
2
s0 1� 1

ŝ

	 

1� 3

ŝ
� 2tTi

	 

; (A20)

d2a�
dk�2
¼ s�1

e0 k2
#q

2
s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ŝ2k2ð Þ 1þ ŝ2k02ð Þ

p
1� 1

ŝ

	 


� 1� 3

ŝ
� 2tTi

	 

1

1þ ŝ2k2ð Þ þ
1

1þ ŝ2k02ð Þ

� �(

� 1� 1

ŝ

	 

1

1þ ŝ2k2ð Þ �
1

1þ ŝ2k02ð Þ

� �2
)
;

(A21)

d2

dk�2
aþ

1þ atð Þ ¼
1

1þ at0ð Þ
d2aþ
dk�2

� aþ0

1þ at0ð Þ
d2at

dk�2

"

� 2

1þ at0ð Þ
daþ
dk�

dat

dk�
þ 2aþ0

1þ at0ð Þ2
dat

dk�

	 
2
#
;

(A22)

d2

dk�2
2a�

1þ atð Þ ¼
2

1þ at0ð Þ
d2a�
dk�2
� a�0

1þ at0ð Þ
d2at

dk�2

"

� 2

1þ at0ð Þ
da�
dk�

dat
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1þ at0ð Þ2
dat

dk�
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#
;

(A23)

d

dk�

I1

I0

d

dk�

2a�
1þ atð Þ

� �
¼ 1

2
1þ I2

I0

� 2I2
1

I2
0

 !
d

dk�

2a�
1þ atð Þ

� �2

þ I1

I0

d2

dk�2
2a�

1þ atð Þ ; (A24)

where the quantities with subscript “0” indicate the value on

the rational surface rj, I2 is the modified Bessel function of

second order.

APPENDIX B: THE CONVERGENCE CONDITION
OF WAVE FUNCTIONS

As displayed in Fig. 4, we give the radial variations of

wave functions in iteration ju0ðxÞjðiÞ for the same parameters

as in Fig. 1. u0ðxÞ represents l ¼ 0 component of ulðxÞ and

the superscript ðiÞ stands for the sequence numbers of itera-

tion. The close-up view of wave functions near to x ¼ 0 is

also shown using picture-in-picture. It is obvious that the

wave functions tend to be convergent with the increasing of

iterations. In contrast to the required convergence condition

of eigenvalue (<10�4), the maximum relative difference of

ju0ðxÞj is 5� 10�4 (taken from the 8th to 9th iterations).
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