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The oscillating cylinder of a low-frequency inverted torsion pendulum is immersed into layers of noncohe-
sive granular materials, including fine sand and glass beads. The relative energy dissipation and relative
modulus of the granular system versus the amplitude and immersed depth of the oscillating cylinder are
measured. A rheological model based on a mesoscopic picture is presented. The experimental results and
rheological model indicate that small slides in the inhomogeneous force chains are responsible for the energy
dissipation of the system, and the friction of the grains plays two different roles in the mechanical response of
sheared granular material: damping the energy and enhancing the elasticity.
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I. INTRODUCTION

Granular materials are composed of many solid particles
interacting solely via the contact force. The mechanical re-
sponse of a granular medium to shear force is a fundamental
property of these materials and is very important to any in-
dustrial process �1–3�. The literature presented indicates that
under different sheared boundaries the granular medium
shows different mechanical properties. If a large object
moves slowly in a medium, one can observe a fluctuating
force distribution resisting the motion, showing stick-slip
characteristics �4,5�. But, during the quasistatic interval, the
object is at rest and the granular material can sustain the
exerted shear stress �3�. Here, we will focus on the quasi-
static regime, in which a weak shear stress is supposed to
slightly deform the granular medium without actually modi-
fying the static configuration.

Due to gravity, “granular gases” rapidly organize into a
static assembly as “granular solids.” This also is a process of
energy dissipation, as granular solids rapidly damp energy
released by shocks of external forcing. Due to the complex
disordered structure and highly nonlinear internal friction
�4�, the energy dissipation in dense granular materials is a
much more difficult problem, and many phenomena in
granular solids are still not fully understood and required
further investigation.

In Ref. �5�, D’Anna investigated the quasistatic mechani-
cal properties of a sheared granular medium by a low-
frequency torsion pendulum. The loss factor as a function of
torque is studied and a simple rheological model is pre-
sented. Then the position of the peak in the loss factor has
been used to measured the static friction coefficient in granu-
lar systems. However, fitting the data to the model is only
relatively satisfying. In particular, the sharp onset of the peak
predicted by the model is observed only when the probe
surface is clean.

In this paper we will investigate the dissipation in a qua-
sistatic granular system further. The oscillating member of an

inverted torsion pendulum is immersed into the granular ma-
terial, as shown in Fig. 1, and the response to a harmonic
torque is measured. Some additional results are obtained,
e.g., with increase of the immersed depth a drop in the rela-
tive energy dissipation �RED� is observed. In addition, some
smoother profiles are demonstrated, because the inverted tor-
sion pendulum can prevent sideways movement rather better.

Our model is also built on D’Anna’s model �5�. In Sec.
IV A we changed the variable of the model and found it is
invalid in explanation of our experimental results. Then we
present our model based on the mesoscopic picture in Sec.
IV B. This model of a series of slipping units gives more
details of the energy dissipation. It not only indicates the
presence of the peak of the dissipation, but also explains the
dissipative mechanism before the peak. Then the paper dis-
cusses the two roles of friction in granular media. The me-
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FIG. 1. Sketch of the forced torsion pendulum immersed into a
granular medium. 1, suspension wires; 2, permanent magnet; 3,
external coils; 4, mirror; 5, cylinder �made of aluminum alloy with
inner radius R� covered or not by a fixed layer of granules; 6, optic
source; 7, optic detector.
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soscopic model shows clearly that friction can enhance the
elasticity of a granular system.

II. EXPERIMENT

The inverted torsion pendulum �see Fig. 1� consists of a
cylinder that is able to rotate around its axis, but prevented
from moving sideways by two suspension wires fixed to the
two ends of the cylinder. The cylinder is forced into torsional
vibration by a time-dependent force F�t�=F0 sin��t�, exerted
by applying a pair of permanent magnets fixed to the pendu-
lum and external coils �circulating an ac current�. The angu-
lar displacement function of the cylinder, A�t�, is measured
optically. In the case here, the response of the argument
A�t�=A0 sin��t+���, where �� is the phasic difference be-
tween A�t� and F�t�. The damping properties of an oscillating
system are characterized by the RED �, the ratio of damping
energy per oscillating cycle of the applied force, i.e., �
=Q /2�W, where Q is the damping energy per cycle, and W
is the maximum stored energy per cycle. For a linear system
�6�, the RED is given by �� tan����. In a nonlinear system
as in the case here �5�, the RED is given by its first approxi-
mation as �� tan����.

In our experiments, the cylinder �with inner radius R
=17 mm and a 1-mm-thick wall� is immersed into a large
assembly of granules held in a large enough container �with
inner radius R0=38 mm�. The experiments are conducted in
granular systems respectively composed of glass beads and
fine sand, with the same diameter of d=0.054–0.11 mm.
Note that the glass beads are spherical with a smooth surface,
and fine sand is natural sand with a rough surface. Two situ-
ations are considered here: the immersed cylinder is clean,
and the immersed cylinder is covered by a layer of grains
glued on with epoxy. In order to eliminate the effect of the
construction history, the cylinder is pushed to a certain depth
in the granular assembly. Before each experiment, the granu-
lar system is flattened and vibrated by external vibrations to
ensure the accuracy of the measurements. Our experiments
are performed at uncontrolled ambient humidity, and the
whole system is placed on an antivibrational table to prevent
undesired vibration-induced effects. In our experiments the
maximum angular displacement is below 0.4° ��R0.4/180
�0.1d, where the real displacement of the cylinder is less
than 0.1d, relative to the particle size�. The frequency of
0.6 Hz, which is well below the inherent frequency of the
pendulum �about 36 Hz�, is chosen as the forced frequency
of the pendulum here. The RED of the suspension wires is of
the order of about 10−3, and can be assumed to be elastic.

III. RESULTS

In the measurements of the RED and the relative modu-
lus, given by �=tan���� and G0=F0 /A0, respectively, as
functions of the amplitude A0 and the immersed depth L /d,
we systematically observe the dissipation properties of
granular system under small torsion amplitudes.

Figures 2 and 3 show the RED obtained in a fine sand
system, while Figs. 4 and 5 show the RED obtained in a
glass bead system, with a cylinder covered by a layer of

glued grains and a clean cylinder, respectively �see the cap-
tion of each figure�. The following characteristics can be
easily picked out from these figures of the RED for different
granular systems.

�1� Figures 2�a�, 3�a�, 4�a�, and 5�a� show the profiles of
RED versus the torsional amplitudes A0. Except for a transi-
tion interval of immersed depth L, the RED � can be well
fitted by �=a tanh�bA0+c� �see Figs. 2�a� and 3�a��, where
a ,b, and c are fitting parameters clearly dependent on L. The
parameter a shows a transition from a�0 to a	0 as L in-
creases. When the immersed depth L is small, � deceases
monotonically with increasing amplitude A0, corresponding
to a�0. After the transition interval, � increases monotoni-
cally with A0, corresponding to a	0. Within the transition
interval, � shows a peak.

�2� As shown in the profiles of � vs L /d �see Figs. 2�b�,
3�b�, 4�b�, and 5�b��, � increases with increasing immersed
depth L for a given amplitude A0 until it approaches the
maximum �* at a critical depth Lc. After that, � decreases
with increasing immersed depth. One might consider that the
more grains are vibrated, the less energy is dissipated. This is
not understood.

�3� With decreasing amplitude A0, Lc shifts from large
small values of L, and stops at L /d�30 for different situa-
tions in our experiments. The value of �* decreases with
increasing Lc�A0�.

FIG. 2. RED of a fine sand assembly, with the oscillating cyl-
inder covered by a layer of grains. �a� � vs A0 for different im-
mersed depths, as noted. The solid lines are fitted by �
=a tanh�bA0�+c, where a, b, and c are fitting parameters. Here only
five lines are presented. �b� � vs L for different oscillating ampli-
tudes A0, as noted.
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�4� In the profiles of � vs L /d, after the peak of � the
decrease of � is 0.03–0.26 for the fine sand system and
0.05–0.25 for the glass bead system with the covered cylin-
der, while with the clean cylinder the decrease of � is
0.0–0.20 and 0.0–0.17, respectively. There is little differ-
ence in the range of decrease of � between the two situations
of a covered and a clean cylinder. However, the rate of de-
crease of � is apparently different between the two situa-
tions. As shown in the profiles of � vs A0, with increasing L,
after the transition interval, the curves of � are very close to
each other for the clean cylinder, while the curves are more
discrete in the same interval for the covered cylinder.

�5� With the same cylinder �clean or covered�, the rate of
decrease of � is also different between the two granular sys-
tems. In particular, just over the peak of �*, the decrease of �
in the fine sand system is larger than that of the glass bead
system �compare Figs. 2�b� and 4�b�, 3�b� and 5�b��. This
difference gets more obvious at low amplitude, and � of the
fine sand system drops by more than 0.16 just over �* with
the amplitude A0=0.023 68° and an increment of L=10d �see
Fig. 2�b��.

Figure 6 shows the relative modulus obtained in a fine
sand system using a cylinder covered by a layer of glued
grains. As the data show in Fig. 6�a�, the relative modulus G0
decreases with increase of the torsion amplitude at a given
depth. After rearranged treatment of the data, we get the

profiles of the relative modulus of G0 versus L /d, for differ-
ent torsional amplitude. With increase of the immersed
depth, the modulus G0 increases monotonically. As shown in
Fig. 6�b�, the relative modulus is an almost linear function of
the immersed depth L /d, e.g., G0=k1L /d+k2, where k1
�	0� and k2 are fitting parameters. The slope k1 increases
with decreasing amplitude. Here we just show the profiles of
the relative modulus in a fine sand system with a covered
cylinder; however, other situations have similar profiles.

IV. MODELING

A. Rheological model

In Ref. �5�, a simple rheological model, as shown in Fig.
7�a�, is presented to reproduce the RED measured in granular
materials. In the model, the spring Gp represents the suspen-
sion wires of the pendulum, which is a perfectly elastic unit.
Another branch represents the granular medium, character-
ized by a slide unit with a critical torque Tc and a spring of
torsion constant Gg. The slide unit and the spring Gg are
series wound. The response of the lower branch is nonlinear
and is given by T=GgA for A�Ac and T=GgAc for A	Ac,
where Ac=Tc /Gg, is the critical amplitude for the slide unit
beginning to slide.

The RED is the relative dissipation of energy per torsional
cycle, given by �
Q /2�W, where Q is defined as the dissi-

FIG. 3. RED of a fine sand assembly, with a clean oscillating
cylinder. �a� � vs A0 for different immersed depths, as noted. The
solid lines are fitted by �=a tanh�bA0�+c. Here only five lines are
presented. �b� � vs L for different oscillating amplitudes A0, as
noted.

FIG. 4. RED of an assembly of glass beads, with the oscillating
cylinder covered by a layer of grains. �a� � vs A0 for different
immersed depths, as noted. �b� � vs L for different oscillating am-
plitudes A0, as noted.
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pated energy of the slide unit and W is the elastic energy
stored in the two springs during loading. Under harmonic
torsional shear, Q and W can be written as

Q = 4Tc�A0 − Ac� , �1�

W = Gp�A0�2/2 + Gg�Ac�2/2. �2�

Adopting the notation �=Gg /Gp, the RED � is easily
obtained:

� =
4

�

A0

Ac
− 1

1

�
�A0

Ac
�2

+ 1

�3�

for A0 /Ac	1 and �=0 for A0 /Ac�1. The RED is shown in
Fig. 7�b� as a function of A0 /Ac with different �.

The modulus of the system is defined as G=T /A and is
written

G = Gp�1 +
�

A0/Ac
� �4�

for A0 /Ac	1, and G=Gp+Gg for A0 /Ac�1. The normalized
modulus G /Gp is shown in Fig. 7�c� as a function of A0 /Ac
for different �.

This rheological model provides a basic, macroscopic un-
derstanding of the observed mechanical behavior. Due to

gravity, grains organize into a static assembly and the pres-
sure in the granular material increases linearly with increase
of the depth from the surface �7�. In the continuum approach
�8�, the pressure P at a given depth l is written P=K�gl,
where K is a constant that characterizes the pressure aniso-
tropy, � is the granular density, and g is the acceleration of
gravity. Based on the definition of the RED we know that the
dissipation of energy results from the frictional sliding of the
slide unit. In this approach, the critical torque, over which
the sliding begins, can be seen as the macroscopic failure
limit, i.e., Tc=Tf. It is given by �5�

Ff = 2
sK��gL2R , �5�

where 
s is the coefficient of static friction, L is the im-
mersed depth, and R is the cylindrical radius. With increasing
immersed depth, grains in the deeper layer will provide a
larger recovery force, and the granular modulus Gg will rise,
which means that �=Gg /Gp increases with the immersed
depth L. �The detailed explanation will be given in the next
section.�

Now we take a look at the comparison between the ex-
perimental data and the results of the rheological model. In
the model, we just consider the RED for A0 /Ac	2 �see Fig.
7�b��, corresponding to the beginning amplitude of this ex-

FIG. 5. RED of an assembly of glass beads, with the clean
oscillating cylinder. �a� � vs A0 for different immersed depths, as
noted. �b� � vs L for different oscillating amplitudes A0, as noted. FIG. 6. Relative modulus of a fine sand assembly, with the

oscillating cylinder covered by a layer of grains. �a� G0 vs A0 for
different immersed depth, as noted. �b� G0 vs L /d for different
oscillating amplitude A0, as noted.
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periment, 0.023 68°. For 2�A0 /Ac�7, the results of the
rheological model are relatively satisfactory in fitting the ex-
perimental data. The RED also decreases monotonically with
increasing A0 /Ac when � is small. With increasing �, the
maximum of � shifts into this section. This can be consid-
ered as a transitional interval, as shown in experiments. After
the interval, � increases monotonically with A0 /Ac. The
modulus G calculated from the rheological model, as a func-
tion of A0 /Ac with different �, is similar to the data from
experiment �see Figs. 6�a� and 7�c��. However, a difference
about � between the rheological model and experiments is
that � increases monotonically with increasing � �and L� in

the simple rheological model, while in the experiment �
drops with increasing immersed depth over the critical depth
Lc. The model cannot explain all the experimental results. In
the following section we will try to give a mesoscopic ex-
planation and show the two roles of friction in the damping
of energy.

B. Mesoscopic picture

Noting that the granular material is a relatively discrete
medium and the distribution of force is inhomogeneous on
the granular length scale, we need to take into account ex-
plicitly the complexity of force transmission in the medium,
and the force distribution opposing the rotation of the pen-
dulum at a given moment during the oscillating cycle. Con-
sidering a cylindrical probe rotating in a granular medium,
the spatial force distribution around the probe is likely to be
organized along directions almost tangential to the cylinder,
where the maximum stress can build up many chains of
grains, as sketched in Fig. 8�a�. During rotation, the com-
pressive stress supported by chains of grains aligned along
quasitangential trajectories plays a more significant role than

FIG. 7. �a� Rheological model. The lower branch represents the
granular medium, characterized by a slide unit of critical torque Tc

and a spring of torsion constant Gg. The upper branch represents the
suspension wires of the pendulum, of torsion constant Gp. �b� The
RED �=Q /2�W and �c� the modulus G calculated from the rheo-
logical model, potted as a function of the normalized amplitude
A0 /Ac for different �. The various curves correspond to an increas-
ing � of 0.2, 0.5, 1, 2, 5, 7, 10, and 14, respectively.

FIG. 8. Schematic distribution of force chains opposing �a� the
rotation of the pendulum and �b� the straight motion of an immersed
object, where L is the immersion depth. �c� The mesoscopic rheo-
logical model.
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the compressive stress oriented in radial directions. �For a
hollow cylinder, the force chain on the inside of the cylinder
will be different from that on the outside of the cylinder.
However, the diameter of the cylinder in our experiments is
rather large compared to the diameter of the particles and the
length of the force chain. Here we do not consider these
differences.� In the vertical direction the torque resisting the
rotation has a similar origin to the drag force opposing the
straight motion of an immersed object �Fig. 8�b��, i.e., the
random buckling of the force chain in front of the object,
where compressive stress is continuously built up and re-
leased �5�.

We divide the system into n=L /dg discrete horizontal lay-
ers of thickness dg. Under small torsional strain, the discrete
horizontal layers can be considered as an elastic solid �9�.
When the immersed cylindrical probe rotates in the granular
medium, these discrete horizontal layers provide a series of
drag torques �i, where i=1,2 , . . . ,n. A drag torque is pro-
vided by many chains of grains in the layer. These force
chains, which originate from the surface of the immersed
cylinder and extend a few grain diameters �1,2,10� actually
bifurcate and follow nonlinear paths. The force chains of a
layer are stable, until the local force between a pair of grains
somewhere in the layer is larger than the critical friction
force fc, above which this pair of grains slip relative to each
other. �The distance of the slide is smaller than a grain diam-
eter and this slide cannot induce a rearrangement of force
chains. It can be considered as a relative slide between as-
perities at the surfaces of grains �3,5,11�.� The maximum
loading shear strain of a layer is given by Aci= fc /gi, where gi
is the elastic modulus provided by the force chains within
one layer of grains. The elastic modulus gi is related to the
restitution coefficient of granular material, which is assumed
to be a constant. So here gi is considered as a constant for a
finite torsional amplitude. The critical friction force fc can be
approximately given byfc=
sK�gl, where 
s is the coeffi-
cient of static friction. We easily obtain

Aci � 
s�li, �6�

where li is the depth of the ith layer.
Based on the above mesoscopic picture, we present a me-

soscopic rheological model. In the simple model there is
only one nonlinear branch representing the whole granular
system, while here we assume there is a series of branches
�see Fig. 8�c�� corresponding to the different horizontal lay-
ers at different immersed depths.

From Eq. �6�, we know that, with a given immersed depth
and a given torsional amplitude, e.g., A0=0.023 68°, a num-
ber of horizontal layers will present relative sliding. When
the immersed depth is rather small, all layers will join in the
slides for A0=0.023 68° 	Acn corresponding to the situation
that the immersed depth is smaller than 30d in experiments.
With increasing immersed depth, layers below this critical
depth �30d corresponding to A0=0.023 68°� will not join in
slides. Under torsional shear, these layers just show elastic-
ity. In this condition, all layers can be simply divided into
two branches: the higher branch, which presents slides and
joins in damping, and can be approximately characterized by
a summed modulus Ga and a summed critical friction Ta; and

the lower branch, which only provides elasticity, and can be
approximately characterized by a summed elastic modulus
Gb.

Defining the notation Ac=Ta /Ga in this mesoscopic
model, we obtain the RED

� =
4

�

A0

Ac
− 1

Gp + Gb

Ga
�A0

Ac
�2

+ 1

�7�

for A0 /Ac	1, and �=0 for A0 /Ac�1. The modulus can be
similarly written as

G = Gp + Gb +
Ga

A0

Ac

�8�

for A0 /Ac	1, and G=Gp+Gb+Ga for A0 /Ac�1.
With a given torsional amplitude A0, there is a corre-

sponding critical depth Lc, which is the depth of the layers
presenting slides and ranking as the upper branch. Let the
thickness of a layer dg=10d; then Ga=n0gi and Gb= �n
−n0�gi, where n0=Lc /dg and n=L /dg. The notation �= �Ga

+Gb� /Gp can be written

� =
n

k
, �9�

where k=Gp /gi.
Note that Gb=0, when n /n0�1. So we obtain the RED as

a function of the amplitude A0 /Ac and immersed depth n
=L /10d,

� =
4

�

A0

Ac
− 1

k

n
�A0

Ac
�2

+ 1

�10a�

for n�n0;

� =
4

�

A0

Ac
− 1

� k

n0
+

n

n0
− 1��A0

Ac
�2

+ 1

�10b�

for n	n0. As shown in Fig. 9, we obtain two profiles of � as
indicated in the caption of the figure.

Similarly, the modulus can be written

G = Gp	1 +

n

k

A0

Ac


 �11a�

for n�n0;
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G = Gp�1 +
n − n0

k
+

n0/k

A0/Ac
� �11b�

for n	n0. These equations denote that the modulus always is
a linear function of the immersed depth, as shown in Fig.
6�b�.

V. DISCUSSION AND OPEN QUESTIONS

In Eq. �10�, for a small depth, the RED decreases mono-
tonically with increasing A0 /Ac, just as shown in Fig. 9�a� for
n�3. This dissipation comes from the frictional sliding. In
this condition, the RED increases with increasing immersed
depth L /d, as shown in Fig. 9�b�. When the immersed depth
exceeds the critical depth Lc, the layers of grains below the
critical depth will only provide elasticity, which will enhance
the elasticity of the system. As a result, the RED will de-
crease with increasing immersed depth, which corresponds
to a drop of � vs L /d over the critical depth Lc, as shown in
Fig. 9�b�. With increasing torsional amplitude, these elastic
layers will be reduced and even vanish, so that the position
of the peak in the profiles of � vs L shifts to larger L, cor-
responding to a shift of critical depth. These details of dissi-
pation cannot been given by the simple rheological model.

Equation �6� also denotes that the characteristics of the
grains, including 
s and �, play a key role in determining the

maximum loaded amplitude �above which sliding occurs� of
the discrete grain layers. A simple sliding experiment indi-
cates that the frictional coefficient of the covered cylinder is
about twice as much as that of clean cylinder. Therefore,
when the loading amplitude exceeds Ac, for a clean cylinder,
the sliding will mostly happen at the surface of the cylinder.
In contrast, the sliding occurs somewhere in the granular
layer for a covered cylinder. This results in a decrease of the
critical depth Lc for the clean cylinder, which is in agreement
with the results of experiments �see Figs. 2�a� and 3�a��. It
also results that, above the peak of �, the decrease and the
rate of decrease of � in the case of the covered cylinder are
larger than those of the clean probe, whether for fine sand or
glass beads, as shown in Figs. 2�b�, 3�b�, 4�b�, and 5�b�.
Because the friction coefficient and density of fine sand are
larger than those of glass beads, the data of our experiments
show that the rate of decrease of � vs L /d in fine sand
system is larger than that in glass beads for the same cylinder
in this range �compare Fig. 2�b� with 4�b�, and 3�b� with
5�b��. This difference becomes more obvious at lower ampli-
tudes.

The analysis indicates that the friction in a granular me-
dium plays two roles in our experiment. The physical defi-
nition of � denotes that the friction induces energy dissipa-
tion. In the mesoscopic model it also is the basis of the
elasticity and can even enhance the elasticity of the system.
The results of experiments directly show this phenomenon.
The RED in the case of a covered cylinder for the two granu-
lar systems is slightly larger than that of a clean cylinder in
approaching the peak of � �refer to the profile of � vs L /d�,
where the dissipation role is obvious; above the peak �for
L	Lc�, the RED in the case of the covered cylinder is ap-
parently less than that of the clean cylinder, where the fric-
tion enhances the elasticity of the system. So one can view
the critical depth Lc as the transition depth, on the two sides
of which the friction of the granular medium plays two dif-
ferent roles.

In Ref. �5�, D’Anna presented a simple rheological model
to reproduce the data. The simple model assumed that all the
discrete layers will exceed the critical friction torque simul-
taneously. So the model predicted a sharp onset; however,
this is observed only when the probe surface is clean. Ac-
cording to our mesoscopic rheological model, the exceeding
actually occurs layer by layer with increasing torsional am-
plitude. So the gradual increase of dissipation before the
peak can be understood easily.

The above discussion indicates that the mesoscopic rheo-
logical model has provided more information about dissipa-
tive properties. However, one also can find that the details of
the profiles in the Fig. 9 are not good in fitting to the results
of experiments. These inconsistencies in a pictorial sense
result from the simplification of the model. In the mesos-
copic picture, we know that every branch has a different
critical amplitude and thus the energy dissipation is a vari-
able of the torsional amplitude for different horizontal layers.
But in the calculation we have simply divided all layers into
two branches. Further investigation is needed.

For beads with a diameter smaller than 0.5 mm, humidity
has been found to strongly influence the friction coefficient
of granular matter, most likely due to the formation of liquid

FIG. 9. RED � versus �a� torsion amplitude, for different im-
mersed depths, as noted; and �b� immersed depth L /10d, calculated
from the rheological model based on the mesoscopic picture, for
different torsion amplitudes, as noted.
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bridges between grains �12�. These experiments are carried
out in realistic ambient humidity. Although dry grains are
used, we do not think that adhesive effects can be eliminated
in the observations. Hence the questions are whether liquid
bridges play a very important role in the laboratory atmo-
sphere and how do the observations change if the humidity is
varied, e.g., when wet particles are used.

VI. CONCLUSION

To conclude, this paper systematically elucidated the dis-
sipative mechanism of a granular system under low torsional
shear, through measurements of the RED versus the ampli-
tude A0 and the immersed depth L /d. A rheological model
based on the mesoscopic picture is presented to reproduce
the experimental results.

This work is focused on the quasistatic, dissipative re-
gimes where the grains stick or slip relative to each other.
This transition from stick to slip is determined by the tor-
sional amplitude and the immersed depth of the probe. The
rheological model also displays an approximate expression

of the RED as a function of the amplitude and the depth.
This is an essential question for researchers investigating the
stability of buildings, silos, and slopes—particularly for pre-
dicting earthquakes and avalanches �13,14�.

Experiments also show the two different roles of friction:
when the friction is not large enough, it increases energy
dissipation and renders the response more anisotropic; when
the friction is large enough, it enhances the elasticity of the
system and renders the response more isotropic. This can be
considered as evidence for the conclusion of Goldenberg
and Goldhirsch �9,14� in realistic, large-scale, and three-
dimensional granular systems. These general conclusions
show the potential of this experiment in understanding the
granular mechanical properties at the mesoscopic level.
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