
Journal of Computational and Applied Mathematics 329 (2018) 256–267

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Smooth orientation interpolation using parametric
quintic-polynomial-based quaternion spline curve✩

Jieqing Tan a, Yan Xing a,*, Wen Fan a, Peilin Hong b

a School of Mathematics, Hefei University of Technology, Hefei 230009, China
b Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230009, China

a r t i c l e i n f o

Article history:
Received 20 October 2016
Received in revised form 7 July 2017

Keywords:
Quaternion
G2-continuity
Interpolation spline
Tension parameter

a b s t r a c t

In this paper, a G2continuous quintic-polynomial-based unit quaternion interpolation
spline curve with tension parameters is presented to interpolate a given sequence of solid
orientations. The curve in unit quaternion space S3 is an extension of the quintic polynomial
interpolation spline curve in Euclidean space. It preserves the interpolatory property andG2

continuity. Meanwhile, the unit quaternion interpolation spline curve possesses the local
shape adjustability due to the presence of tension parameters. The change of one tension
parameter will only affect the adjacent two pieces of curves. Comparedwith the traditional
B-spline unit quaternion interpolation curve and v-spline unit quaternion interpolation
curve, the proposed curve can automatically interpolate the given data points, without
solving the nonlinear system of equations over quaternions to obtain the control points,
which greatly improves the computational efficiency. Simulation results demonstrate the
effectiveness of the proposed scheme.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Quaternion curves have attracted considerable attention in the fields of computer animation, robot control and inertial
navigation system. Unit quaternions are especially suitable for controlling the rotation of either 3D objects or virtual
cameras [1,2]. One advantage of quaternions is that quaternions represent rotations more concisely than 3 × 3 rotation
matrices because they only have 4 entries. So quaternions aremore efficient thanmainstream rotationmatrices as computing
the orientations. The product of two quaternions just means the composition of two successive rigid rotations. Compared
with intuitive Euler angles, quaternions can avoid gimbal lock. Therefore, the design of unit quaternion curves has always
become an interesting research topic [3–19].

In computer animation, it is a fundamental problem to generate the smooth motion of a rigid body interpolating a given
sequence of key positions and orientations. A smooth rigid motion can be represented by two continuous curves: one is the
position curve in the Euclidean space R3, the other is the orientation curve in the rotation group SO(3) [3,4]. They represent
the translational and rotational motion of the rigid body respectively. We denote by S3 the set of all unit quaternions, which
forms a subgroup of the multiplication group of non-zero quaternions. Furthermore, the rotation group SO(3) in R3 can be
obtained as a projective space of the unit 3-sphere S3. The unit 3-sphere S3 is the double cover of SO(3). q and −qmap to the
same element in SO(3). Thus, the construction of orientation interpolation curve can be done in S3, and the rotation control
can be reduced to construct a unit quaternion curve in S3.

✩ This work is supported by the National Natural Science Foundation of China under Grant No. 61472466 and No. 11601115.

* Corresponding author.
E-mail address: yanxing28@gmail.com (Y. Xing).

http://dx.doi.org/10.1016/j.cam.2017.07.007
0377-0427/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2017.07.007
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2017.07.007&domain=pdf
mailto:yanxing28@gmail.com
http://dx.doi.org/10.1016/j.cam.2017.07.007


J. Tan et al. / Journal of Computational and Applied Mathematics 329 (2018) 256–267 257

Shoemake [2] constructed a splicing quaternion Bézier curve with C1 continuity which interpolates a sequence of
quaternions. Kim et al. [3,4] proposed a class of algebraic expressions to construct a variety of quaternion spline curves,
and provided an iterative algorithm to solve the quaternionic non-linear system of equations to obtain the control points of
the quaternion B-spline curve. Nielson [5] put forward unit quaternion ν-spline interpolatory curve, and also provided an
iterative algorithm to acquire its control points. Ge et al. [6] developed an algorithm to search the control points by means
of newly introduced several operational notations indicating quaternionic operations such as geodesic great circular arc
interpolation⊕ in S3, and claimed themethod can gain the accurate solution for quaternionic nonlinear system of equations.
In themeanwhile, they presented the point insertion schemewhich enables the interpolatory curve to be locally modifiable.
Unfortunately, when solving the non-linear system of equationswith the help of the newly introduced quaternion operators,
they made the mistake that they took it for granted that the generalized addition operation ⊕ satisfies the associative law,
which is not true usually. Su et al. [7] constructed an algebraic trigonometric blending quaternion interpolation spline curve,
which can precisely interpolate a given sequence of solid orientations. However, the shape of the curve is not able to be
adjusted locally.

The above analysis and discussion motivates us to look for a new type of quaternion interpolation spline curve
which meets the needs of smoothness, local modifiability and computational efficiency. This paper mainly constructs a
G2-continuous parametric quintic polynomial based unit quaternion interpolation spline curve which automatically passes
through a given sequence of data points without solving non-linear system of equations and preserves important geometric
and differential properties of the analogous curve in R3.

This paper is organized as follows. Section 1 describes the importance of quaternion curve and gives a brief review
of previous methods. Section 2 introduces the operations and properties of quaternions. Section 3 first constructs the
parametric quintic polynomial-based unit quaternion interpolation spline curve, then proves the interpolatory property and
G2 continuity of the curve. Section 4 shows and analyzes some experimental results. We conclude this paper in Section 5.

2. Operations and properties of quaternions

In this section, we simply recall the definition and operations of quaternions. Compared with a complex number z =

a + b⃗i (a, b ∈ R), a quaternion is defined by q = w + x⃗i + y⃗j + zk⃗ where w, x, y, z ∈ R and i⃗, j⃗, k⃗ are three imaginary units,
satisfying

i⃗2 = j⃗2 = k⃗2 = −1, i⃗⃗j = −j⃗⃗i = k⃗, j⃗k⃗ = −k⃗⃗j = i⃗, k⃗⃗i = −i⃗k⃗ = j⃗. (2.1)

The quaternion q can also be represented by a 4D vector (w, x, y, z) or an ordered pair (s, v⃗), where s = w is a scalar, and
v⃗ = (x, y, z) is a 3D vector.

Given two quaternions qn = wn + xn i⃗ + yn j⃗ + znk⃗ (n = 0, 1), the addition and subtraction of quaternions are defined by:

q0 ± q1 = (w0 ± w1) + (x0 ± x1 )⃗i + (y0 ± y1 )⃗j + (z0 ± z1)k⃗. (2.2)

The product of two quaternions is defined by

q0q1 = (w0w1 − x0x1 − y0y1 − z0z1) + (w0x1 + x0w1 + y0z1 − z0y1 )⃗i
+ (w0y1 + y0w1 + z0x1 − x0z1 )⃗j + (w0z1 + z0w1 + x0y1 − y0x1)k⃗.

(2.3)

Note that the multiplication is associative, but non-commutative.
The inner product of two quaternions is the same as the dot product of two 4D vectors.

(q0, q1) = w0w1 + x0x1 + y0y1 + z0z1. (2.4)

The conjugate of a quaternion q = w + x⃗i + y⃗j + zk⃗ is defined by

q = w − x⃗i − y⃗j − zk⃗, (2.5)

and q1q2 = q2 q1. (2.6)

The norm of a quaternion is

∥q∥ =

√
qq ==

√
w2 + x2 + y2 + z2. (2.7)

If ∥q∥ = 1, then q is a unit quaternion.
The set of all unit quaternions constitutes the space S3.
The inverse of a quaternion is

q−1
=

q
∥q∥2 . (2.8)



258 J. Tan et al. / Journal of Computational and Applied Mathematics 329 (2018) 256–267

A unit or normalized quaternion q = w + x⃗i + y⃗j + zk⃗ ∈ S3, where w2
+ x2 + y2 + z2 = 1, can be denoted as

q = cos θ + n⃗ sin θ, (2.9)

where θ = arccosw ∈ [0, π] and n⃗ =
(x,y,z)

√
x2+y2+z2

.

The exponential form for unit quaternion q = cos θ + n⃗ sin θ is

q = exp(θ n⃗), (2.10)

where n⃗ ∈ S2 is a unit 3D vector, and θ ∈ [0, π].
The natural logarithm of a unit quaternion q = cos θ + n⃗ sin θ is

log(q) = n⃗ · θ, (2.11)

where θ ∈ [0, π] and n⃗ ∈ S2.
The derivative of the function qf (t) with respect to t is

d
dt

qf (t) = f ′(t)qf (t) log(q), (2.12)

where base q is a unit quaternion and exponent f (t) is a real-valued function f : R → R.
Especially, when f (t) = t , we get

d
dt

qt = qt log(q). (2.13)

The formula for spherical linear interpolation (Slerp) [2] from q0 to q1 along the geodesic path on the unit sphere S3 is given
by

Slerp(q0, q1; t) = q0(q−1
0 q1)t , (2.14)

or

Slerp(q0, q1; t) =
sin(1 − t)α

sinα
q0 +

sin tα
sinα

q1 (2.15)

where ∥q0∥ = ∥q1∥ = 1, t ∈ [0, 1], and α is the angle between q0 and q1, satisfying cosα = q0 · q1. The former Eq. (2.14) is
obtained from the perspective of group structure, and the latter Eq. (2.15) from the point of view of 4-D geometry.

The rotation of a vector v⃗ around the axis n⃗ by the angle 2θ based on the right-hand rule can be expressed as

qv⃗q−1
= exp(θ n⃗)v⃗ exp(−θ n⃗) = (cos θ + n⃗ sin θ )v⃗(cos θ − n⃗ sin θ ). (2.16)

3. Unit quaternion interpolation spline curve based on parametric quintic polynomials

3.1. The construction of parametric quintic polynomial-based unit quaternion interpolation spline curve

Shoemake [2] presented the formula for Slerp which can produce an orientation curve interpolating two given poses
represented by two unit quaternions. However, in the rigid motion control application, there are usually more than two
key poses to connect. In order to obtain smooth interpolatory orientation curve, Shoemake [2], Kim [4], Nielson [5,8], Ge [6],
Su [7], Schlag [10],Wang [12], Ramamoorthi [14], Buss [15], Yu [17], et al. gave different construction schemes for quaternion
interpolation spline curves. Some of them cannot adjust the shape of the curve. Some of themneed time-consuming iteration
process to find the control points of curve which reduces the production efficiency. Here, we will propose a G2-continuous
quaternion interpolation spline curve with tension parameters which can not only automatically pass through the given
keyframe orientations precisely without solving the non-linear system of equations to find the quaternionic control points,
but also ensure the expected continuity, and the local shape controllability via modifying the tension parameters. This
part will first introduce quintic polynomial interpolation spline curves with tension parameters in R3, then present the
construction of a G2-continuous quaternion interpolation spline curve.

3.1.1. The construction of quintic polynomial interpolation spline curves with tension parameters in Euclidean space
Given data points Pi ∈ Rd(d = 2 or 3, i = 1, . . . , n) and tension parametersαi ∈ R (i = 1, . . . , n), a curve passing through

{Pi}ni=1 is constructed as follows.
Let P0 = P1, Pn+1 = Pn. For i = 1, . . . , n − 1, the ith piece of quintic polynomial curve is defined as

pi(t) ≜ pi(t; αi, αi+1) =

3∑
j=0

Ci,j(t; αi, αi+1)Pi+j−1, t ∈ [0, 1], (3.1)



J. Tan et al. / Journal of Computational and Applied Mathematics 329 (2018) 256–267 259

where⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ci,0(t; αi, αi+1) = −
αi

5
B1(t) −

7αi

20
B2(t),

Ci,1(t; αi, αi+1) = B0(t) + B1(t) +

(
1 −

αi

10

)
B2(t) +

9αi+1

20
B3(t) +

αi+1

5
B4(t),

Ci,2(t; αi, αi+1) =
αi

5
B1(t) +

9αi

20
B2(t) +

(
1 −

αi+1

10

)
B3(t) + B4(t) + B5(t),

Ci,3(t; αi, αi+1) = −
7αi+1

20
B3(t) −

αi+1

5
B4(t),

(3.2)

where Bi(t) = (5i )t
i(1 − t)5−i (i = 0, 1, . . . , 5), t ∈ [0, 1] are quintic Bernstein polynomials.

The quintic polynomial functions Ci,j(t) ≜ Ci,j(t; αi, αi+1) (j = 0, 1, 2, 3), t ∈ [0, 1] are derived in the following way.
Consider four adjacent data points Pi−1, Pi, Pi+1, Pi+2 whichwill be interpolated. Suppose the curve segment pi(t; αi, αi+1)

between Pi and Pi+1 is a polynomial curve. Then it can be expressed by a Bézier curve. In order to ensure the whole spline
curve to achieve the second order continuity, we assume it is a quintic Bézier curve

pi(t; αi, αi+1) =

5∑
j=0

Bj(t)Vj, t ∈ [0, 1], (3.3)

satisfying⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pi(0; αi, αi+1) = V0 = Pi,
p′

i(0; αi, αi+1) = 5(V1 − V0) = αi(Pi+1 − Pi−1),
p′′

i (0; αi, αi+1) = 20(V2 − 2V1 + V0) = αi(Pi+1 − 2Pi + Pi−1),
pi(1; αi, αi+1) = V5 = Pi+1,

p′

i(1; αi, αi+1) = 5(V5 − V4) = αi+1(Pi+2 − Pi),
p′′

i (1; αi, αi+1) = 20(V5 − 2V4 + V3) = αi+1(Pi+2 − 2Pi+1 + Pi),

(3.4)

where {Vj}
5
j=0 are 6 control points for the quintic Bézier curve, αi and αi+1 are tension parameters corresponding to data

points Pi and Pi+1, and {Bj(t)}5j=0 are quintic Bernstein polynomials.
Solving for {Vj}

5
j=0 from the above system of equations (3.4), and substituting the results into (3.3), from pi(t; αi, αi+1) =∑5

j=0Bj(t)Vj =
∑3

j=0Ci,j(t; αi, αi+1)Pi+j−1, we obtain (3.2).
It is not difficult to know⎧⎨⎩

pi(1; αi, αi+1) = Pi+1 = pi+1(0; αi+1, αi+2),
p′

i(1; αi, αi+1) = αi+1(Pi+2 − Pi) = p′

i+1(0; αi+1, αi+2),
p′′

i (1; αi, αi+1) = αi+1(Pi+2 − 2Pi+1 + Pi) = p′′

i+1(0; αi+1, αi+2).
(3.5)

3.1.2. The construction of parametric quintic polynomial-based quaternion interpolation spline curves in S3
According to Kim’s general algebraic construction scheme for unit quaternion spline curves [3], we construct an analogue

of the above introduced parametric quintic polynomial interpolation spline curves in unit quaternion space S3.

Definition 1. Given n keyframe orientations Qi ∈ S3(i = 1, . . . , n), monotonically increasing knot vector U = (u1, . . . , un),
and tension parameter vector α = (α1, . . . , αn). Let Q0 = Q1, Qn+1 = Qn. For i = 1, . . . , n − 1,the ith piece of quintic-
polynomial-based quaternion interpolation spline curve is defined as

qi(u) = Q
C̃i,0

(
u−ui

ui+1−ui
;αi,αi+1

)
i−1

3∏
j=1

(Q−1
i+j−2Qi+j−1)

C̃i,j
(

u−ui
ui+1−ui

;αi,αi+1

)
, u ∈ [ui, ui+1], (3.6)

where

C̃i,j(t; αi, αi+1) =

3∑
k=j

Ci,k(t; αi, αi+1) (j = 0, 1, 2, 3), (3.7)

and Ci,k(t; αi, αi+1) (k = 0, 1, 2, 3) is defined in Eqs. (3.2).

It is easy to know

qi(ui) = Qi and qi(ui+1) = Qi+1.

So the whole quaternion spline curve q(u) interpolates the given n keyframe orientations.



260 J. Tan et al. / Journal of Computational and Applied Mathematics 329 (2018) 256–267

3.2. The continuity of the quaternion interpolation spline curve

The quintic polynomial-based unit quaternion interpolation spline curve with tension parameters preserves many
important properties of parametric quintic polynomial interpolation spline curve in R3, such as interpolatory property, G2-
continuity and local shape modifiability. In the following, we give the proof of interpolatory property and G2-continuity of
the quaternion curve.

Because the proposed unit quaternion curve is composed of n − 1 quintic polynomial-based quaternion curve segments
qi(t) (i = 1, . . . , n − 1), and each segment is the product of the composite functions of smooth polynomial functions and
smooth exponential functions, so it suffices to study the continuity of the splicing curve at the connecting places, known as
the internal knots.

Theorem 1. Given a sequence of n keyframe orientations {Qi}
n
i=1. Let Q0 = Q1,Qn+1 = Qn. Then the curve defined in Definition 1

interpolates the given sequence of orientations, and is G2 continuous.

Proof. Since C̃i,0(t; αi, αi+1) =
∑3

j=0Ci,j(t; αi, αi+1) =
∑5

k=0Bk(t) = 1, for i = 1, . . . , n−1, the ith quintic-polynomial-based
unit quaternion spline curve segment qi(u) (u ∈ [ui, ui+1]) can be represented by

qi(u) = Qi−1(Q−1
i−1Qi)

C̃i,1
(

u−ui
ui+1−ui

;αi,αi+1

)
(Q−1

i Qi+1)
C̃i,2

(
u−ui

ui+1−ui
;αi,αi+1

)
(Q−1

i+1Qi+2)
C̃i,3

(
u−ui

ui+1−ui
;αi,αi+1

)
. (3.8)

Its first derivative is

q′

i(u) = Qi−1

[
(Q−1

i−1Qi)
C̃i,1

(
u−ui

ui+1−ui
;αi,αi+1

)]′

(Q−1
i Qi+1)

C̃i,2
(

u−ui
ui+1−ui

;αi,αi+1

)
(Q−1

i+1Qi+2)
C̃i,3

(
u−ui

ui+1−ui
;αi,αi+1

)

+ Qi−1(Q−1
i−1Qi)

C̃i,1
(

u−ui
ui+1−ui

;αi,αi+1

) [
(Q−1

i Qi+1)
C̃i,2

(
u−ui

ui+1−ui
;αi,αi+1

)]′

(Q−1
i+1Qi+2)

C̃i,3
(

u−ui
ui+1−ui

;αi,αi+1

)

+ Qi−1(Q−1
i−1Qi)

C̃i,1
(

u−ui
ui+1−ui

;αi,αi+1

)
(Q−1

i Qi+1)
C̃i,2

(
u−ui

ui+1−ui
;αi,αi+1

) [
(Q−1

i+1Qi+2)
C̃i,3

(
u−ui

ui+1−ui
;αi,αi+1

)]′

, (3.9)

where[
(Q−1

i−1Qi)
C̃i,1

(
u−ui

ui+1−ui
;αi,αi+1

)]′

= (Q−1
i−1Qi)

C̃i,1
(

u−ui
ui+1−ui

;αi,αi+1

)(
C̃i,1

(
u − ui

ui+1 − ui
; αi, αi+1

))′

log(Q−1
i−1Qi),

[
(Q−1

i Qi+1)
C̃i,2

(
u−ui

ui+1−ui
;αi,αi+1

)]′

= (Q−1
i Qi+1)

C̃i,2
(

u−ui
ui+1−ui

;αi,αi+1

)(
C̃i,2

(
u − ui

ui+1 − ui
; αi, αi+1

))′

log(Q−1
i Qi+1),

[
(Q−1

i+1Qi+2)
C̃i,3

(
u−ui

ui+1−ui
;αi,αi+1

)]′

= (Q−1
i+1Qi+2)

C̃i,3
(

u−ui
ui+1−ui

;αi,αi+1

)(
C̃i,3

(
u − ui

ui+1 − ui
; αi, αi+1

))′

log(Q−1
i+1Qi+2).

And its second derivative is

q′′

i (u) = Qi−1

[
(Q−1

i−1Qi)
C̃i,1

(
u−ui

ui+1−ui
;αi,αi+1

)]′′

(Q−1
i Qi+1)

C̃i,2
(

u−ui
ui+1−ui

;αi,αi+1

)
(Q−1

i+1Qi+2)
C̃i,3

(
u−ui

ui+1−ui
;αi,αi+1

)

+ Qi−1(Q−1
i−1Qi)

C̃i,1
(

u−ui
ui+1−ui

;αi,αi+1

) [
(Q−1

i Qi+1)
C̃i,2

(
u−ui

ui+1−ui
;αi,αi+1

)]′′

(Q−1
i+1Qi+2)

C̃i,3
(

u−ui
ui+1−ui

;αi,αi+1

)

+ Qi−1(Q−1
i−1Qi)

C̃i,1
(

u−ui
ui+1−ui

;αi,αi+1

)
(Q−1

i Qi+1)
C̃i,2

(
u−ui

ui+1−ui
;αi,αi+1

) [
(Q−1

i+1Qi+2)
C̃i,3

(
u−ui

ui+1−ui
;αi,αi+1

)]′′

+ 2Qi−1

[
(Q−1

i−1Qi)
C̃i,1

(
u−ui

ui+1−ui
;αi,αi+1

)]′ [
(Q−1

i Qi+1)
C̃i,2

(
u−ui

ui+1−ui
;αi,αi+1

)]′

(Q−1
i+1Qi+2)

C̃i,3
(

u−ui
ui+1−ui

;αi,αi+1

)

+ 2Qi−1

[
(Q−1

i−1Qi)
C̃i,1

(
u−ui

ui+1−ui
;αi,αi+1

)]′

(Q−1
i Qi+1)

C̃i,2
(

u−ui
ui+1−ui

;αi,αi+1

) [
(Q−1

i+1Qi+2)
C̃i,3

(
u−ui

ui+1−ui
;αi,αi+1

)]′

+ 2Qi−1(Q−1
i−1Qi)

C̃i,1
(

u−ui
ui+1−ui

;αi,αi+1

) [
(Q−1

i Qi+1)
C̃i,2

(
u−ui

ui+1−ui
;αi,αi+1

)]′ [
(Q−1

i+1Qi+2)
C̃i,3

(
u−ui

ui+1−ui
;αi,αi+1

)]′

, (3.10)

where[
(Q−1

i−1Qi)
C̃i,1

(
u−ui

ui+1−ui
;αi,αi+1

)]′′

= (Q−1
i−1Qi)

C̃i,1
(

u−ui
ui+1−ui

;αi,αi+1

)[(
C̃i,1

(
u−ui

ui+1−ui
; αi, αi+1

))′

log(Q−1
i−1Qi)

]2

+ (Q−1
i−1Qi)

C̃i,1
(

u−ui
ui+1−ui

;αi,αi+1

)(
C̃i,1

(
u−ui

ui+1−ui
; αi, αi+1

))′′

log(Q−1
i−1Qi),



J. Tan et al. / Journal of Computational and Applied Mathematics 329 (2018) 256–267 261

[
(Q−1

i Qi+1)
C̃i,2

(
u−ui

ui+1−ui
;αi,αi+1

)]′′

= (Q−1
i Qi+1)

C̃i,2
(

u−ui
ui+1−ui

;αi,αi+1

)[(
C̃i,2

(
u−ui

ui+1−ui
; αi, αi+1

))′

log(Q−1
i Qi+1)

]2

+ (Q−1
i Qi+1)

C̃i,2
(

u−ui
ui+1−ui

;αi,αi+1

)(
C̃i,2

(
u−ui

ui+1−ui
; αi, αi+1

))′′

log(Q−1
i Qi+1),

[
(Q−1

i+1Qi+2)
C̃i,3

(
u−ui

ui+1−ui
;αi,αi+1

)]′′

= (Q−1
i+1Qi+2)

C̃i,3
(

u−ui
ui+1−ui

;αi,αi+1

)[(
C̃i,3

(
u−ui

ui+1−ui
; αi, αi+1

))′

log(Q−1
i+1Qi+2)

]2

+ (Q−1
i+1Qi+2)

C̃i,3
(

u−ui
ui+1−ui

;αi,αi+1

)(
C̃i,3

(
u−ui

ui+1−ui
; αi, αi+1

))′′

log(Q−1
i+1Qi+2).

By direct computation, we have

C̃i,1(0; αi, αi+1) = 1, C̃i,2(0; αi, αi+1) = 0, C̃i,3(0; αi, αi+1) = 0,

C̃i,1(1; αi, αi+1) = 1, C̃i,2(1; αi, αi+1) = 1, C̃i,3(1; αi, αi+1) = 0,

C̃ ′

i,1(0; αi, αi+1) =
αi

ui+1 − ui
, C̃ ′

i,2(0; αi, αi+1) =
αi

ui+1 − ui
, C̃ ′

i,3(0; αi, αi+1) = 0,

C̃ ′

i,1(1; αi, αi+1) = 0, C̃ ′

i,2(1; αi, αi+1) =
αi+1

ui+1 − ui
, C̃ ′

i,3(1; αi, αi+1) =
αi+1

ui+1 − ui
,

C̃ ′′

i,1(0; αi, αi+1) =
−αi

(ui+1 − ui)2
, C̃ ′′

i,2(0; αi, αi+1) =
αi

(ui+1 − ui)2
, C̃ ′′

i,3(0; αi, αi+1) = 0,

C̃ ′′

i,1(1; αi, αi+1) = 0, C̃ ′′

i,2(1; αi, αi+1) =
−αi+1

(ui+1 − ui)2
, C̃ ′′

i,3(1; αi, αi+1) =
αi+1

(ui+1 − ui)2
.

Substituting ui or ui+1 for u in Eqs. (3.8)–(3.10) respectively, we get the following three pairs of equations.{
qi(ui) = Qi,

qi(ui+1) = Qi+1;
(3.11)

⎧⎪⎨⎪⎩
q′

i(ui) =
αi

ui+1 − ui
Qi[log(Q−1

i−1Qi) + log(Q−1
i Qi+1)],

q′

i(ui+1) =
αi+1

ui+1 − ui
Qi+1[log(Q−1

i Qi+1) + log(Q−1
i+1Qi+2)];

(3.12)

⎧⎪⎨⎪⎩
q′′

i (ui) =
αi

(ui+1 − ui)2
Qi{αi[log(Q−1

i−1Qi) + log(Q−1
i Qi+1)]2 + [log(Q−1

i Qi+1) − log(Q−1
i−1Qi)]},

q′′

i (ui+1) =
αi+1

(ui+1 − ui)2
Qi+1{αi+1[log(Q−1

i Qi+1) + log(Q−1
i+1Qi+2)]2 + [log(Q−1

i+1Qi+2) − log(Q−1
i Qi+1)]}.

(3.13)

It can be seen from Eq. (3.11) that the ith piece of curve qi(u)(i = 1, . . . , n − 1) passes through Qi and Qi+1. So, the whole
spline curve interpolates the given data points.

Let 1ui = ui+1 − ui(i = 1, . . . , n − 1). Straightforward computations give that for i = 1, . . . , n − 1,⎧⎪⎪⎪⎨⎪⎪⎪⎩
qi(ui+1) = Qi+1 = qi+1(ui+1),

q′

i(ui+1) =
1ui+1

1ui
q′

i+1(ui+1),

q′′

i (ui+1) =

(
1ui+1

1ui

)2

q′′

i+1(ui+1).

(3.14)

Hence, the quintic-polynomial-based quaternion spline curve does interpolate the given data points {Qi}
n
i=1, and is of G2

continuity. This completes the proof. ◀

With uniform knot spacing ui+1−ui = 1ui = h for all i = 1, . . . , n−1, it is easy to know from Eqs. (3.14) that the quintic-
polynomial-based quaternion interpolation spline curve can achieve C2 continuity at the internal knots ui (i = 2, . . . , n−1).



262 J. Tan et al. / Journal of Computational and Applied Mathematics 329 (2018) 256–267

(a) αi = αi+1 = 0.35.

(b) αi = 0.1, αi+1 = 0.5.

Fig. 1. The proposed quintic polynomial functions (left) and their cumulative forms (right).

4. Experiments

In this section, some experimental results are shown to demonstrate the effectiveness of our scheme.
First, the quintic polynomial functions Ci,j(t) ≜ Ci,j(t; αi, αi+1) (j = 0, 1, 2, 3) and the cumulative forms of functions

C̃i,j(t) ≜ C̃i,j(t; αi, αi+1) =
∑3

k=jCi,k(t; αi, αi+1) (j = 0, 1, 2, 3) are depicted in Fig. 1, where αi = αi+1 = 0.35 in (a) and
αi = 0.1, αi+1 = 0.5 in (b).

From Eq. (3.6), we know that each piece of curve qi(t) is only affected by two specific tension parameters αi and αi+1.
In other words, one parameter only has an effect on the adjacent two pieces of curves. As shown in every row of Fig. 2,
when only one tension parameter is modified, just the two pieces of curve incident to the corresponding knot change their
shapes.

It is also observed from Fig. 2 that the larger the absolute value of a tension parameter is, the flatter the shape of the curve
around the corresponding knot is. At this point, the larger the angular velocity and angular acceleration are (see Eqs. (3.12)
and (3.13)), and the faster 3D object rotates around the corresponding knot (see Fig. 3(i)). When a tension parameter is
close to 0, the curve is pretty sharp at the corresponding knot (see the case where α = [0, 0, 0, 0, 0] in Fig. 2), and because
the angular velocity and angular acceleration are close to 0 (see Eqs. (3.12) and (3.13)), 3D object rotates very slow near
the knot(see Fig. 3(j)). If a tension parameter is negative, there exists a kink or twist in the quaternion curve around the
corresponding knot (see Fig. 2(b)). Generally, we choose non-negative tension parameters in [0,1].

As we know, when studying the problem of solid orientation interpolation, Kim et al. [4] presented an iterative algorithm
to generate a unit quaternionB-spline interpolation curve. However, given the original keyframeorientations, the quaternion
B-spline interpolation curve has fixed shape, and cannot adjust the rotation path according to the need. Nielson [5] proposed
a geometric construction scheme of ν-spline quaternion curve which has tension parameters and variable knot spacing, but
the acquisition of the control points for the curve needs time-consuming iteration operations. Su et al. [7] put forward an
algebraic trigonometric blending quaternion interpolation spline curve which does not need iteration, but it cannot regulate
the shape of curve due to the lack of shape parameters. Comparedwith thesemethods, our proposed schemedoes not require
an iterative process to solve the quaternionic nonlinear system of equations to obtain the control points of the spline curve,
which saves time and improves the production efficiency, and at the same time it allows designers to adjust the shape of
curve locally by changing the parameter value, and brings great flexibility in the design of smooth rigid motion.



J. Tan et al. / Journal of Computational and Applied Mathematics 329 (2018) 256–267 263

(a) Tension parameter vector α ≥ 0.

Fig. 2. The impact of the tension parameters on the shape of curve with uniform knot spacing.



264 J. Tan et al. / Journal of Computational and Applied Mathematics 329 (2018) 256–267

(b) Tension parameter vector α ≤ 0.

Fig. 2. (continued)

Fig. 3 shows 3D keyframe animations of cherries with the same keyframe orientations where position curves, for
simplicity, are all straight lines, and orientation curves are unit quaternion B-spline interpolation curve [4], unit quaternion
ν-spline curve [5], algebraic trigonometric blending interpolation (ATBI-) spline unit quaternion curve [7], and our proposed
quintic-polynomial-based unit quaternion interpolation spline curves with different tension parameters, respectively. Here,
Fig. 3(a) shows five key frames of cherries, Fig. 3(b) is the interpolation animation produced by quaternion B-spline curve,
Fig. 3(c) is by quaternion ν-spline curve with uniform knot spacing and tension vector ν = 0, Fig. 3(d) is by ATBI-
spline quaternion curve, and Fig. 3(e)–(j) are built by our parametric C2-continuous quintic-polynomial-based quaternion
interpolation spline curves with uniform knot spacing where tension parameter vector α is [0.35, 0.35, 0.35, 0.35, 0.35],
[0.6, 0.6, 0.6, 0.6, 0.6], [0.1, 0.6, 0, 0.6, 0.1], [1, 1, 1, 1, 1], [2, 2, 2, 2, 2] and [0, 0, 0, 0, 0], respectively. Five key frames in
different poses are drawn in green, and the new produced frames are rendered in red.

One important reason why we build the parametric quintic-polynomial-based quaternion interpolation spline curve is
that the constructed curve possesses continuous curvature and local adjustability. The change of one tension parameter will
affect the adjacent two segments. We usually choose the nonnegative tension parameter. The larger the tension parameter
is, the faster the 3D object rotates near the corresponding knot, and vice versa. Furthermore, our quaternion curve can
approximate the B-spline, ν-spline and ATBI-spline quaternion curves by adjusting the tension parameters.

The high computation efficiency is the other important reason for us to construct the quaternion interpolation spline
curve. Table 1 compares the elapsed time, the number of iterations, the parameter values and the construction type of
B-spline, ν-spline, ATBI-spline unit quaternion curves and ours used in Fig. 3(b), (c), (d) and (f) respectively. Our scheme
runs much faster than Nielson’s scheme of ν-spline quaternion curve, and adds local shape adjustability compared with
Kim’s B-spline and Su’s ATBI-spline unit quaternion curves. Note that the ATBI-spline quaternion curve [7] and our proposed
unit quaternion interpolation spline curve are both definedwith respect to the data points to be interpolated, rather than the
control points, as in the case of B-spline curves [4], and the produced curves pass through the given sequence of orientation
data automatically and accurately, therefore no iterations are needed and there is no approximation error.

Fig. 4 compares the C1-continuous cubic Hermite unit quaternion spline curve introduced in [3] and our C2-continuous
quintic unit quaternion interpolation spline curve with uniform parameter spacing. Although the teapot animations
controlled by the two types of curves seem similar (see Fig. 4(c) and (d)), however, the curves are inherently different (see
Fig. 4(a)). The proposed curve not only guarantees that each key frame orientation will be hit exactly and the tangents of the
generated orientation curve are continuous overmultiple segments, as Kim et al.’s cubic Hermite quaternion spline curve [3]
can do, but also guarantees the second order derivatives and curvature over different segments are continuous.



J. Tan et al. / Journal of Computational and Applied Mathematics 329 (2018) 256–267 265

(a) Key frames of 3D animation.

(b) Rotation controlled by Kim’s B-spline quaternion curve.

(c) Rotation controlled by Nielson’s ν-spline quaternion curve.

(d) Rotation controlled by Su’s ATBI-spline quaternion curve.

(e) Rotation controlled by our proposed curve with α = [0.35, 0.35, 0.35, 0.35, 0.35].

(f) Rotation controlled by our proposed curve with α = [0.6, 0.6, 0.6, 0.6, 0.6].

(g) Rotation controlled by our proposed curve with α = [0.1, 0.6, 0, 0.6, 0.1].

(h) Rotation controlled by our proposed curve with α = [1, 1, 1, 1, 1].

(i) Rotation controlled by our proposed curve with α = [2, 2, 2, 2, 2].

(j) Rotation controlled by our proposed curve with α = [0, 0, 0, 0, 0].

Fig. 3. Rigid motions controlled by different unit quaternion interpolation spline curves.

5. Conclusion

In this paper, we present a new scheme to construct unit quaternion interpolation spline curve which can generate a
smooth orientation curve passing through a given sequence of key-frame poses. The parametric quintic-polynomial-based
unit quaternion interpolation spline curve is constructed and proved to be G2 continuity. Compared with B-spline and
ν-spline unit quaternion interpolation curves, our scheme does not need solve a nonlinear system of equations and can
precisely interpolate a given sequence of data points, which avoids the iteration process and improves the computation
efficiency. Moreover, we introduced the tension parameters {αi}

n
i=1 which can locally modify the shape of the curve. The

change of one parameter will only influence the shape of the two adjacent pieces of curves.



266 J. Tan et al. / Journal of Computational and Applied Mathematics 329 (2018) 256–267

Table 1
Comparison of different unit quaternion interpolation spline curves.

Schemes Number of the
produced frames
(given five key
frames)

Elapsed time
(s)

Number of
iterations

Approximation
error (≤)

Tension
parameter
vector

Construction

Kim’s cubic uniform B-spline
quaternion curve [4]

401 0.360815 13 1e−6 No (fixed
shape)

Algebraic
construction by
explicit formula

17 0.355337 13
Nielson’s cubic ν-spline quaternion
curve (uniform knots) [5]

401 6.744356 27 1e−6 ν = 0 Geometric
construction

17 0.859442 27
Su’s algebraic trigonometric blending
interpolation spline quaternion
curve [7]

401 0.087366 – – No (fixed
shape)

Algebraic
construction by
explicit formula

17 0.086153

Ours 401 0.087444 – – α = 0.6 ∗

[1, 1, 1, 1, 1]
Algebraic
construction by
explicit formula

17 0.085934

(a) Our C2 quintic quaternion spline
(in black) vs. the C1 cubic Hermite
quaternion spline (in yellow) α =

[1, 1, 1, 1, 1].

(b) Key frames of teapot animation.

(c) Teapot motion controlled by cubic Hermite unit quaternion spline.

(d) Teapot motion controlled by our quintic unit quaternion interpolation spline curve.

Fig. 4. Comparison of our quintic quaternion spline and cubic Hermite quaternion spline.

There are some issues we should consider in the future, such as how to choose the tension parameters to achieve an
optimal curve in the sense of curvature/torque energy minimization, and how to construct other forms of parameters to
obtain a more intuitive, flexible and easy control of the orientations.



J. Tan et al. / Journal of Computational and Applied Mathematics 329 (2018) 256–267 267

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61472466 and 11601115.
Special thanks also go to the referees.

References

[1] W.R. Hamilton, On quaternions, Proc. R. Ir. Acad. 3 (1847) 1–16.
[2] K. Shoemake, Animating rotation with quaternion curves, ACM SIGGRAPH Comput. Graph. 19 (3) (1985) 245–254.
[3] M.J. Kim, M.S. Kim, S.Y. Shin, A general construction scheme for unit quaternion curves with simple high order derivatives, in: Proceeding of the 22nd

Annual Conference on Computer Graphics and Interactive Techniques, ACM, 1995, pp. 369–376.
[4] M.J. Kim, M.S. Kim, S.Y. Shin, A C2-continuous B-spline quaternion curve interpolating a given sequence of solid orientations, in: Proceeding of IEEE

Computer Animation, 1995, pp. 72–81.
[5] G.M. Nielson, ν-quaternion splines for the smooth interpolation of orientations, IEEE Trans. Vis. Comput. Graphics 10 (2) (2004) 224–229.
[6] W. Ge, Z. Huang, G. Wang, Interpolating solid orientations with a C2-continuous B-spline quaternion curve, in: 2nd International Conference on

Technologies for E-Learning and Digital Entertainment, Hong Kong, Jun. 11-13, 2007. Book Series: Lecture Notes in Computer Science, Vol. 4469,
pp. 606–615.

[7] B.Y. Su, J. Zhang, G.J. Wang, The solid orientations interpolation in quaternion space using a class of blending interpolation spline, Int. J. Adv. Comput.
Technol. 5 (6) (2013) 335–341.

[8] G.M. Nielson, Smooth interpolation of orientations, in: Models and Techniques in Computer Animation, Springer, Japan, 1993, pp. 75–93.
[9] G.M. Nielson, R.W. Hieland, Animated rotations using quaternions and splines on a 4D sphere, Program. Comput. Softw. 18 (4) (1992) 145–154.

[10] J. Schlag, Using geometric constructions to interpolate orientation with quaternions, in: Graphics Gems II, 1991, pp. 377–380.
[11] J. Lee, S.Y. Shin, General construction of time-domain filters for orientation data, IEEE Trans. Vis. Comput. Graphics 8 (2) (2002) 119–128.
[12] W. Wang, B. Joe, Orientation interpolation in quaternion space using spherical biarcs, in: Proceedings of Graphics Interface. Canada, 1993, pp. 24–32.
[13] M.S. Kim, K.W. Nam, Interpolating solid orientations with circular blending quaternion curves, Comput. Aided Des. 27 (5) (1995) 385–398.
[14] R. Ramamoorthi, A.H. Barr, Fast construction of accurate quaternion splines, in: Proceeding of the 24th Annual Conference on Computer Graphics and

Interactive Techniques, ACM Press/Addison- Wesley Publishing Co., 1997, pp. 287–292.
[15] S.R. Buss, J.P. Fillmore, Spherical averages and applications to spherical splines and interpolation, ACM Trans. Graph. 20 (2) (2001) 95–126.
[16] E.L.G. Awad, E.R. Ebrahim, Exponential control of a rotationalmotion of a rigid body using quaternions, Appl. Math. Comput. 137 (2–3) (2003) 195–207.
[17] M.C. Yu, X.N. Yang, G.Z. Wang, Interpolation of unit quaternion curve with high order continuity, J. Comput. Aided Des. Comput. Graph. 17 (3) (2005)

437–441 (in Chinese).
[18] D. Han, G. Zeng, Y. Wang, A 2-DOF attitude control strategy based on quaternion, Adv. Sci. Lett. 11 (1) (2012) 443–447.
[19] Y. Xing, R.Z. Xu, J.Q. Tan, et al., A class of generalized B-spline quaternion curves, Appl. Math. Comput. 271 (2015) 288–300.

http://refhub.elsevier.com/S0377-0427(17)30348-5/sb1
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb2
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb3
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb3
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb3
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb5
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb7
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb7
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb7
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb8
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb9
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb10
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb11
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb13
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb14
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb14
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb14
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb15
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb16
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb17
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb17
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb17
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb18
http://refhub.elsevier.com/S0377-0427(17)30348-5/sb19

	Smooth orientation interpolation using parametric quintic-polynomial-based quaternion spline curve
	Introduction
	Operations and properties of quaternions
	Unit quaternion interpolation spline curve based on parametric quintic polynomials
	The construction of parametric quintic polynomial-based unit quaternion interpolation spline curve
	The construction of quintic polynomial interpolation spline curves with tension parameters in Euclidean space
	The construction of parametric quintic polynomial-based quaternion interpolation spline curves in S3

	The continuity of the quaternion interpolation spline curve

	Experiments
	Conclusion
	Acknowledgments
	References


