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Two internal friction peaks were observed in a CuAlNiMnTi polycrystalline shape memory alloy
during the martensitic transformation through an incomplete phase transformation method, of which
the high-temperature peak PH is discussed in the present study. It has been found that the PH peak
is discernible only at relatively low frequencies and its maximum corresponds to the inflection point
of the relative dynamic modulus rather than its minimum, i.e., this peak is related to a process
without soft mode effect. An internal friction model is proposed to describe the PH peak based on
the theory of phase nucleation and growth in the thermoelastic martensitic transformation and is
verified by the experimental results. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2757203�

I. INTRODUCTION

A single internal friction �IF� peak is usually observed
during thermoelastic martensitic transformation �MT�, as has
been addressed by a number of authors over the past
decades.1–6 This peak, however, is, in fact, composed of two
peaks7 and they are different from those observed near the
critical temperature in materials during second order or weak
first order phase transformations.8–10 Study on the operative
mechanisms of the two peaks will be certainly helpful for
understanding the thermoelastic MT or even common
MT.11–15 The double-peak phenomenon suggests that the
thermoelastic MT should arise from multiple mechanisms,
and they have to be experimentally separated to allow for
studying and understanding the individual transformation
process. This has been realized through an incomplete phase
transformation method by the present authors. The two IF
peaks found in the CuAlNiMnTi polycrystalline shape
memory alloy �SMA� during nonisothermal measurements
have been demonstrated to be associated with two different
motions of phase interfaces in terms of the dependence of the
peaks on the measuring frequency and the corresponding
changes in the relative dynamic modulus �RDM�. The high-
temperature peak PH appears at a fixed temperature indepen-
dent of frequency and is caused by the normal motion of the
phase interfaces due to the cooperative shear movement of
atoms on the interfaces, while the low-temperature peak PL

occurring around 10 °C below the PH peak is due to the
viscous motion of atoms along the phase interfaces.7 The

mechanism of PL peak has been theoretically analyzed in
another study8 and the present work is focused on the origin
of the PH peak and both the experimental and theoretical
results are presented.

II. EXPERIMENT

A CuAlNiMnTi SMA with the nominal composition of
Cu–12Al–5Ni–2Mn–1Ti �wt %� was chosen as the studying
material in consideration of its promising applications and
relatively high transformation temperatures. The specimens
used for IF measurements have a dimension of 1�4
�70 mm3. Before the IF measurements, the specimens were
homogenized under an argon atmosphere at 850 °C for
60 min followed by water quenching, allowing the high-
temperature phase � to be transformed into a single marten-
site structure, and then subjected to several hundreds of ther-
mal cycles between −20 and 100 °C in a vacuum of
10−5 Torr to reach a sufficient structural stability. The
quenched structure was characterized by x-ray diffraction to
confirm its phase constituent.

The IF of the alloy is characterized by tan �, where � is
the phase difference between the oscillatory stress and
strain,9 and measured simultaneously with the RDM by a
computer-controlled automatic inverted torsion pendulum in
vacuum through forced vibration. The apparatus basically
consists of an inverted torsion pendulum, a temperature pro-
grammer, and a photoelectron transformer. A computer and
an 8087 processor are used to control the whole measure-
ment and allow the data to be processed in real time. The
range of the maximum excitation torsion strain amplitude isa�Electronic mail: fshan@issp.ac.cn
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10−6–10−4 and the resolution in the IF measurements is 1
�10−4. The details of the apparatus and the measuring fun-
damentals were described in Ref. 16.

The incomplete transition measurements were performed
in such a way that an incomplete transformation temperature
Ts was determined in advance according to the complete
transformation temperature range. The specimens were then
heated to 100 °C for holding 60 min and then cooled to the
selected incomplete transformation temperature Ts for hold-
ing 30 min to approach an equilibrium state, allowing only
partial martensitic structure to be produced that was charac-
terized under a metalloscope �MM6, Leitz, Germany� using
polished specimens. The IF and RDM were finally measured
upon heating from this Ts. It should be noted that the reso-
lution of the IF measurements is at least 10−4 and the stabil-
ity of the measuring system is high enough to ensure the
reliability of the results.

III. RESULTS

Studies on CuAlNiMnTi shape memory alloys disclosed
that the alloys underwent a transformation from DO3 to
M18R1 structure when quenched.17,18 This is also demon-
strated by the present study, as shown in Fig. 1, in which the

peaks of 0018, 128̄, 122̄, etc., are the most typical features of
M18R1 martensite.

Figure 2 gives the IF and corresponding RDM against
temperature measured in a complete MT at a cooling rate of
1 °C/min. An IF peak is clearly seen; the maximum of
which corresponds to the minimum of the RDM and in-
creases with decreasing frequency. From the IF peak, it is
known that the MT began at around 50 °C and finished at
around 10 °C, and thus three incomplete transformation tem-
peratures were selected, i.e., 36, 42, and 48 °C, and the IF
behaviors of the alloy were reexamined by the incomplete
transition method upon heating. It is shown that the IF peak
in Fig. 2 is divided into two different peaks, as shown in
Figs. 3�a� and 3�b�. The low-temperature peak PL appearing
at around 64.5 °C is similar to the peak in Fig. 2, that is, its
maximum corresponds to the minimum of the RDM, sug-
gesting that it resulted from a viscous movement of the phase
interfaces associated with soft mode effect. The high-
temperature peak PH appearing at about 78.6 °C is much
sharper and higher than the PL peak and its maximum corre-
sponds to the inflection point of the RDM rather than its
minimum. In comparison with Figs. 3�a� and 3�b�, it is found
that the PH peak is only apparent at relatively low frequen-
cies, e.g., below 0.125 Hz.

As the incomplete temperature decreases or the com-
pleteness of transformation increases, the two peaks tend to
joint together to form only one peak, suggesting that the
double-peak phenomenon can only be observed in the speci-
mens with less martensites, as shown in Fig. 4. Figures 5�a�
and 5�b� give the typical martensite structures when cooled
to the incomplete transformation temperatures of 42 and
36 °C, respectively. There are only fewer and finer marten-
site plates when the incomplete transformation temperature
is relatively high, while they become more and coaser when
the incomplete transformation temperature is reduced.

In order to disclose the dependence of the PH peak on
frequency, a Lorentz-Gauss function was employed to sepa-
rate the two peaks from the IF curves in Fig. 3�a�, as dis-
played in Fig. 6. Obviously, the two peaks show completely
different dependences on frequency. The PL peak decreases
while the PH peak increases as the frequency is reduced.

FIG. 1. X-ray diffraction spectrum of water-quenched CuAlNiMnTi alloy.

FIG. 2. The IF and RDM as functions of temperature
during the complete MT upon cooling at varied
frequencies.
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Making plots using the maximum values of the PH peak
against reciprocal frequency, as shown in Fig. 7, it is seen
that the maximum IF value is inversely proportional to fre-
quency in the present frequency range, being coincident with
the prediction of Belko and Delorme models.10,11 The linear
relation shows that during the MT the nucleation and growth
of new phase are independent of time, or in other words, the
two processes are driven only by temperature. If the nucle-
ation in a MT is also considered to be a migration process of
phase interfaces, the PH peak should be attributed to the
normal motion of the interfaces because of no soft mode
effect arisen in this process.

IV. THE INTERNAL FRICTION THEORY WITHOUT
SOFT MODE EFFECT IN A MT

Since Belko and Delorme models are based on the
nucleation and growth of the new phase in a transformation,
they would be most applicable for analyzing the IF phenom-
ena associated with the first order phase transformation.10–15

However, these models only deal with volume change of the
related phases during the transformation without considering
the time effect that should be closely related to the motion of
phase interfaces. Therefore, the following analysis is to take

the effect of time into account on the nucleation and corre-
lated nonelastic strain, aimed to reveal the dynamic behavior
of phase interfaces during the MT.

During a nonisothermal transformation, the number of
nuclei �N� per unit material volume is a function of tempera-

ture �T�, time �t�, heating/cooling rate �Ṫ�, and applied stress
���, in which only T and t are independent. When �=0 and

Ṫ=const, the time derivative of the nucleus density

N�T , t ,��=N�T , Ṫ ,�� can be simplified to be

Ṅ0 = Ṫ� �N0�T,Ṫ�
�T

�
Ṫ
, �4.1�

where the subscript “0” means �=0. In general, the nucle-

ation rate Ṅ0 is a binary function of T and t �or Ṫ�.
The nucleation rate can also be defined by the following

equations:

Ṅ0 =
N0c

�0
, Ṅ =

Nc

�
, �4.2�

where N0c and Nc are the critical nucleus densities at �=0
and ��0, respectively, and �0 and � are the relaxation times
�nucleation time� at �=0 and ��0, separately.

FIG. 3. The IF and RDM as functions of temperature
upon heating with a heating rate of 1.5 °C/min for the
partial reverse MT temperature Ts=42 °C at frequen-
cies of �a� 0.02–0.045 Hz and �b� 0.125–4.000 Hz.
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If � enhances nucleation, then Nc will increase whereas
� will decrease so that there must be a unique exponent l that
makes the following expression true:

N0c�0
l = Nc�

l = A , �4.3�

where A is a constant. Let the critical volume of a nucleus be
�, and the nonelastic strain in a nucleus induced by � be a,
then the work done by � per unit volume is approximately
equal to a�.9 It is well known that the nucleation time in a
MT meets Arrhenius relation with temperature, that is, �0

=B exp��G /kT�, where k is the Boltzmann constant and �G
is the formation work of a nucleus. Supposing that � only
takes effect on the nucleation time, then from Eq. �4.2�, the
following equations hold:

� = �0 exp�− ��a�

kT
�, Nc = N0c exp� �1 − ���a�

kT
� ,

�4.4�

where � is a constant. By substituting �4.4� into �4.2�, one
gets

�Ṅ =
Nc

�
−

N0c

�0
	

�a�

kT
Ṅ0. �4.5�

Equation �4.5� describes the effect of applied stress � upon
the nucleation rate although the N0c is unknown.

The relation between l and � can be determined by Eq.
�4.4� and when l= �1−�� /�, Eq. �4.4� becomes Eq. �4.3�,
which further demonstrates that the coefficient A in �4.3� is a
constant independent of temperature.

It is seen from �4.4� that both l and � are important
parameters describing the features of the first order transfor-
mation and also reflect the effect of � upon � and Nc, de-
pending on both the characteristics of material and �. When
�→0, �→�0 and Nc→N0c; thus l→ l0 and �→�0, that is,
they become the intrinsic parameters of material.

As is known, the kinetic equation of a first order trans-
formation can be described as

df

dt
= 	Ṅ , �4.6�

where f is the transformed volume fraction and 	 the average
volume of martensite plates formed during t=0 and a given
time t. From �4.5� and �4.6�, the changes in the volume frac-
tion of the new phase, �f , induced by � are given by

�f = f − f0 = 	�N = 	
 �a�

kT
Ṅ0dt . �4.7�

In a nonisothermal transformation, if the above integra-
tion is conducted in the time range 0� t, corresponding to
the temperature range from the beginning of the transforma-
tion to a given temperature T, the result represents the total
volume change induced by � within 0� t. It follows that the
total volume change depends not only on time but also on
continuous change of temperature. Nevertheless, the non-
elastic strain at T induced by � should be only related to the
volume change, which actually includes not only the change
due to the nucleation within the time interval but also the
continuing growth of the grains formed before T. Accord-
ingly, the nonelastic strain at T should be related to the vol-
ume change arisen at a very short time interval, i.e., from t
−�0 to t.

In principle, both �0 and Ṅ0 are time related variables
distributed over the time interval from t−�0 to t. In fact, the
time increment �0 in the phase transformation can be treated
as a most probable time independent of time change or the

mean relaxation time. However, Ṅ0 must be dependent on
time because it is impossible for the stable critical nuclei to
instantaneously form at T without sufficient structure organi-
zation or in other words, a pregnant time �0 is needed before
the nuclei become thermodynamically stable. Although the
formation of these quasistable nuclei makes the chemical
driving force decrease, it makes the elastic strain energy and
thus the forming work of the nuclei decrease, too. From this
analysis, a function describing the nucleation rate is intro-
duced as follows:

FIG. 4. The effect of MT temperatures
on the IF peaks upon heating at the
frequency of 0.015 Hz and the heating
rate of 1 °C/min.
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d

dt�
N0�T,t� − t + �0� =

N0c�T,t� − t + �0�
�0

, �4.8�

where t� is a time variable needed for the nucleation at t
−�0
 t�
 t. It is known from the above analysis that when
t�
 t−�0, N0c�T , t�− t+�0�=0, and only when t�= t, the nuclei

are stable and Ṅ0�T , t�= Ṅ0�T ,�0�=N0c�T ,�0� /�0, which rep-
resents the real nucleation rate at T. In comparison with the

two expressions for nucleation rate, it is clear that Ṅ0�T , t� is
the variation of total nucleus density with time at T in 0� t,
while �d /dt��N0�T , t�− t+�0� denotes the change of critical
nucleus density with time at T in t−�0
 t�
 t.

Replacing the Ṅ0 of Eq. �4.7� by �4.8�, we obtain

�f =
	

�0



t−�0

t �a�

kT
N0c�T,t� − t + �0�dt�. �4.9�

In Eq. �4.9�, a can be considered to be the mean nonelastic
strain of the critical nuclei induced during t−�0� t� by �,
and �	� /kT and ��	� /kT�N0c to be the contributions of the
work done by � on a single nucleus and N0c nuclei to �N,

respectively, where the mean value of �N is taken in t−�0


 t�
 t.
If the applied alternative load in the IF measurements

takes the form �=�0 exp�i�t�, where �0 is the stress ampli-
tude and � is the circular frequency of vibration, then the
nonelastic strain a can be expressed as

a��t� = a1��t� − ia2��t� . �4.10�

Here a complex form is used to characterize the nonelastic
strain related to frequency because it is not only caused by
thermally driven phase transformation but also by applied
force. Therefore, there should be a constant term independent
of � in the real part a1��t�, representing the inherent non-
elastic strain caused by the phase transformation itself. In-
serting �=�0 exp�i�t� and �4.10� into �4.9�, integrating the
two integrands by parts, and noting that if no abrupt change
occurs when the formation of the quasistable nuclei begins at
t−�0 there exist left boundary conditions at t−�0
 t�
 t, i.e.,

�N0c
�n��T,t� − t + �0��t�=t−�0

= N0c
�n��T,0� = 0, n = 0,1,2, . . . .

�4.11�

We get the increment of new phase volume fraction induced
by the stress

�f =
	��0

kT�0

exp�i�t�
�

�
n=0

� � �− 1�n

�2n+1 �N0c�T,�0�a1���0���2n+1�

−
�− 1�n

�2n �N0c�T,�0�a2���0���2n��
− i

n=0

� � �− 1�n

�2n �N0c�T,�0�a1���0���2n�

+
�− 1�n

�2n+1 �N0c�T,�0�a2���0���2n+1��� , �4.12�

where all superscripts in parentheses represent the derivative
values at t�= t.

The physical significance of Eq. �4.12� is giving a gen-
eral relationship among the phase volume fraction, the intrin-
sic physical parameters of a material, and applied stress dur-
ing a first order phase transformation. If the change of N0c

and a with time is known, �f and correlated IF can be easily
obtained. The detailed deduction of the above equations can
be seen in Ref. 8.

In the ideal condition, N0c�T , t�− t+�0� is a constant in-
dependent of time. However, N0c�T , t�− t+�0� is time depen-
dent at the very beginning of a practical nucleation process,
i.e., it rapidly increases up to a constant at a very short time
t�= t−�0 and thereafter keeps unchanged in t−�0
 t�
 t. It is
noted that the quasistable critical nuclei formed in t−�0


 t�
 t have different forming energies due to the differ-
ences in the crystalline orientation and the microstructure at
the interfaces among the nuclei. By contrast, the change of
nonelastic strain a with time is much slower than that of
N0c�T , t�− t+�0� because the occurrence of it is more depen-
dent on time. Figures 8�a� and 8�b� schematically display the
changes of N0c and a1���t�− t+�0�� with t�− t+�0, respec-
tively, in which curves �1�, �2�, and �3� represent the time

FIG. 5. The typical martensite structures at the incomplete transformation
temperatures of �a� 42 °C and �b� 36 °C.
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independent �ideal�, less time independent, and time depen-
dent conditions, respectively, and curve �2� in Fig. 8�a� and
curve �3� in Fig. 8�b� are the cases mentioned above.

If a phase transformation does not cause soft mode effect
like the present PH peak, the real part in Eq. �4.12� is equal
to zero, and thus through a simple calculation we get

�N0c�T,�0�a1���0���n� = ��N0c�T,�0�a2���0���n−1�, n

= 1,2,3, . . . . �4.13�

Accordingly, only the zero derivative term N0c�T ,�0�a1���0�
is retained in the imaginary part of �4.12�, i.e.,

�f = − i
	��

kT

N0c�T,�0�a1���0�
��0

. �4.14�

Although Eq. �4.14� has a similar form to Belko and
Delorme models,10,11 the parameters have completely differ-
ent meanings, e.g., the N0c�T ,�0� is a function of �0 depen-
dent upon temperature, and a1���0� is a function of ��0

rather than a constant.

According to the aforementioned analysis and curve �2�
in Fig. 8�a�, the following right boundary conditions exist:

�N0c
�n��T,t� − t + �0��t�=t = N0c

�n��T,�0� = 0, n = 1,2,3, . . . .

�4.15�

Based on these conditions Eq. �4.13� becomes

a1
�n����0� = �a2

�n−1����0�, n = 1,2,3, . . . . �4.16�

Obviously, when a2���0�=0, a1
�1����0�=0, thus a1���0�

=const.
Since both a1 and a2 are functions of ��0, it is difficult

to obtain the precisely analytical form of the functions. To
solve this problem, the Voigt solid model was employed to
approximately describe the behavior of phase interfaces. As
is known, the nonelastic strain in a single nucleus under a
constant stress can be written as �t�− t+�0�=amax�1
−exp��t�− t+�0� /����, where t�− t+�0 is the time used for the
formation of quasistable nuclei during 0��0 and �� is a time
factor used to meet the need of dimensionless exponential.
When t�= t, ��0�=amax�1−exp��0 /���� where �0 is the relax-
ation time of nucleation, being the characteristics of a mate-
rial.

In terms of the fundamentals of IF, �� roughly equals
1 /�. Inserting ��=1/� into ��0�=amax�1−exp��0 /���� we
get an approximate expression of the real part a1���0� of the
nonelastic strain

a1���0� 	 amax�1 − exp�− ��0�� , �4.17�

which is just case shown by curve �3� in Fig. 8�b�. The
imaginary part of the nonelastic strain can be directly ob-
tained from �4.16�, i.e.,

a2���0� 	 amax exp�− ��0� . �4.18�

Comparing ��0� with a1���0� and noting the meanings
of the constants in Voigt model, we get amax=�0 /Gi, and
�i=Gi /�, where �0 is the stress amplitude, and Gi and �i are
the shear modulus and viscosity coefficient of phase inter-
faces, respectively. From �4.17�, when �→�, a1���0�
→amax, so that amax is intrinsic characteristics of material,

FIG. 6. The net PL and PH peaks as functions of temperature upon heating
after the backgrounds were subtracted for the partial reverse MT tempera-
ture Ts=42 °C.

FIG. 7. The height of PH peak as a function of measuring frequency, in
which the open square and the dot line are the measured and fitted results,
respectively.

FIG. 8. Schematic representation of the critical nucleus density N0c �a� and
the real part a1 of mean nonelastic strain �b� as functions of t�− t+�0, where
�1�, �2�, and �3� represent the time independent �ideal�, roughly time inde-
pendent, and time dependent conditions, respectively.
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i.e., it is the maximum nonelastic strain in a single nucleus
induced by phase transformation itself. For a given material,
amax is a constant and thus the following relations hold:

Gi � �0, �i � �0/� . �4.19�

It is interesting that the dynamic properties Gi and �i of
phase interfaces �rather than material itself� are closely re-
lated to applied stress �0 or �. When � is constant, both Gi

and �i are proportional to �0. Based on the parallel relation
of spring with dashpot in the Voigt model, it is certain that �0

has no influence over the viscoelasticity of phase interfaces.
When �0 is fixed, the following conclusions can be drawn.

�1� When �→0, �i→�. From �4.17� and �4.18�, a1���0�
→0 and a2���0�→amax, showing that the phase inter-
face is viscous.

�2� When �→�, �i→0, and thus a1���0�→amax, a2���0�
→0, showing that the phase interface is elastic.

Substituting �4.17� into �4.14�, we get the nonelastic
strain of material

� = amax�f = − i
	�amax

2 N0c�T,�0��
kT

�1 − exp�− ��0��
��0

,

�4.20�

and substituting the elastic strain �=JU� and �4.20� into the
total strain =�+�, we can obtain the storage and loss
compliances as well as IF,

J1 = JU, J2 =
�J�1 − exp�− ��0��

��0
, �4.21�

tan � =
J2

J1
=

��1 − exp�− ��0��
��0

, �4.22�

where JU is the unrelaxed compliance. The relaxed compli-
ance and relaxation strength are

�J =
	�amax

2 N0c�T,�0�
kT

and � =
�J

JU
, �4.23�

respectively. The other useful parameters included in �4.21�
and �4.22� can be derived from �4.1�–�4.3� and �4.23�, i.e.,

�0 = A1/�1+l��Ṫ
dN0�T�

dT
�−1/�1+l�

, �4.24�

N̄0c�T,�0� =
A

�0
l = A1/�1+l��Ṫ

dN0�T�
dT

�l/�1+l�

, �4.25�

�J =
A	�amax

2

kT

1

�0
l = A1/�1+l�	�amax

2

kT
�Ṫ

dN0�T�
dT

�l/�1+l�

,

�4.26�

where N0�T , Ṫ�=N0�T� is independent of time. Replacing the
�0 and �J in �4.21� with �4.24� and �4.26�, respectively, we
finally obtain the following expression describing the first
order phase transformation without soft mode effect:

J2 =
	�amax

2

kT

dN0�T�
dT

Ṫ

�

��1 − exp�− A1/�1+l���Ṫ
dN0�T�

dT
�−1/�1+l��� . �4.27�

Since the relaxation time only has a very narrow distribution
during the phase transformation in the condition of no soft
mode effect, it is reasonable to make l	1 in the equation.

As mentioned above, although the normal motion of
phase interfaces does not cause soft mode effect during
phase transformation, a physical nonlinear effect can be ex-
pected in the IF, as shown by the exponent terms in �4.27�.
This nonlinear effect is dependent on the change of nonelas-
tic strain a���0� with time induced by �, as shown by curve
�3� in Fig. 8�b�, and thus what Eq. �4.27� describes is a re-
laxation peak caused by both the normal motion of phase
interfaces irrelevant to soft mode effect and the relaxation
process of nonelastic strain. Figure 9 shows the normalized
theoretical curve of J2 as a function of ��0 and that obtained
by Belko and Delorme models. It is seen from the figure that
the two curves are separated from each other only when
��0�4

From Eq. �4.27�, the following conclusions can also be
drawn.

�1� When ��0 is relatively great, i.e., � is high while Ṫ is
low, e.g., ��0�4, we have

J2 	
�J

��0
=

	�amax
2

kT

dN0�T�
dT

Ṫ

�
, �4.28�

which is in agreement with Belko and Delorme models in the
case as shown in Refs. 10 and 11.
�2� The smaller the ��0 is, i.e., � is lower while Ṫ is higher,

e.g., ��0
4, the more evident the nonlinear effect of J2

is.
�3� When 0
���, dJ2 /d�=�J��1+��0�exp�−��0�

−1� /�2�0�0, and thus J2 is a monotonous decaying

FIG. 9. The normalized theoretical curve of J2 by the present model �solid
line� and that by Belko and Delorme’ models �dash line� as functions of ��0.
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function of �. Specially, when �→0, J2→�J �the maxi-

mum value of J2� and only when Ṫ→�, J2→�, as
shown by Eqs. �4.24� and �4.26�.

�4� When 0
�0��, dJ2 /d�0=�J��1+ l+��0�exp�−��0�
− �1+ l�� /��0

2�0, showing that J2 is also a monotonous

decaying function of �0 and when �0→0 �i.e., Ṫ→��,
J2→�.

�5� It is clear from Eq. �4.24� and the above conclusion �4�
that the larger the nucleation rate dN0�T� /dT, the smaller
the �0 and the larger the J2. As a result, the J2 peak just
corresponds to the maximum of dN0�T� /dT, i.e., to the
inflection point of N0�T� or the fastest volume transition
rate. If there is no viscous movement between the old
and new phases, the volume transition rate should be
proportional to the modulus of the mixture of the two
phases. It follows that the J2 peak corresponds to the
inflection point of the modulus curve, being consistent
with the experimental results, as shown in Fig. 3�a�.

�6� From Eq. �4.27� and the above conclusion �4�, the tem-
perature TpH of J2 peak is independent of �, being in
agreement with the experimental results, as seen in Fig.
3�a�.

V. DISCUSSION

According to the general law of thermoelastic MT, the
nucleation and growth of the new phase are accompanied
with interaction of elastic stress fields. If the growth direc-
tion is perpendicular to the interface, i.e., the normal growth,
it is thermodynamically irreversible and only causes the vol-
ume change of each phase without soft mode effect. It fol-
lows that the IF resulted from the motion should be propor-
tional to the volume change in a vibration cycle and has a
linear relation with heating/cooling rate or reciprocal of fre-
quency, as described by Belko and Delorme models. The
results shown in Figs. 3�a� and 7 demonstrate that the PH

peak is consistent with these features.
Different from Belko and Delorme models, the present

model takes account of the dependences of the nucleation
and nonelastic strain on time. It is known that MT meets the
Arrhenius relation because the nucleation in the MT is ther-
mally activated, and thus Eq. �4.12� is suitable for describing
a first order transformation because the nucleus density and
relaxation time follow Arrhenius relation. For the normal
movement of interfaces during the MT, the nucleus density is
mainly dependent on temperature and independent of time
due to the interface irreversibility. Compared with the rapid
change of nucleus density with time, however, the nonelastic
strain produced around the martensite plates is necessarily
time dependent because the release of nonelastic stress is
time relevant. Equation �4.27� was proposed just on this
analysis and is only a special case irrelevant to soft mode
effect. The physical nonlinear effect of IF involved in the
equation is different from the traditional nonlinear effect that
resulted from the soft mode effect rather than the time de-
pendence of nonelastic strain. The predictions from Eq.
�4.27� can be well proved by the results in Fig. 3�a�, i.e., the

PH peak corresponds to the inflection of RDM curves and the
peak temperature is independent of the measuring frequency.

As mentioned above, when �→0, J2→�J, i.e., J2 tends
to a finite value, different from the traditional IF theories of
first order transformation. For instance, Belko and Delorme
models show that the transitory IF is proportional to the
transformed volume fraction in a vibration cycle. This nec-
essarily leads to a conclusion that J2 tends to an infinity
when �→0, implying that the sample will go through an
infinitely broad temperature range in a cycle, which is obvi-
ously unmeaningful.

For the M-type dynamic response functions, the storage
and loss modulus M1 and M2 can be obtained by substituting
the common expressions of M1=1/J1�1+tan2 ��, M2

=1/J2�1+cot2 �� into Eqs. �4.21� and �4.22�, i.e.,

M1 =
JU���0�2

JU
2 ���0�2 + �J2�1 − exp�− ��0��2 , �5.1�

M2 =
�J���0��1 − exp�− ��0��

JU
2 ���0�2 + �J2�1 − exp�− ��0��2 . �5.2�

From Eqs. �4.21�, �5.1�, and �5.2�, the following two group
data of dynamic response functions can be obtained at the
extreme conditions of �:

J1�0� = J1��� = JU, J2�0� = �J, J2��� = 0, �5.3�

M1�0� = JU/�JU
2 + �J2� 	 1/JU = MU��JU � �J�,

M1��� = 1/JU = MU,

�5.4�
M2�0� = �J/�JU

2 + �J2� 	 �J/JU
2 = �M��JU � �J�,

M2��� = 0.

These data clearly show that the J-type and M-type re-
sponse functions have precise correspondence at both �
→0 and �→�, and moreover, there does not exist soft mode
effect according to J1�0�=J1���=JU, or M1�0�	M1���
=MU. This is in good agreement with the present experimen-
tal results, as shown in Fig. 10.

FIG. 10. Comparison of the minima of RDM as functions of measuring
frequency between the partial MT temperature Ts=48 °C and Ts=42 °C.
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However, if the nonlinear parts in the square bracket of
�4.21� and �4.22� are neglected, like the situation in Belko
and Delorme models, the following relations are yielded that
are completely different from the results yielded by �5.3� and
�5.4�, i.e.,

J1�0� = J1��� = JU, J2�0� = �, J2��� = 0, �5.5�

M1�0� = 0, M1��� = 1/JU = MU, M2�0� = M2��� = 0.

�5.6�

Equations �5.5� and �5.6� indicate that Belko and De-
lorme models would be incapable of describing the first or-
der transformation irrelevant to soft mode effect particularly
at low frequencies because the contradictory conclusions
may be drawn from the response functions. Firstly, the val-
ues J1�0�=J1���=JU in �5.5� show that the soft mode will
not appear, whereas the values M1�0�=0 and M1���=MU in
�5.6� just show the opposite. Secondly, the value M1�0�=0
suggests that the material will flow like a liquid when �

→0, which is, however, impossible for a solid, as demon-
strated by Fig. 10, in which each RDM curve reaches a stable
nonzero value as �→0. Finally, when �→0, J2�0�=� and
M2�0�=0, suggesting that the IF and modulus tend to change
towards the same direction. This is contrary to the real case.

VI. CONCLUSIONS

The high-temperature IF peak PH, found in the MT of a
CuAlNiMnTi polycrystalline shape memory alloy, was ex-
perimentally and theoretically studied in the present study.
An IF model related to the PH peak was derived based on the
nucleation and growth of the new phase during the MT. Dif-
ferent from Belko and Delorme models, the present model
takes account of the dependences of the nucleation and mean
nonelastic strain upon time so that the model would be suit-
able for any first order transformation and the IF irrelevant to
soft mode effect is only a special case. Furthermore, the fol-
lowing conclusions can be summarized.

�1� The PH peak always corresponds to the inflection point
of RDM curves in temperature spectra, or in other
words, the peak is only related to the phase transforma-
tion rate.

�2� The height of PH peak decreases with increasing fre-
quency in frequency spectra. When the frequency is
relatively high, generally ��0�4, the peak roughly
meets the linear relation shown by Belko and Delorme
models.

�3� There exist nonlinear relations between IF and � and

between IF and Ṫ particularly at low frequencies. This
nonlinear effect is physically different from that in tra-
ditional IF theories, in which the IF has also nonlinear
relations with frequency and heating/cooling rate.

�4� The PH peak is such a phase transformation peak that
originates from the normal motion of phase interfaces
without soft mode effect as well as the relaxation pro-
cess of nonelastic strain.
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