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Abstract As biological implants, porous titanium with ad-

justable mechanical properties can solve the stress-shielding

effect. In this paper, porous titanium was prepared by the

powder metallurgy method, where urea powders as the sec-

ond phase were removed by heat treatment. Pore morphology

(such as pore size and character) was controlled by the char-

acter of urea powders. The dynamic Young’s moduli of such

porous titanium with different morphology was measured by

the electromagnetic acoustic resonance method. From the

semi-log plots of Young’s modulus versus the porosity, it

was found that with increased porosity this modulus firstly

decreases linearly, then decreases rapidly and goes to zero

at certain porosity. However, the Young’s modulus was in-

dependent of pore size. The relationship between Young’s

modulus and the porosity was explained by a parallel model

based on the Minimum Solid Area method. The value of lin-

ear slop ‘b’ and the percolation limit ‘PC ’ were used for

predicting the trend of Young’s modulus varied with the

porosity and pore size. So porous titanium with appropri-

ate Young’s modulus can be chosen as a candidate for bone

substitutes.

Keywords Porous titanium · Powder metallurgy · Dynamic

Young’s modulus · Bone implant · Minimum Solid Area

method

C. Li (�) · Z. Zhu
Key Laboratory of Materials Physics, Institute of Solid State
Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031,
P. R. China
e-mail: cfli@issp.ac.cn

1. Introduction

Titanium is welcome as biological implants, because of its

high corrosion resistance and good biocompatibility [1].

But great mechanical mismatch between solid titanium

and bones will cause stress-shielding effect [2, 3], which

retards its use as bone substitute. If pores are introduced, the

mechanical properties of porous titanium can be adjusted

by its porosity [4, 5]. Porous titanium with the porosity in

a wide range is prepared by the powder metallurgy method

[6], where pores are generated after fugitive space-holders as

the second phase are removed during heat treatment. Many

kinds of powders are selected as space-holders, for example,

stearin [7], urea [8], ammonium hydrogen carbonate [9, 10],

polymer granules [11], etc.

Before applying porous titanium in surgery, the rela-

tion between mechanical properties and pore morphology

must be clarified. Young’s modulus is an important param-

eter describing the mechanical properties of materials. For

porous solids, pore always acts as an internal notch [12]

and the tensile stress-strain curve is schematically shown

in Fig. 1 [13, 14], where E1 and E2 are called dynamic

Young’s modulus and apparent Young’ modulus, respec-

tively. The deviation at Point N is due to the localized yield-

ing at the pores. Using tensile testing the dynamic Young’

modulus E1 is difficult to determined and if the deviation

from linearity starts very early, the modulus E2 is actu-

ally measured. Ultrasonic or sonic measurement is used to

measure E1, due to the small strain caused in the sample

[15–17]. In this paper, firstly porous titanium with

different pore morphology was prepared by the powder met-

allurgy method and then the dynamic Young’s modulus of

such porous titanium was measured by the electromagnetic

acoustic resonance (EMAR) method [18]. The relationship
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Fig. 1 Schematic diagram of
the tensile stress-strain curve for
a notched sample

between dynamic Young’s modulus and their morphology

was also studied in detail.

2. Experiments

2.1. Preparation of samples

Commercial pure Titanium (−300 mesh, purity >98.6%)

was used. Urea powders (analytical pure) were selected as

space-holders and machined to different size: −80 + 100

mesh (series A), and +60 mesh (series B). After titanium

and urea powders were well mixed, the mixture was com-

pacted in a stainless-steel die. The pressure increased slowly

to 150 MPa for powders arranged and settled and held for

one minute to gain green bodies with saturated distributions

of densities. The procedure of heat treatment in a flow of

ultra pure argon air was performed in two steps: the first was

heating at 200◦C for 2 h to remove urea powders and the

second was at 1200◦C for 4 h to densify the body. Through

changing the weight ratio of titanium to urea powders, sam-

ples with different porosity were gained. While urea powders

of series A or B were used, samples with different pore size

were prepared. The size of all samples was cut to 1.5–3.0 mm

× 3.0 mm × 70 mm by an electrosparking machine. The mi-

crostructure of porous titanium after polished on the diamond

paste with grits size descending from 50 μm to final polishing

at 5 μm was characterized by Scanning Electric Morphology

(SEM).

2.2. Test of Dynamic Young’s modulus

In the EMAR method, the sample is excitated to flexural vi-

brations by the Lorentz force from the alternating signals.

There will be resonance frequency spectroscopy while vary-

ing excitated signals [19]. If hanging the sample on the nodal

points at the distance from the free end of 0.224l and 0.776l
where l is the whole length, the fundamental resonance mode

was measured with the frequency named fr [20]. On the base

of the motion of the flexural vibration, the dynamic Young’s

modulus (E) is calculated from the formula [21] as:

E = 0.94646 ×
(

l

a

)3

× f 2
r ×

(
W

b

)
× T × 10−6 (N/mm2) (1)

where a, b and W is the thickness, width and weight of the

sample, respectively. In Eq. (1), ‘T’ is a correction factor and

taken as ‘1’.

3. Results and discussion

3.1. Morphological characterizations

The apparent density is calculated as the weight of a sample

over the volume. The porosity is one minus the relative den-

sity. The pore size is determined as the average of sizes of

10 pores. Microstructures of samples with different porosity

and pore size are characterized by SEM and shown in Fig. 2.

While mixing, urea powders are always covered by ti-

tanium powders forming composed cells named Cell A as

simplified in Fig. 3(A). During compacting in the die, ductile

Fig. 2 SEM imagine of the porous titanium. (a) Sample of series A
with porosity: 55.3% and pore size: 224 μm. (b) Sample of series B
with porosity: 53.6% and pore size: 410 μm
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Fig. 3 Schematic combination
of pores in porous bodies is
shown as (C). (A) Urea powders
(white) are always covered by
titanium powders (dark), which
forms composed cells named
Cell A. (B) A stack of titanium
powders is named Cell B

Fig. 4 Picture of microstructures in one pore of ‘Type 1’ is taken by
SEM. Its rough wall is composed by pores of ‘Type 2’

urea powders are distorted in all directions. Titanium pow-

ders are also a little distorted and the contact area of them

increases to form stable necks. After the urea powder de-

composed during heat treatment, Cell A without collapse is

considered as a hollow cell whose size is changed by the size

of urea powder. As shown in Fig. 4, the bigger pore gener-

ated from decomposing of urea powder is named ‘type 1’

and interconnected with other ones. On its pore wall there

are pores named ‘Type 2’, which are originated from irregu-

lar stacking of titanium powders just as Cell B in Fig. 3(B)

and dispersed or grown larger in the followed procedure of

compacting and sintering. Irregular pores of both type 1 and

type 2 will become round driven by the decreased free energy

of the whole system [22] during heat treatment.

3.2. Relation between Young’s modulus and porosity

While changing the weight ratio of titanium to urea powders,

the porosity of samples is controlled in a wide range (33–

70%) as shown in Fig. 5. From the semi-log plots of Young’s

modulus (E) versus the porosity (P), it was found that with

increased porosity the value of E firstly decreases linearly,

then decreases rapidly and goes to zero at certain porosity.

For modeling the elastic properties of porous solids [4,

14, 23–26], there is one approach based on pertinent cross-

sectional geometries named the Minimum Solid Area (MSA)

method [27–33]. It assumes the minimum solid area normal

to the stress should dominate the transmission of stress (i.e.

strain, fracture toughness or energy, or strength) through a

Fig. 5 Semi-log plots of data of relative Young’s modulus (E/E0)
versus the porosity (P) of samples of series A (�) and series B
(�). The value of ‘b’ is based on Eq. (2): E/E0 = exp (−bP). Solid
line 1 (—) with b = 3, for samples with Cell A, i.e. spherical
pores in cubic stacking; solid line 2 (—) with b = 5, for samples
with Cell B, i.e. solid spheres in cubic stacking. Solid line 3 (—)
is given by the parallel model. Both break lines are given by ten times
iterates of the Levenberg-Marquardt method. (a) For samples of series
A, ‘b’ in dash line (- - - -) is 3.763 ± 0.232. (b) For samples of series B,
‘b’ in dot line (. . . .) is: 3.602 ± 0.182

body and be related to the mechanical properties of porous

bodies [32, 33]. In this method, porous bodies are idealized

reasonably for packing solid spheres or bubbles in some ar-

rays, e.g. cubic, orthorhombic, rhombic and so on. The elastic

properties of porous bodies are derived using these ideal-

ized structures to calculate actual solid cross-sectional areas.

Minimum solid areas for stacked particles are the bond ar-

eas between them; for stacked bubbles are the minimal web

cross-sectional areas between pores. The tendency of relative

Young’s modulus varied with porosity (P) of samples can be

shown by

E

E0

= e−bP (2)

where E0 is the Young’s modulus of bulk metal (for tita-

nium, E0 is 105 Gpa [1]) and the value ‘b’ is varied with the

idealized packing geometry in bodies [31–33].

The basic characteristic of the MSA model [33] is that

on a plot of the log of the property versus the value of P,

the minimum solid area (and hence the pertinent property
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Fig. 6 Samples with Cell A and
Cell B in a parallel model are
stacking along the stress
direction

value of interest) decreases first, approximately, though not

exactly, along straight lines on the semi-log plot. Beyond

this approximately linear region the property of interest starts

decreasing more rapidly, then nearly precipitously, going to

zero at a critical porosity (PC ). It is obviously that the semi-

log plots of Young’s modulus versus the porosity as shown

in Fig. 5 have these features of the MSA model. Here the

value of ‘b’ and ‘PC ’ will be used for predicting the trends of

Young’s modulus varied with the porosity in the following

parts.

Because of the insignificant dependence of elastic proper-

ties on microstructure stress concentration [30, 34, 35], the

apporximation of the geometry of porous titanium can be

justified to a nominal special-pores system. Powders in ei-

ther Cell A or Cell B shown in Fig. 3 are idealized to be of

spherical shapes. After the urea powder is removed during

heat-treatment, Cell A is treated as a hollow sphere. Spheres

in both samples with Cell A and those with Cell B are sup-

posed to be arranged in a cubic array. The value ‘b’ in Eq.

(2) for samples with Cell A, i.e. with spherical pores in cubic

stacking and for samples with Cell B, i.e. with solid spheres

in cubic stacking, is 3 and 5; the relation based on Eq. (2) is

shown as solid line 1 and solid line 2 in Fig. 5, respectively.

Almost all experimental data lie between these two lines.

Modeling porous titanium with two types of pores, samples

with Cell A and Cell B are stacked together parallel to the

applied stress as shown in Fig. 6 and flexural stresses will

be distributed onto the minimum solid areas of two parts in

a certain proportion. For the dynamic Young’s modulus, this

combination is named a parallel model giving the formula

[32] as

E

E0

= VA E A + VB EB (3)

where VA, VB , EA and EB are the volume fraction, the rela-

tive elastic property of samples with Cell A and with Cell B,

respectively. The solid line 3 in Fig. 5 is given by the parallel

model based on Eq. (3) with VA of 50% and VB of 50%.

The break line given by ten times iterates of the Levenberg-

Marquardt method shows the actual tendency of experimen-

tal data. It is obviously that solid line 3 and break line have

shown almost the same tendency for Young’s modulus varied

with the porosity. But the fluctuations in the value of Young’s

modulus are observed. It is believed that the fluctuations are

caused by an inhomogeneous material distribution. Porous

titanium is a statistical system and therefore a certain spatial

variation in porosity cannot be avoided. This inhomogenous

distribution in porous bodies give rise to changes in the poros-

ity of any part of the sample, and correspondingly, lead to a

change in the values of VA and VB of Eq. (3), thus, the fluc-

tuations of Young’s modulus against porosity are observed.

In a further way to investigate the curve fitting by Eq. (2)

with different values of ‘b’, the deviations (DE) between the

experiment data and calculated values, the mean deviation

(MD) and the standard deviation (SD) are considered and

given as:

DE = Eexp − Ecal, (4)

ME = 1

n

∑
n

√
(DE)2, (5)

SD = 1

n

∑
n

√
(DE − ME)2, (6)

where Eexp is the experimental relative elastic property and

Ecal is the calculated data. The values of MD and SD for

samples with different pore structures, i.e. with the different

value of ‘b’ are given in Table 1. It can be concluded that the

parallel model can give a good prediction of dynamic Young’s

modulus of porous titanium with two types of pores.

It has long been known that while some types of poros-

ity in bodies inherently can extend to P values of nearly 1

(the ultimate limit), many types of porosity cannot exist in

solid bodies above lower values of P. For idealized samples

Table 1 Mean deviation and
standard deviation for samples
with different pore structures,
i.e. with different values of ‘b’

Given by Given by

the parallel Levenberg-Marquardt

b 3 5 model method

Samples of series A MD, (×10−2) 7.14 5.36 4.23 3.91

SD, (×10−2) 3.91 6.36 3.43 3.28

Samples of series B MD, (×10−2) 6.02 6.77 3.74 3.76

SD, (×10−2) 3.84 6.71 3.30 2.42
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Fig. 7 Linear plots are for relative Young’s modulus versus the value
of 1 − P/PC , where P/PC is named as normalized porosity and PC is the
percolation limit. For samples of series A (�) and series B (�), PC is
0.745 ± 0.0142 and 0.744 ± 0.0240, respectively. The experiment data
is fit by the power law model, E/E0 = (1 − P/PC )n : for samples of series
A and series B shown by solid Line (—) with n = 1.646 ± 0.0613 and
dash Line (- - - -) with n = 1.700 ± 0.0692, respectively

with Cell A, i.e. with spherical pores in cubic stacking, the

percolation limit, PC , is calculated as 1, above which the min-

imum web areas between pores goes to zero; for idealized

samples with Cell B, i.e. with solid spheres in cubic stacking,

it is calculated as 0.524, above which the bond area between

pores goes to zero. In our work, the average value of PC is

got by extrapolating data trends as shown in Fig. 5. For sam-

ples of series A and B, it is determined as 0.745 ± 0.0142

and 0.744 ± 0.0240, respectively. It is found that the perco-

lation limit for porous titanium with two types of pores is

almost equal to the value for samples with the combination

of two idealized porosities, which is determined by Eq. (3)

of the parallel model. Then, using the normalized porosity

[36], P/PC , the relative Young’s modulus is reconsidered by

the power law model of the form: E/E0 = (1 − P/PC )n as

shown in Fig. 7. The average fitting value n is 1.646 ± 0.0613

and 1.700 ± 0.0692 for samples of series A and B, respec-

tively. It is concluded that the power law model is valid in

the full P range because all plots have gone through the two

diagonal end points of 0.0 (below this value the minimum

solid area of porous bodies become zero) and 1.0 (at this

value there are no pores in metal bodies).

On the basis of the MSA method, Gibson and Ashby

[37] also gave a detailed theory on solid foam. An

formula for predicting Young’s Modulus of samples with

open-porosity is given as:

E

E0

= k(1 − P)2 (7)

where k is a constant and taken as ‘1’. Eq. (7) is valid on the

limit of low relative density (<0.15).

Fig. 8 The relation between relative Young’s modulus and porosity of
samples of series A (�) and series B (�) are fit by all formulas. The
solid line (—) and scatter points (+) are showing the formula given
by the Gibson and Ashby’s model and CSM model, respectively. The
parallel model was shown by dot line (. . . .) with b = 3.763 ± 0.232 and
dash line (- - - -) with b = 3.602 ± 0.182 for samples of series A and
series B, respectively

formula as followed:

E

E0

= (1 − P)2

1 + βE P
(8)

where βE is calculated as (1 − 5μ0)(3μ0 − 1)
2(7 − 5μ0)

and the Poisson’s

ratio (μ0) of bulk titanium is 0.34 [1].

Data fitting by Eq. (3), (7) and (8) is performed in Fig. 8.

In the low range of porosity (<65%), the relation between

apparent [4] or dynamic Young’s modulus of porous titanium

and the porosity is poorly fit by Eq. (7). This relation can be

well predicted by Eq. (3) given by the parallel model. For

higher porosity Eq. (7) and (8) is closer with the tendency.

3.3. Relation between Young’s modulus and pore size

Changing the size of urea powders, samples with differ-

ent pore size are prepared and shown in Fig. 2. As shown

in Fig. 6, after ten times alternative of the Levenberg-

Marquardt method, the simulated value ‘b’ is 3.763 ± 0.232

and 3.602 ± 0.182 for samples of series A and B, respec-

tively. As shown in Fig. 7, the percolation limit, PC is

0.745 ± 0.0142 and 0.744 ± 0.0240 for samples of series

A and series B, respectively. Thus, it can be concluded that

the significant distinctions between them are not found.

4. Conclusions

In summary, porous titanium with controlled porosity and

pore size is prepared in the procedure of powder metallurgy.

The samples with open-porosity in the range of 33%–70%
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and pore size from 200 μm to 500 μm are suitable for at-

tachment and proliferation of the new ingrown bone tissues

[41]. The dynamic Young’s modulus of porous titanium with

different morphology is measured by the EMAR method.

The range of Young’s modulus (1-40GPa) covers the range

of cortical bones’ modulus (10-40 Gpa) [1]. Porous titanium

with appropriate elastic properties, i.e. similar with replaced

bones’, will reduce the effect of stress shielding and be pre-

ferred for bone substitute.
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