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A B S T R A C T

Tool condition monitoring is a key issue in micromachining for part quality control because the excessive tool
wear and abnormal tool conditions will significantly decrease the size accuracy of part and shorten the tool
durability as well. In view of this, a novel configuration of machine vision system for online tool condition
monitoring is presented to improve the part quality and extend the micro tool life. The vision system is com-
mitted to automated on-machine vision inspection for monitoring the progressive wear. This inspection system
uses a telecentric lens with light source and a camera to minimize the errors in imaging. The control system
drives a three dimensional motion platform carrying the imaging device to probe and grab in-focus image at the
predetermined time interval of machining. In addition to the flank wear, three new wear variables are explored
to enhance the robustness in prediction of tool wear state. Effective image processing algorithms are developed
to reduce downtime. The effectiveness of the prototype system and the developed algorithms for tool wear
extraction are verified by cutting experiments using two-flutter micro-milling tools, and the experimental results
show that this novel on-machine vision inspection system is convenient and effective to measure the amount of
progressive wear and reflect the trend of tool life.

1. Introduction

Micro-milling operations are extensively applied in producing
miniature components with three-dimensional (3D) features especially
for high precision parts of metallic alloys [1]. Tool condition mon-
itoring (TCM) is very necessary to avoid tool’s premature failure or
extremely unpredictable tool life in a computer numerical control
(CNC) machine [2], because the part quality is principally dependent
on the cutting tool wear condition. The stable form of tool wear is flank
wear which is empirically depicted as three stages including initial
wear, steady state and severe wear. An accurate and reliable prediction
of the start point in severe wear stage is always important in con-
cerning. For example, Tansel et al. [3] propose to reduce the cutting
feed rate according to the detected micro tool wear in order to decrease
the surface damage and increase the micro tool life. On the other hand,
if a tool breaks during the machining, surface damage is inevitable,
which leads to wasted workpieces and less productivity. In micro-
machining, the micro tools may be broken in a few seconds under ab-
normal cutting condition or excessive worn state. The development of
subsystem for tool wear inspection is an urgent demand and it is the
main topic here.

The tiny shaft of a micro-milling tool is driven at extremely high
rotational speeds with cutting materials in micro-scale. These features
lead to critical issues in micro milling [4], such as size effects, relatively
large vibrations, single-toothed cutting phenomena, and micro-burrs,
which in turn cause uncertainty in measurement for feedback control
[5]. Theoretically, the micro tool cutting-edge profile is an important
factor that directly influences the final quality of a machined surface.
The problem is that measuring the sharp edges of cutting tools is a very
challenging work because it involves a small radius that requires high
lateral resolution and high angles. It is also important to be able to
measure a diverse range of heights at nanometres scale. Furthermore,
the uncertainty in measurement will cause serious noise in micro-tool
wear monitoring [6] which is very necessary to avoid excessive tool
wear and maintain part tolerances [7]. The problem is that the existing
methods or studies in the literature are mainly artificial inspecting or
monitoring the indirect tool-state signals, which are seriously influ-
enced by the noise in micro milling. In fact, most of investigators at-
tempt to extract the indirect signals, such as forces [2] and AE (acoustic
emission) [8], and then construct the relationship to the tool life, which
is very difficult in practice considering the mentioned noise and contact
disturbance. Martins et al. [9] adopt Neural Networks to identify the
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meaningful information from the disturbing and fuzzy variables; Wang
et al. [10] present the probabilistic kernel factor analysis (PKFA) as a
novel intelligence algorithm to analysize multisensory measurements of
machinery conditions. On the other hand, the paper adopts machine
vision to measure the amount of tool wear directly, and for the first
time the vision inspection subsystem is integrated within the CNC
system to realize automatic cooperation in machining.

Though various direct and indirect tool wear monitoring techniques
have been developed [11], there is still no consensus with the best
choice for micro milling tool wear monitoring especially considering
the lack of automation and robustness. Comparatively, Signal-to-Noise
in micromachining will decrease in an indirect method because of the
size effects and relatively large vibrations [12], and the machine vision
as a direct method has many attractive advantages [13]. Especially, the
vision method can avoid contact disturbance from measuring setups to
the tiny tools and can directly measure the progressive tool wear for
analysis. In a machine vision system, digital image processing algo-
rithms and light source arrangement are very important factors for high
precision tool wear inspection. At the same time, noise in imaging,
defocussing, camera vibration, incline from shooting surface, speckles
in image due to micro metal particles, and stray lights reflected by
object surfaces should also be considered with countermeasures. In
view of these issues, Ratnam et al. [14] attempt different image edge
detection and line fitting methods in focus of nose radius wear mea-
surement. Szydłowski et al. [15] design an image fusion system based
on wavelet transform to resist defocussing in imaging of micro milling
tools. Wang et al. [16] investigate the factors that influence the image
segmentation so as to extract the wear region accurately. Pfeifer et al.
[17] and Yamashina et al. [18] mainly devote to light source ar-
rangement and suggested to capture images with special angles of in-
cidence of the illuminating light to enhance the image edge of wear
region. Lim et al. [19] supply a theoretical analysis of edge diffraction
in imaging to guide the light source arrangement. Duan et al. [20] in-
troduce the famous Geometric Active Contour model for image seg-
mentations to resist the noise. The problems of lens distortion and de-
focussing are also considered by Fan et al. [21].

These contributions together with other works reviewed in [13,22]

have made lots of achievements. Considering the features above, con-
venient and effective tool condition monitoring systems especially for
micro milling tools are still need to perfect or develop. Moreover, even
the variables such as flank wear and crater wear, suggested in ANSI/
ASME B94.55M-1985 standard for the extents of conventional tool wear
indication are insufficient [23,24]. To the date, whether such variables
are suitable for micromachining cases is still not ascertained in the
literature, and there is no such standard for micromachining at all.
Accordingly, multivariate is a good idea to enhance the robustness of
tool life indication [24], such as the work by Dutta et al. [25] that take
advantage of flank wear of tools and machined surface textures in
analysis.

In view of the issues mentioned above, this paper proposes a ma-
chine vision system especially for micro milling tools. The time inter-
vals are identified or added in CNC program codes for the progressive
wear inspection. To overcome the difficulties in on-line micro imaging
of tool cutters, the vision inspection module runs automatically by
program control of motors carrying the imaging device. The novel al-
gorithms are also designed considering the characteristics of the images
to extract the wear robustly. In experimental verifications, the devel-
oped prototype can run automatically in conjunction within a micro
milling center using two-flutter micro-milling tools. Moreover, several
variables indicating the wear state are explored to enhance its robust-
ness.

2. Tool wear inspection system

2.1. Experimental setup

The total system is illustrated in Fig. 1, and the vision inspection
module is mainly arranged below the original CNC structures. The
kernel framework of a precision milling center remains unchanged, as
schematically depicted inside the dashed rectangle in Fig. 1. Specifi-
cally, the tool images are captured in process with an Olympus CCD
(charge-coupled device) with tele-centric micro lens after cleaning,
which has more than 200 times enlargement. These raw images are
then processed with the developed image processing system written in

Fig. 1. Experimental setup.
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C++ program. The angular adjustment is a tripod ball-head stand
commonly used in videography; the 3D position adjustment is as-
sembled with three linear motors and the z-direction (up & down) is
controlled with a higher resolution of 0.65 mm per pulse by C++
program codes. The working flow of the system is illustrated in the
chart Fig. 2.

2.2. Procedures

As presented in the working flow chart Fig. 2, the vision inspection
module cooperates with the existing micro-milling center by inserting
CNC program codes to realize an automatic tool wear monitoring. At
the first step, time intervals are identified or added in CNC program
codes to wake up tool wear inspections during processing. For the
purpose of insurance, one minute is an enough length of time interval
for verification in the prototype system and it can be shorten further by
estimating the necessary motor pulses in position adjustment. In ex-
perimental verification later, the sustained machining time is 100 s,
which means that after every 100 s of machining, the tool wear will be
inspected once in 60 s until obvious damage or condition variation.

When a time interval is coming during machining in the second
step, drive the clamp platform together with workpiece to make enough
room for tool wear inspection. In practice, the actions of position ad-
justment can be achieved by controlling the number of motor pulses in
program codes. The number of pulses corresponding to the lens in-focus
position can be calibrated before machining and minor adjustment to
the in-focus position in inspection is carried out by algorithm presented
later. For example, a linear reciprocating motion can be accomplished
by driving a number of positive or negative pulses within the linear
motor driving codes. The rest steps are mainly based on image pro-
cessing, which will be presented later.

2.3. Tool wear characterization

The resolution of the image is 1024 × 768 with 8 bits per pixel as
shown in Fig. 5 without pre-processing. The diameter along major axis
of the two-flutter micro-milling tool (C-CHES 2008-0180) is 800 mm by
tool manufacturer and the diameter along minor axis is 660 mm by

measurement. In this manner of light source arrangement in Fig. 1, the
worn regions at the end of the tool are illuminated perpendicularly to
avoid diffraction distortion at the edges, such as the concerning in
[18,19]. At the same time, the minor cutting edges will directly reflect
the incident light and cause brightness because of the shiny cutter edges
from friction. Due to this surface characteristic, the intensity of the
reflected light from the contacting surface is much higher than that
from the unworn tool surface or from the background. In fact, the two
white regions in the image can be used as good indictors of tool life, and
algorithms will be developed to establish the relationship between the
variables of the white regions and tool life history.

The amount of tool wear will be extracted quickly with the designed
algorithm depicted in next section to guide subsequent machining. As
verification, several images are also shown in Fig. 3 for a visual re-
presentation of this relationship. As seen in Fig. 3, both the symmetric
white regions corresponding to minor cutter edges are increasing with
the extension of time. Therefore, variables for characterization of the
incremental worn areas manifested with white pixels will be identified
to explore the potential in revealing tool life.

Castejón et al. [24] are aware of the importance of finding out the
best description of the wear regions in image, and then nine geometric
descriptors are introduced. However, their descriptors are calculated
from basic variables in inspection, and the measuring accuracy of each
variable is not fully considered. In the situation here, there are four
variables, area of wear land (S1 and S2), flank wear (VB1 and VB2),
radial wear (RW1 and RW2), and diameter wear (DW1 and DW2) which
are available to indicate the extent of wear as shown in Fig. 4. In
practice, the flank wear is widely accepted for tool life indication in the
literature, and the area of wear land can be simply extracted without
considering the rotation angle at imaging time. In addition, both the
radial wear and diameter wear are useful indicators for tool life pre-
diction [26], which are all verified in experiments later.

3. Tool wear inspection method

3.1. Image acquisition

A novel mechanism is developed to identify and grab the in-focus
image by real-time counting root mean square deviation (RMSD) in the
general Region of Interesting (ROI). The algorithm for ROI recognition
is specified in 3.2.4 section. In the developed program, the three
threads of motor driving, image grabbing and RMSD counting are
executed synchronously. The in-focus state is corresponding to the
maximum of RMSD.

∑= −
=

RMSD
n

f f1 ( )
i

n
i1

2

(1)

where f denotes grey value of digital image; f describes the averaging
operation; n stands for the number of pixels in ROI. As shown in Fig. 5,
the ROI is identified as the pixels inside rectangle.

The in-focus state can be identified and kept as a number of pules
opposite to initial state in advance. With the tool wear increasing, the
in-focus state can be adjusted by moving up and down, meanwhile real-
time counting RMSD of ROI in digital images. That is to say, position
adjustment, grabbing image and counting RMSD are executed

Fig. 2. Procedures of tool wear monitoring.

Fig. 3. Representative images along tool life history.
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synchronously to save time, and the in-focus image is recognized ac-
cording to the maximum RMSD without suspending the motors.

3.2. Tool wear measurement

The developed algorithm includes steps listed in Fig. 6 for an
overview and the main idea of each step is explained. There are mainly

two motivations in the total algorithm. The first is to correct the angle
by rotation image so that the flank wear can be identified conveniently
(flank wear are corrected to be vertical). The next is to suppress noises
and detect wear variables accurately. Several subroutines are developed
especially considering the characteristics of the tool wear images. In
addition, the processing speed is also very important because the ef-
fective tool life is even less than twenty minutes.

3.2.1. Identification of the tool center
The tool in the grabbed image is different angle and position. In

order to extract the wear variables conveniently, adjusting the angle of
the image is a good choice so that the wear can be counted in horizontal
or vertical direction. Thus, the exponential transform of an image is
introduced for image enhancement to find the center of the tool in
image. As seen in Fig. 5, the worn regions are distinguished from other
regions with larger grey values. As a result, this distinguishes can be
further enhanced by the exponential transform:

=g fi i
m (2)

where f denotes the grey value of a given pixel i, m stands for the power
index. After this exponent operation pixel by pixel, the total image will
be re-scaled for showing by:

=
−

−f
g g

g g255 ( )i
max min

i min (3)

where the subscripts (max and min) describe the statistical operations
upon all pixels.

In order to show the effects of this step by formulas 2 and 3, the
results from different power index are shown in Fig. 7. The white re-
gions are highlighted with increasing of the power index m. Subse-
quently, only the two largest white regions are preserved. Thus, it is
possible to find out the two centers by counting the center of grey
gravity in four quadrants. The center of grey gravity can be calculated
by:
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where w and h stand for the width and height of the image respectively,
the threshold value T can be 200 in practice and it is not critical in
magnitude after exponential transform as seen in Fig. 7.

3.2.2. Adjusting the orientation
The center of grey gravity operations can be carried out within the

Fig. 4. Variables defined for micro milling tool wear indication.

Fig. 5. Image in real time acquisition state.

Fig. 6. Schematic of the image processing algorithm.
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total image to obtain the total center and then carried out within four
quadrants partitioned by total center respectively. In this way, the two
center positions are obtained and used to ascertain the angle A:

=
−
−

y y
x x

A arctan c c

c c

1 2

1 2 (5)

As mentioned, the single-toothed cutting is difficult to avoid and
through trying in experiments, the extents of wear in the two flutters
are still not the same. Therefore, the two white worn regions are not of
the same size and the angle corrections by rotating the images can only
support accuracy within 5°. However, these results can be achieved
quickly by the algorithm.

3.2.3. Denoising by edge preserving filtering
By now, there is no resistance to noise considered in the scheme of

exponential transform and angle correction. Considering the speckles in
image due to micro metal particles and noise in imaging, an edge-
preserving filter is necessary to suppress the noise in image. There are
several famous filters available for edge-preserving smoothing, in-
cluding infinite symmetric exponential filter (ISEF) [27], bilateral filter
[28], guided filter [29], and other intelligent filters [30]. Compara-
tively, the ISEF filter is more suitable for the application considering
that the others are not linear translation invariant (linear output) [30].
Moreover, the exponential function in ISEF is super than the widely
used Gaussian function bilateral filters in approximation the steep
boundaries in image here [27]. Moreover, updating filter coefficients
pixel by pixel results in the low arithmetic speed in bilateral filtering.
While the guided filter is also slowed greatly in finding local direction
before filtering, and intelligent filters may lead to an unsteady output or
variables which should be prepared carefully. The improved two-di-
mensional ISEF filter is given by
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where x and y are coordinates with origin locating at the center of filter
window, b is the smoothing coefficient which is assigned 0.95 in
practice, the filter coefficients c(x, y) are normalized within truncation
radius R which is assigned 15 in discretization for acceleration. In-
evitably, smoothing will corrode the edges with clear boundary. The
designed scheme below is powerful to remedy this insufficient.

=g Max f f{ , }i ISEF i (7)

where fISEF stand for the result from ISEF filtering of pixel i, fi is the
original grey value of pixel i.

3.2.4. Extracting the ROI by projection
In order to fast calibrate the scale from pixel to micron and correct

the angle accurately in ROI extraction, the projection algorithm is

designed. The presented projection operation is to count the lightness in
each row or col following re-scaling for exhibition. The two steps in
projection in x and y directions can be expressed as:
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where f(i, j) denote the grey value at pixel (i, j), subscripts of max and
min stand for the highest and the lowest values, w and h are the width
and height of the image respectively.

As seen in Fig. 8, image (a) is an original image in which the major
axis has a more or less 4° deviation to horizontality in the result of
second step. After ISEF filtering, the projected results in (b) and (c) are
from rows (projection in x direction) and cols (projection in y direction)
respectively, and scaled within the same size of the image for better
exhibition. The image (d) is a combination of (a), (b), and (c) to reveal
the relative positions of significant points in projection, as marked in
small circles.

In this way, the ROI is enclosed by significant points as the four
squares formed by dashed lines in Fig. 8(a). The cutter edges are
wearing out but the cutter backs are not changed. Therefore, the high-
precision angle for correction can be obtained by rotating a given de-
gree of angle and probing the lowest of the center significant point in
Fig. 8(c). The scale between pixel and micron can be extracted from the
distance between off-center significant points in Fig. 8(b). This scale is
calibrated as 660/478 ≈ 1.38 mm/pixel and experiments show that its
fluctuation among images is negligible. The result of angle correction is
shown in Fig. 9(a) together with the scale values. The circle is drawn
according to the extracted diameter of minor axis. Then, by edge de-
tection at flanks along the major axis (horizontal), the length of major
axis can be obtained according to the scale as shown in Fig. 9(b). In this
way, the diameter wear (DW1 + DW2) can also be calculated
(800−732 = 68 mm).

3.2.5. Eliminating speckles
After angle correction and edge preserving filtering, a threshold

value of 200 is possible to extract the wear regions. As a comparison,
results from mean filter and the designed edge preserving filter both
using the same filter window size of 15 are exhibited in Fig. 10. The
regions from image binarization have been enlarged and located at the
side of their original positions in the cutter images. The boundary lines
of their white areas have been integrated with positional correspon-
dence in the original cutter images. The worn areas manifested by white
pixels are extracted insufficiently by mean filtering and binarization in
Fig. 10(a).

Fig. 7. Effects of exponential transform.
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However, the presented edge preserving filtering can give a very
accurate result in Fig. 10(b), which shows that the mechanism of for-
mula (7) is powerful to correct the distortions due to smoothing. Sub-
sequently, the white speckles can be eliminated by comparing the size
of the regions. The two largest white areas indicate worn regions and
others can be eliminated. After operations mentioned above, these
variables can be obtained directly by counting the number of pixels in
dimensions.

4. Experimental verification

4.1. The experiment

A total of 12 experiments were conducted to validate the designed
tool wear monitoring system at different working conditions (Table 1).
The machine used in the experiments was a five-axis MAKINO V55
vertical milling center driven by a 22kw spindle drive motor. The micro
tools used in this study were 800 mm diameter micromilling tools with
the helix and shank taper angles 30 and 16°, respectively. They are
Tungsten Carbide tools, with Titanium Aluminum Nitride coatings. The
workpiece materials used were pure copper and steel T4. Tool wear
image was originally captured and measured using the Olympus Tool-
makers microscope (213 times enlargement). More experimental setup

can also be found in [31].

4.2. Experimental results and discussion

A group of results are shown in Fig. 11. The selected variables show
steady trends with the time increment and can reveal the extent of wear
in varying degrees. On the other hand, there is still no consensus in the
literature with which is the best variable for micro tool wear indication.
In fact, many investigators attempted different descriptors
[23,24,32,33,], and accuate measurement is undoubtedly a pre-
requisite. There is an agreement on the necessity of avoiding single-
toothed cutting phenomena in micromachining [34,35], however, it is
very difficult to avoid in action and the differences of worn amplitude
with two flutters (VB1 and VB2) are obvious as shown in Fig. 11. The
two flutters are the same in imaging because of symmetry, which may
lead to wrong correspondence between wear value and flutter. There-
fore, the results are all extracted discriminatively by comparing the
wear size at each step. A reference point supports this rule too.

Comparatively, the trends from flank wear Fig. 11(a) and areas of
wear land Fig. 11(b) agree with the theoretical prediction [11] and the
results of flank area wear predicted in [36]. It is observed that the more
severe tool wear corresponding to greater wear area as shown in Fig. 3.
The quantitative statistics of the areas of wear lands in Fig. 11(b) are

Fig. 8. Projection for ROI.

Fig. 9. Extracted ROI.
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also show a steady trends that will benefit wear prediction even better
than flank wear considering the value amplitude and stable tendency.
Because of the friction and ploughing effect between the cutting tool
and workpiece, there are micro burs due to adhered chips on the tool
ends, as randomly and sparsely distributed speckles shown in Fig. 10,
which are imaged as noises or connecting to the white wear lands. This
is the main reason for the unsteady fluctuation on the tool wear curves
in Fig. 11. In order to improve it, an air cock is aimed to blow away the
burs, however, the effect is limited. On the other hand, it is also ne-
cessary to clean the tool end before inspection in traditional off-line
measurement by tool microscope. Considering the cleaning may cause
new damages and time consuming for the micro tools, multivariable
monitoring is a good choice. For the severe wear stage, there is a jump
of wear rate at about 1400 s, which is considered to be corresponding to
the start of severe wear stage. The fluctuations from the two flutters
result from the single-toothed cutting phenomena and noise from burrs

on the cutter [37] as shown in Fig. 10.
There is no report concerning the diameter wear as shown in

Fig. 12(a), and only the total wear is given due to accuracy of mea-
surement (the amounts of wear at the two flutters are different and thus
it is difficult to ascertain them respectively before identifying the center
position). The fluctuation after 1200 s is about 1 pixel. However, the
curve also gives light to revealing the tool life from the early trend,
especially the point of inflection at about 1300 s close to the time of
wear rate jump in Fig. 11(a). By artificial measurement carefully, it is
also found that the diameter wear is indeed to be steady when the time
is close to the tool’s life. The Radial wear isalso supplied in Fig. 12(b)
though they are sensitive to the sharp corner of the delta-shaped white
regions. Experiments show that the curvilinear trends reflect the pro-
gressive worn extent. At the same time, there is also no report con-
cerning the difference between the two flutters and the experimental
results indicate that the wear from the two flutters tend to be equal in
the end of steady state. Tool run-out is believed to be one of most im-
portant reasons for this asymmetric cutting [38]. Tool run-out plays an
important role in micro milling because the ratio between tool run-out
and feed per tooth is very high, which seriously influences the in-
stantaneous undeformed chip thickness. In some cases, tool run-out is
so high that just one flute cuts the material, generating an asymmetric
cutting [38]. Castro [39] adopted a laser interferometer to measure the
spindle rotation errors of machine tools with accuracy high enough.
However, the special sphere affixed at the end of a wobble device which
is clamped in the spindle will influence the normal movement due to
associated mass, and the influence will be more obvious for micro tools.
In our experiments, the cutter’s coating thickness is reducing with
machining and it is gradually becoming blunt, thus the further wear
rate is relatively slowing. Furthermore, the differences of worn ampli-
tude from the two flutters can also be explained as the differences of
flutter cutters’ contact area with the workpieces specially appearing in
micromachining, as revealed by Li et al. [40].

Fig. 10. Results of image binarization after mean
filtering and the proposed method.

Table 1
The experimental working conditions.

Test Spindle speed
N (rpm)

Axial depth of
cut ap (mm)

Radial engagement
ae (mm)

Feed rate
Vf(mm/min)

1 12,000 0.060 0.100 0.120
2 12,000 0.080 0.100 0.120
3 12,000 0.100 0.150 0.120
4 18,000 0.100 0.150 0.150
5 18,000 0.120 0.175 0.150
6 18,000 0.100 0.175 0.150
7 24,000 0.100 0.200 0.180
8 24,000 0.120 0.200 0.180
9 24,000 0.150 0.250 0.180
10 30,000 0.120 0.250 0.150
11 30,000 0.150 0.300 0.150
12 30,000 0.120 0.300 0.150

Fig. 11. Flank wear extracted by mean filtering.
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Overall, the trend of wear area is steadier and is possible to evaluate
the life of micro tools, such as estimating the average tool life or worn
stages roughly. In fact, it has integrated more factors to indicate the tool
state, and the formats of flank wear, radial wear and diameter wear are
partly synthesized in it. At the same time, the flank wear, radial wear
and diameter wear are also meaningful to monitor and identify the
abnormal conditions by identify the jump of worn rate. Considering the
small scale in micromachining, there are still a lot of unclear factors
that have been simply considered as noises in the literature. Such noises
may cause sudden abnormality such as tool breakage and tipping which
are detrimental to the workpieces and even damage the part. Both
steady trend prediction and abnormality identification are necessary.
The further step is to improve machining operations, then to extend the
tool life after monitoring the wear by the inspection system. The
method proposed by Tansel et al. [3] is a good strategy, and it reduces
the cutting feed rate when abnormality is identified or the evaluated
worn stage is coming. The method does save the tool life in experiments
as verified by Tansel. However, a quantitative assessment of efficiency
and cost is difficult to carry out at present, and more instances in actual
machining are necessary to collect statistical data in the future.

4.3. Accuracy analysis

In experiments, there are mainly three factors influences the re-
peatability of measurement. The first one is the stationary motion of the
motor in imaging. Lowering motor’s speed during focusing is possible to
improve the quality of image to some extent. At the same time, the
incline between the lens and the tool end should be avoided by system
test running before processing. The second factor is denoising algorithm
that is also concerned in many machine vision based TCMs. In contrast,
the proposed edge preserving filtering supports a more accurate wear

extraction than mean filtering, as seen in Fig. 10. The flank wear ex-
tracted by mean filtering are also shown in Fig. 13. Comparing with
Fig. 11 (a) and Fig. 13, the overall amplitude from mean filtering is
reduced, as illustrated in Fig. 10. At the same time, the range of the
curve fluctuates more greatly due to false boundary recognition as
shown in Fig. 10 (a). In addition to filtering, the influence from
threshold value is insignificant to disturb the curves’ total trends.

The last main factor concerning the repeatability of measurement is
the micro burrs adhered to the boundary of the cutters. This is part of
the reason for the curves trend fluctuation in Figs. 11 and 12. As a
result, the precision is about 1.38 mm as calibrated in section 3.2.4
without unforeseen circumstances.

5. Conclusions

Premature failure is a major problem in micromachining. In order to
successfully predict the micro tool life, the paper develops an auto-
mated machine vision system for tool condition monitoring. The image
processing algorithms are developed according to the characteristics of
micro milling to extract the progressive tool wear. In addition to the
flank wear, new variables are proposed to reflect the tool wear state.
Experiments have shown that area of wear land is suitable to forecast
the tool wear stages and other variables are possible to identify the
abnormality in cutting. The strategy in utilization the inspection system
is to reduce the cutting feed rate when abnormality is identified or the
evaluated worn stage is coming. There is no sudden failure happened
with the sample tools and the proposed algorithms support the devel-
oped system in these verification experiments. In the future, the more
appropriate feed rate is possible to be studied in depth with the de-
tected tool condition and further explore the potentiality of micro
tools.r
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