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Axial Shock in a Cylindrical Plasma with Current*
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Abstract Hugoniot relations of a two-dimensional axial shock with current and magnetic field
in a cylindrical shock tube were investigated by a numerical method. The radial profiles of the
magnetic field, electric current, pressures, flow velocities and temperatures between the up~- and

down-stream radial force-balanced plasma of the shock were revealed by numerical analysis. It is
clearly found that the axial shock can lead to two effects: one is an inverse skin effect (i.e., the
current density rises towards the center of the conductor), the another is a reversed current effect
which occurs near the edge and about a half radius. It is also found that the radial gradient of
pressure, density and temperature all become very large near the center due to the axial shock.
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1 Introduction

Plasma shocks have been studied widely since
1950s. In most cases, the shocks are described by
a one-dimensional plane shock model. But the one-
dimensional model would be invalid for the plasmas
with a large electric current and self-generated mag-
netic fields. To our knowledge the Hugoniot relations
for a two dimensional axial shock have not been in-
vestigated systematically so far. It is well known that
generally for collision-dominated shocks two factors can
greatly facilitate discussion of the effects of a shock
wave on a fluid. First, the shock transition region may
for most purposes be approximated by a discontinuity
in fluid properties. Second, the macroscopic conser-
vation equations and Maxwell equations may be in-
tegrated across the shock to give a set of equations
which are independent of the shock structure and relate
fluid properties on either side of the shock (namely the
Hugoniot relations equations). In this paper we inves-
tigated a two-dimensional model for the axial plasma
shock with a current and self-generated magnetic field.
When we analyze the equilibrium in the downstream
we consider the effects of the the radial distribution of
the structure of the shock front. The Hugoniot rela-
tions equations are derived from the single fluid macro-
scopic conservation equations and Maxwell equations
under the model. In this model, we try to find shock
solutions where the plasma keeps equilibrium in the
downstream of the shock when an equilibrium in the
upstream plasma is maintained.

This paper is organized as follows. The basic equa-
tions are given in Sec. 2. The basic assumptions and
reduced equations are given in Sec. 3. Then, the bound-

ary condition and the numerical analysis are in Sec. 4.
Finally, the conclusions and discussion are presented in
Sec. 5.

2 Basic equations

Within the characteristic time of the variation of the
up- and downstream parameters, the formation of a
shock front almost does not change with time. So, we
can describe the plasma shock with the static equations
as follows.

Continuity equation

v - (pU) =0. 1)
Momentum conservation equation
v-m=o,
II=pUU+PI+E-9,

B? 4+ E?
TI’ (2)

where Z denotes the viscous stress tensor, which is
a complicated function, but for a collision-dominated
plasma, it may be assumed simply as follows

— Bui Buj 2 ..
ISHRS n(awj + 5% 3 v-u), (,7=7,0,2). (3)

1
d=—(B EE) -
47r( B + EE)

Energy conservation equation
V-8 =0, (4)

where

1
S=Zc;(EXB)+q+E-U+PU+U[p€+§pU2],
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Maxwell equations
4
VxE=0, v-B=0, vyxB=—"J. (5

Generalized Ohm’s Law:
UxB _ m;
c Zepc

. J
oo p

E+ 2Zep g

(J xB)+
Charge conservation equation

v-J=0. (7)
Equation of state:

(1+ Z)kp

m;

P = RopT, RO >~ (8)
J,I1,S, ®,1 and q are the current density, total mo-
mentum flow density tensor, total energy flow density,
electromagnetic tensor, unit tensor and heat flow, re-
spectively. ,7 and % pu? are the inner energy, plasma
temperature and kinetic energy, respectively. E, B and
U are the electric field, magnetic field and the plasma
flow velocity (which is relative to the shock front), re-
spectively. ¢, my, e, Z, p, 0, k, 0, and kp are the speed
of light, ion mass, electron charge, ion charge state,
plasma density, electric conductivity, thermal conduc-
tivity, coefficient of viscosity and Boltzmann’s constant,
respectively. Here, we take the Gassuian units.

3 Basic assumptions and
reduced equations

A shock dissipation mechanism is assumed mainly
to be caused by thermal conductivity, viscosity and
plasma resistance. In order to reduce the equations, we
assume all the physical quantities are axisymmetrical,
i.e. 8/88 = 0. At the shock front, we assume the rela-
tions of thermal(magnetic) pressure and plasma density
as follows:

P= P(Plvplyrv Z) = Cp('f')p('l‘, z)’ypa

Be(", Z)2
8

Generally, v,,vp should be the functions of z while,
for convenience here, they are assumed to be the con-
stants which can be “determined” by comparing the
calculations obtained from the varying v, and vp with
the experimental results. Cp(r) and Cg(r) are the func-
tions of radial displacement only.

We put the cylindrical coordinates frame(r,8,z) at
the shock front, which moves in the axial direction with
a constant velocity. In this coordinate the up-stream
and down-stream plasma flow velocities are U; and
Uj,respectively (in what follows, the subscript of the
up- and downstream quantity are “1” and “2”, respec-
tively).

Pp = = Cp(r)p(r; 2)"". ©)
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In the up-and down-stream plasma, the physical
quantities meet 3/8z = 0, and from equations v7-pU =
0, v - B = 0, we can obtain U,y 2 = 0 and B, 2 = 0.
Now we assume a special case in which U, = 0 and
B, = 0 at the shock front. So the shock front yields

b2 ‘ 0B,
9z (pU:) = 0z

=0. (10)

Then integrating the above two equations across the
shock we obtain p2U,s = p1U,1 = I'(r) and B,2(r) =
B zl("')-

For simplicity, we take B,;(r) = 0. From Eq. (2),
the poloidal momentum balance yeilds

By¢B, _ 7] 2_
—(pU.U =, —Z0+ -Er6=0,
(p ot g T 6) + 5 -Ero + ~Ero
— AUy 2 3U
== "3 (i)

In the up-and down-stream, 8/8z = 0, so the above
equation yields

8 8U9 2 80Uy
ar + 7] ar =0. (12)
It is easy to see that Us = 0 is a solution of Eq. (12)
in the up-and down-stream of the shock. So for sim-
plicity, we take Ug; = Ugo = 0. But at the shock front,
due to 8/9z # 0, so perhaps Uy # 0 should be taken.
From Egs. (2) and (4) and the above assumptions,
we obtain

0 py iy, B _oUF

o B g
S (P+5)+ +H(v-B) - 2 v-E =0,13)

4mr T

d B2 E
—(TU,+ P+ ‘B), - —=v-E=0,
8Z(F TP+ )+ (V-E) 47rvE 0,(14)

8 1"
9z 7,,— 1
+—£r( +E,..U.+Z,9U )———i(rE By) =0,(15)
ror qr T Srz Srole dnr or 6) =
8E, OEFE,
B=0 5 =% 19)
E. — Ung _ m; m; 8_P ]_,.
T ¢ epc’* 7% T 2Zepor | o
E. = m; . _m or J_z
T epcjr ® " 2Zepdz o
. c 0By . . c 0
r = T T "a. = 0, z rB
J 4r 0z J6 T2 = 4ar or 3 ("Be). (17)

In the upstream and downstream, U, = 0, Us = 0,
oU,/8z =0, 8U,/88 =0, from (3), one yields
(v : E)"' =0, S0 = =6 =0. (18)
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At the shock front, U, = 0, Uy # 0, 8U,/8z # 0,
0U, /96 = 0, from (3), one yields
190 J _
(V- 8): = (50 + 5 5o
19 BUZ 0 ndU,
rar( or )+ Bz(3 0z )
In addition, in a quasi-neutral plasma, as compared
with the magnetic field, the electric field stress can be
ignored in Eqgs. (13) and (14). So substituting (18) into
(13) and (19) into (14), then the radial balance equa-
tions in the up- and down-stream and an axial balance
equations at the shock front can be given,

i)

(19)

(9 B%Q B%Q
E(Pl + g) + I 0, (20)
or " ? 8 drr
) B2 qdU,. 108, 6 dU,
—(I'U, o 0, (22
s (Vs + P oot 355+ Do (rm35) =0, (22)

To calculate the integral of the two sides of Egs. (22),
(15) and (16) across the up-(z;) and down-stream(z;)
and use the conditions for meeting up- and down-
stream /92 =0 , we can obtain

B2 10
LU+ P+ 912 = ~5 (rR1), (23)
F 2 14

[ 7 wETBg ;= -5 (1R),  (24)

[UZBQ m; . _ ﬁap]z

c epc]z o 2ep Or i1

o [*, m; . m; OP 1)

~or 2 (Zepcjr o~ 2Zep 0z )d +6 R (25)

29U,
§R1—_/z1 (97' y

z2
Ry = _/ (QT +Z.U; + ZrpUp — 4iﬂ_EzB9)dzy
Z1

Z2
Rs =/ 124,
z1 g

Here Egs. (20)(21) and (23)~(25) are defined as the
Rankine-Hugoniot equations of two dimensions shock
with a magnetic, current and electric field. Using (9),
the first terms on the right hand side of Eq. (25) can
be integrated explicitly. R;,R; and R; cannot be
integrated explicitly and they are all unknown. R,
denotes the effect of the viscosity on the radial mo-
mentum flow, Ry denotes the effects of the radial heat
flow, work of the radial viscosity force and the ra-
dial electromagnetic energy on the total radial energy
flow, and R3 denotes the effect of the finite electric
conductivity on the axial electric field. The viscos-
ity, thermal conductivity and finite electric conduc-
tivity all vary independently across the shock. So
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R1,R2 and R3 are all considered as independent vari-
ables. Thus the set of Eqgs. (8)(9)(10)(17)(20)~(25)
has eleven equations for nineteen variables
P1,2,Uz 5, P12, 71,2, Bo, 4, Jr, 5> 2120 Cpy Cy R1, R

and R3. If the radial profiles of By,,U,, and T)
are given, then we can eliminate some of the vari-
ables as p1,2,Uzl,T1,2,B91,jn'2,jzl'2,C’p and Cpg, by
using (8) (9)(10) and (17). Thus we can reduce the
set of equations to (20) ~ (25) only for variables
P, 5, By,,U,,, R, R and R;3. For simplicity, we would
set ®1 = Ry, Rz = R3.(R1c and Rz, are constants)
and retain only R, as a variable to close this set of

equations.
Let
a=P/P, B=U./Un, b = B2/ B,
§=r/ro, x = h/h, (26)

where Py and ry are the reference pressure and the ra-
dius of Z-pinch, respectively. Using (9) and (26), the

Egs. (20)~(25) yield the dimensionless equations as fol-
lows:
2 Qo
—_ 7
S+ Qo) = 2%, (27)
9 b?
2 (o + Qot?) = 272 (28)

o £

1 90
—X&(ffv) =0,(29)

-(@f — 1) +2Q/k

WM (B-1)+a—1+QE —1) -

VYo as2/ a2 T
282 — 1) +
PMHEE - 1) 4 2

12QE (b— 1) + u%g;—g(ff:r) —0.  (30)

2193—[th (862 - 1))+ [ut aB —1)] = uBfg.(31)

F 4 af
Here,

U. P, 2 B?
M=YUYa 03:(:&;1_1)1/, Qo = % Q=%

Cs x
B%, 2100 T Io By
= — Bop = -_—, t= = = — ==,
P 8’ T e Ty Iyy  Boo
Ry _ R
fv— vf(l_f)y Cv— PO ’ fT__TOPOUzO

w w
fe=8b-1- 5E21 - §P21,

_ pr*B? 5 8B B? 2 0b
Es = £ + (86 — )B—af—?+ﬁbB %
= (@8- DX+
21 = (af — 6§+ X f
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ot B_391 u_Uzl . _@
- qua - BO’ = UzO’ Joo = 777'8’
Joo 1 B I v
Uz = =, ’[9 :—————, = —— 3
0 Zeng B 8¥yg—1" F 80y, — 1

where M, ¢, Boo, Ipo, no, Ip and By are the upstream
Mach number, ion acoustic velocity, reference magnetic
field, reference current, reference plasma number den-
sity, axial plasma current and poloidal magnetic field
at the plasma boundary (r = 1), respectively. ¢, is a
radial component of the heat flow. In addition, ¢. is a
unclear function at the shock front, so fr is taken as a
unknown variable.

4 Boundary condition and nu-
merical analysis

Using Eq. (7), it can be deduced that the total cur-
rent passing through the shock front is unchanged, thus
the poloidal magnetic at both edges of the upstream
and downstream of the shock is not changed. There-
fore we can obtain

ble=1 = 1. (32)
Using (32) one can obtain from Egs. (29) and (30)

L M=) F, ORI F
A= =1+ R R 1+ 1 ’
(33)
WMEr1-F  JOBTIPPF
fleor =0, 700~ pr0ar O
where
Y21 2
F = 2y, M%( e R)+ (B - 1)1,
p
d
My =Mle=1, Fe=[2Qfe+ (Uxé)_l (2?)]|5=1,
1 0
F, = é-_xa_é(éfv)|§=1'

F. is a complicated function and is considered as the
effects of the magnetic field, current and heat flow. F,
is an effect of the radial velocity gradient {hence viscos-
ity) at the boundary across the shock. They can also
be determined by comparing the calculated results with
different F, and F,’s to the experimental data. Because
a and 3 are both real quantities, from (33) and (34),
we have (M2 —1)2+F > 0,ie. F > F. = —(M?-1)2
So we can obtain

(Mf ~ 1)+ (F, - 1)* -1

2
Tp ] ‘
2y, M?

-1

FeZFec: [Fv_

(35)

When F, = F, =0, (33) and (34) will reduce to a gen-
eral plasma case without a magnetic, electric current,

heat flow or radial velocity gradient. Generally F is a
negative value and for simplicity we will set the value
of F from F, ~ 0.

Considering no energy exchange between the system
of the cylindrical plasma and the external environment,
we can assume Rgle=1 =0, le.

_ Role=r _
frle=1= P, O (36)

The radial distribution of the magnetic field, flow ve-
locity and plasma temperature in the upstream can be
set as:

2€
e

Uz1 = MOCSO[UO + uc(]- - 52)2]7

By = By

Ty = To[Ty + To(1 - €2)3), (37)

where Cs0 = \/1pkpTo/m;, kg = 1.602 x 10~ 2erg/eV.
My, up and T, are the given constants. We take
Ipp = 1.0 x 109 statampere = 333.3kA, Tp = 1000eV,
ro = Scm.

Then, solving Egs. (27)~(31) with the above condi-"
tions, we can obtain the radial profiles of a, 3, b, ¥ and
fr- In what follows, if without special claims, all the
abscissas and vertical coordinates of the figures are the
normalized radius £ and the pure dimensionless num-
ber respectively and also all the values of the paragme-
ters and the upstream boundary pressure are taken as
follows:

Ip=32kA, My =16, Z=1, 7, = 1.72, v5 = 3.0,
Rie =0, Rge =0, Tp = 0.12, T. = 0.4, uo = 0.8,
we =012, Fy = Foe +0.172, X0 = xle=1 = 0.005. (38)

In the up-stream, when the profiles of the poloidal
magnetic and the plasma temperature are given such as
that in (37), we can obtain the profiles of the pressure
P, and plasma number density n, (= n; + n.) by us-
ing equations (8) and (20). Fig. 1(a;) ~ (az2) show the
radial profiles of the up-stream pressure plasma num-
ber density change with axial current. Fig. 2(b;) ~ (b3)
show the radial profiles of the up-stream pressure and
plasma number density change with boundary pressure
values. It is found that the axial current and the bound-
ary pressure value have a notable effect on the profiles
of the pressure and plasma density in a cylindrical equi-
librium plasma.

a. The radial distributions of the down-stream
quantities with the given radial profiles of the
current density, flow velocity and plasma tem-
perature in the up-stream

We have given the radial profiles of the current den-
sity, flow velocity and plasma temperature in the up-
stream as (37). Fig. 3(a) ~ (c) show the radial profiles
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Fig.1 Radial profiles of the pressure (a1) and plasma num-
ber density (az) in the up-stream equilibrium plasma vary
with different axial current

Fig.2 Radial profiles of the pressure (a1) and plasma num-
ber density (az) in the up-stream equilibrium plasma vary
with different boundary pressure values
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Fig.3 Radial profiles of the ratio of (a) the down-stream pressure to up-stream pressure and (b) the down-stream flow
velocity to up-stream flow velocity and the comparison of the radial profiles of the (c) flow velocity, (d) pressure, (e) number
density and (f) temperature of the up-stream plasma with those of the down-stream plasma, respectively

of the ratio of the down-stream pressure, velocity and
poloidal magnetic field to the corresponding quanti-
ties, respectively. It is found that the weakest shock
is located near £ ~ 0.4 ~ 0.5 where the current den-
sity and magnetic fields are largest. Fig. 3(d) ~ (h)
show the comparison between the profiles of the pres-
sure, number density, temperature, poloidal magnetic
and axial current density of the up-stream plasma and
those of the down-stream plasma. Figs. 3(d) ~ (f)
clearly show that the axial shock can also be enhanced
to a pinch plasma, which is just similar to the ra-
dial shock, especially near the core of the down-stream
plasma. The gradient of pressure, density and temper-
ature all become very large, which is similar to the in-
ternal transport barrier in a tokamak and which can be
explained qualitatively by what is in the down stream.
The maximum poloidal magnetic field (see Fig. 3(g))
is near the core plasma. Furthermare the cone plasma
pinch gets enhanced at the place where the magnetic
well gets deeper than that in the upstream. From
Figs. 3(f) ~ (g), we can also find that the lowest tem-
perature is located at £ ~ 0.3 ~ 0.4 where just the max-
imum of the poloidal magnetic field and axial current
density are located, and this means that at the shock
front some thermal energy may be converted into the
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magnetic energy.

Fig. 3(g9) and (h) show the radial profiles of the
poloidal magnetic field and axial current density in the
up- and down-stream of the shock, respectively. It can
be clearly seen that in the down-stream maximum crest
current density can be made by the shock to be away
from the center and some also to be reversed at the
middle ({ =~ 0.4 ~ 0.6) and the edge (Fig. 3(h)), which
may be explained qualitatively by the radial current
(4r) that would occur at the shock front and its varied
radial distribution may further affect the radial profiles
of the axial current density. We can also find that here
the profiles of the poloidal magnetic field and axial cur-
rent density in the down-stream (shown in Fig. 3(g) and
(h)) are in rough agreement with those from the exper-
iment 1] at the time ¢ = 1.8us (when I = 31.9 kA).
So we believe the axial shock may be a mechanism to
cause the current reversal.

b. Effects of C, and F..

Fig. 4(a) shows the effects of the varied C, and F, on
the radial profiles of the current density in the down-
stream. Here, the C,(= R1./Py) represents the effects
of the viscosity across the shock. It is found that the
central current density increases sharply with increase
of C, if C,, > 0 and also decreases sharply with the de-
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Fig.4 Radial profiles of the current density in the down-
stream change with different C,’s and F.’s
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Fig.5 Profiles of axial current density and poloidal mag-
netic change with different +,’s in the down-stream
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Fig.6 Profiles of axial current density and poloidal mag-
netic change with different v5’s in the down-stream

crease of C, if C, < 0. According to the experiments
where the central current density is always limited, we
can conclude that C, should be very small and so we
take C, ~ 0. F_. is considered as the effects of the
magnetic field, current and heat flow at the boundary
across the shock. From (35) and (38), we can obtain
Fec = —5.1495. Fig. 4(b) shows that the maximum
current density decrease with the decrease of the ab-
solute value of F,. Comparing the results of the pi-
lot calculations with those of the experiments, we take
F,=F, +0.172 = —4.9775 as a proper value.
c. Effects of v, and vp.

At the shock front, the relations of the plasma den-
sity to the thermal and magnetic pressure are not clear,
so we have only assumed the relations to be those in
Eq. (9). Figs. (5) and (6) show the radial profiles of the
poloidal magnetic field and axial current density vary
with different v, and vp,respectively. We find when
Yp =~ 1.4 ~ 2.0, and vp = 2.5 ~ 4.0 the radial profiles
of the poloidal magnetic field and axial current in the
downstream are in rough agreement with the results of
experiments [} provided that the necessary conditions
are given, such as (37) and (38). We can find here
that «y, is close to the specific heat ratio v = 5/3 for a
monatomic gas and this means that shock compression
is close to the adiabatic compression, while v is much
larger than the equivalent magnetic adiabatic index
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Fig.7 Radial profiles of the poloidal magnetic field in the
down-stream change with different My, Ip and xo’s
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Fig.8 Radial profiles of the axial current density in the
down-stream change with different My, Ip and xo’s

Ym which equals to 4/3 for the compression of an ideal
magnetofluid.

d. Effects of M,, total axial current I, and
up-stream pressure boundary value xg.

The different M; represents the change of the
magnitude of the flow velocity. Figs. 7(a)~(c) and
Figs. 8(a)~(c) show the radial profiles of the poloidal
magnetic field and axial current density in the down-
stream with different My, Ip and xo. It is found that
the maximum magnetic field and current density are
both away from the axis and also their corresponding
maximum magnitude decreases with the decrease of M
and Iy but the increase of xg reciprocally.

Figs. 10(a) ~ (c) and Figs. 9(a) ~ (c) show the ra-
dial profiles of the shock strength, i.e. the ratio of
down-stream pressure to up-stream pressure, and ther-
mal pressure in the down-stream change with different
My, Iy and xo. From Fig. 10(a)and Fig. 9(a), we find
that the pressure and shock strength increase grossly
with the increase of My and reciprocal with the reversed
current occurring. From Fig. 9(b) and Fig. 8(b), we can
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Fig.9 Radial profiles of the shock strength change with
different My, Ip and xo’s
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Fig.10 Radial profiles of the pressure in the down-stream
change with different My, Ip and xo’s

also find that the shock strength decreases grossly with
the increase of I; (hence the electric current density),
which is in agreement with the results of Ref. [3]. From
Figs. 8(a) ~ (c) and Figs. 9(a) ~ (c), it is evident that
the minimum shock strength is just located near the
place where the magnitude of the magnetic field is max-
imum and the current density is minimum.

5 Conclusions and discussion

In conclusion, numerical analysis of the Hugoniot re-
lations of a two-dimensional shock has been conducted.
It is clearly shown that the reversed current profiles
will be formed in the downstream plasma under certain
conditions. Our investigations also show that the axial
shock will also result in that the gradient of pressure,
density and temperature all become very large near the
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center, which is similar to ITB(inner transport barriers)
in tokamak plasmas.

When the plasmas are in a compressional phase an
axial non-uniform stress may cause an axial flow(or a
puff), and the shock will be built if the flow (puff) veloc-
ity is large enough. Similar to the case of neutral beam
injection (NBI) or radio frequency (RF) to heating in
tokamak, if the plasma flow driven by NBI or radio-
frequency field ? is large enough, the toroidal shock
may also occur. As is known, there is a strong connec-
tion between the plasma rotation (flow), the transition
from L to H mode and the formation of transport bar-
riers in tokamak plasmas [*5]. When the plasma flow
velocity is large enough, a shock will be built, then
there may also be a connection between the shock and
the L-H mode transition. The connection between the
poloidal shock 8] the transition from L to H mode and
the formation of transport barriers in tokamak plasmas
has been investigated, but the connection between the
toroidal shock and the plasms confinement has rarely
been reported. So this work may also be an enlighten-
ment as to further propose an axial shock model which
is correlated to the L- to H-mode transition in tokamak
plasmas. We are collecting evidence for the toroidal
shock mode correlating to the L- to H-mode transition
in tokamak plasmas and will carry on our work further.
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