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A B S T R A C T

Surface-enhanced Raman spectroscopy (SERS) has been widely applied to identify or detect illicit drugs, because
of the ability for highly specific molecular fingerprint and independence of aqueous solutions impact. We
summarize the progress in determination of illicit drugs using SERS, including trace illicit drugs, suspicious
objects and drugs or their metabolites in real biological system (urine, saliva and so on). Even though SERS
detection of illicit drugs in real samples still remains a huge challenge because of the complex unknown en-
vironment, the efficient sample separation and the improved hand-held Raman analyzer will provide the pos-
sibility to make SERS a practically analytical technique. Moreover, we put forward a prospective overview for
future perspectives of SERS as a practical sensor for illicit drugs determination. Perhaps the review is not ex-
haustive, we expect to help researchers to understand the evolution and challenges in this field and further
interest in promoting Raman and SERS as a practical analyzer for convenient and automated illicit drugs
identification.

1. Introduction

The United Nations Office on Drugs and Crime (UNODC) World
Drug Report in 2017 pointed out that about quarter of a billion people,
or around 5% of the global adult population, used drugs at least once in
2015. More worriedly, harm caused by drug use remains considerable.
Estimated 29.5 million of those drug users, or 0.6 per cent of the global
adult population, suffer from drug use disorders. In other words, their
drug use is harmful to the point that they may experience drug de-
pendence and require treatment [1]. The health consequences of illicit
drug use continue to be devastating, which will lead to a variety of
problems [2]. Consequently, it is a critical need to rapidly identify the
illicit drugs to support the anti-drug campaign.

As one of the earliest tools, chemical color tests could provide tox-
icologists and criminalists with visible results for the presumptive
identification of drugs and poisons [3–6]. While the fact that cannot be
ignored is that these tests may be misinterpreted by subjective color
perception. Gas Chromatography (GC) and high-performance liquid
chromatography (HPLC) are called gold standard analytical tools for
illicit drugs detection, especially when they are combined with other
techniques that can capture the molecular characteristics, such as

ultraviolet-visible spectrophotometry [7], nuclear magnetic resonance
[8], or mass spectrometry [9–15]. Above mentioned hyphenated tech-
niques are good at analysis in complex environments, including si-
multaneous analysis of multiple components and single component
analysis in bio-fluids. However, these well-established methods face
some disadvantages: 1) the process of sample preparation is compli-
cated and time-consuming; 2) such methods must be conducted by
trained personnel in laboratories. So it is hard to achieve large-scale
screening. In addition, electrochemical sensors have also been used to
detection of illicit drugs [16–18]. But the single position of anodic/
cathodic peak is easily influenced. In many instances, commercial test
kits (colloidal gold) are usually used as screening tests for urines with
advantages of efficiency, sensitivity and good selectivity [19,20]. While
the R & D cycle is long and the commercial test kits are only for a
limited number of illicit drugs at present. It is difficult to cope with the
endless designer drugs and their metabolites. Moreover, the colloidal
gold techniques could not be intended for quantitative determination.
In terms of various kinds of controlled drugs, spectroscopy techniques
(fluorescence spectroscopy [21], ultraviolet spectrum [22,23] and in-
frared (IR) spectroscopy [24,25],) are also applied.

Here, we introduced another important method, namely surface-
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enhanced Raman spectroscopy (SERS). SERS is a phenomenon in which
the Raman signals of molecules are enormously enhanced and fluor-
escence is suppressed when they are very close to certain SERS-active
nanostructures [26–29]. Compared to other analytical techniques, its
advantages have been highlighted in Table 1. SERS is one of vibrational
spectroscopic methods based Raman spectroscopy free from aqueous
impact. SERS not only can provide a highly specific molecular finger-
print, but also can realize ultra-trace analysis. And it just takes only few
seconds to collect one SERS spectrum. The SERS technique has potential
to resolve a mixture into its individual components because of mole-
cular specificity. Thus, it may develop to a viable method for identifi-
cation of illicit drugs in complex systems.

In recent years, the demand for SERS techniques that can provide
fast, reliable and even quantitative measurements of illicit drugs has
increased widely. But to date, there are few reviews comprehensively
about SERS application in illicit drugs detection [30–32]. For this
reason, this paper mainly reviews the development of SERS as efficient
sensor platform for illicit drugs detection, particularly concerning trace
amount of drugs and primary form or metabolites in bio-fluid. The re-
view is organized as follows. First, this article will be on focus of the
chemical analysis of illicit drugs owing to the increasing availability of
suitable nanostructures. Second, SERS applications are highlighted in
the determination of illicit drugs or their metabolites in bio-fluids. Fi-
nally, the future trends of SERS technique in the field of illicit drugs
analysis were mentioned.

2. Chemical analysis of illicit drugs

Many illicit drugs (opiates, cocaine, cannabis, amphetamine-type
stimulants and some new psychoactive substances) are good Raman
scatterers, and therefore lent to rapid analysis via Raman spectroscopy.
However, Raman spectroscopy is intended for molecular structure
characterization rather than detection due to its relatively low sensi-
tivity. So SERS as a particular working mode of Raman scattering is
imposed in consideration of trace amount existing (as shown in Fig. 1).
SERS is a modern technique and allows one to carry out different
analysis, even if the quantity of sample available is small. At present,
the technique has been applied to quantitative and/or qualitative de-
tection, which can meet the need of rapid, sensitive, and reliable ana-
lysis. In this section, the illicit drugs in simple systems mainly concern
about standard samples, street drugs, drugs additives and suspicious
objects.

2.1. Illicit drugs powder and suspicious objects

Raman spectroscopy is a valuable tool for detailed chemical analysis
and it is often applied to identify solid powder [33]. This technique has
the benefit of no sample preparation and can be performed on samples
without removal from the evidence, thus there is no potential risk of
contamination [34,35]. The Raman spectra of many sorts of illicit
drugs’ standard substances have been recorded, such as a representative
range of β-ketophenethylamine, the rapidly growing family of cath-
inone-related “legal high” recreational drugs [36], cocaine [37] and
3,4-methylenedioxymethamphetamine (MDMA) [35]. And as the de-
velopment of Raman spectrographs, small contamination of illicit drugs
and suspicious objects present on fibers of clothes [38–40] and fin-
gerprints [41,42], can also be analyzed rapidly with direct laser beams,
fiber optic probes and microscopes. If trace contamination of prohibited
substances were found on weighing scales or used packaging, it might
be possible to link with drug related activities, in spite of no bulk
powders. The technique promises to be a helpful tool for forensic sci-
ence.

To promote on-site analysis, transportable Raman spectrometers
were gradually applied to in situ detection of seized illicit drugs (in-
cluding solid or liquid forms of heroin, cocaine and amphetamine) [43].
Moreover, the progress of the software makes it possible to get the
pertinent investigative information by nontechnical personnel quickly
and conveniently, thereby making field analysis simple. In the cases,
such as border controls and airport environment, people usually fin-
ished the identification through an automatic identification of the
spectral window after digital library was created by reference sub-
stances [34,44]. And above approaches inspire researchers to achieve
field detection using more portable Raman spectrometer. It should be
pointed out that, even though Raman spectroscopy has the ability to
distinguish the different substances present in a sample, it is not a very
sensitive technique. For this reason, SERS is an important development
direction for sensitive detection.

2.2. SERS substrate development

As a kind of nano-analytical technique, the well sensitivity of SERS
can be attained by improving metal-dielectric nanoparticle substrates.
And various SERS substrates have been fabricated and applied in dif-
ferent fields. There are several review papers on SERS substrate fabri-
cations [45–47]. The theoretical and experimental studies have shown
that active substrates possessed nano-size characteristics and broad and

Table 1
The advantages of the SERS compared to other techniques.

Versus Nuclear magnetic resonance (NMR) Infrared spectroscopy (IR) Electrochemistry (EM) Mass spectrometry (MS)

SERS Fast; Inexpensive; On-site detection Without impact of water; Sensitive Fingerprint Fast; Convenient; large-scale screening
Analyte Heroin Opiates Morphine, codeine Cocaine, Amphetamines
Reference [8,63] [24,91] [18,51,91] [11,15,53,90]

Fig. 1. Schematic of Raman spectroscopy and surface-enhanced Raman [28].
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intense plasmon resonances in the visible-near infrared region [48–50].
Here we mainly discuss two types of SERS substrates: colloid-based
substrate and solid surface-based substrates.

First, we discuss the colloid-based substrate. Gold or silver nano-
particles, reduced by trisodium citrate, are the most classic colloidal
substrate, which had been applied to detect morphine, cocaine, me-
thamphetamine (MAMP), mephedrone and a set of structurally similar
synthetic cannabinoids [51–53]. And to the test procedures, a number
of conditions were explored in relation to SERS signals optimization
including pH and aggregating agents. Rana et al. studied different ag-
gregating agents for silver sol to identify trace level of illicit drugs [54].
Aggregation of metal colloids is perhaps the simplest method to pro-
duce substrates that can exhibit field enhancements large enough for
single molecule SERS detection [55,56]. According to these reports, the
optimization of parameters was an important work to apply SERS to
actual situations [51,52].

Our group proposed a dynamic surface-enhanced Raman spectro-
scopy (D-SERS) method, which can provide a three-dimensional (3D)
hotspot matrix based on state translation from the wet state to the dry
state. During this process, hotspots can be held between every two
adjacent particles in 3D space, with minimal polydispersity of the
particle size and maximal uniformity of the interparticle distance [57].
Taking advantage of the method, a series of works was explored to il-
licit drugs detection to improve sensitivity [58–60]. Among them, Yan
et al. precisely analyzed MDMA and α-methyltryptamine hydrochloride
via internal standard D-SERS strategy (in Fig. 2). As a consequence, one
has reason to believe our approach is promising to challenge quanti-
tative problems in conventional SERS analysis.

Additionally, an important criterion for SERS sensors is that ‘the
analyte of interest must be within a few nanometers of the nanos-
tructured surface’ [61]. Li et al. produced Au nanoparticle–Ag nanowire
single hot spot platform for SERS analysis, which can provide a ‘‘nano-
channel’’ to trap molecules with the presence of capillary imbibition (in
Fig. 3A) [62]. Also with the help of capillarity induced negative pres-
sure of water plugs in nano-channels, Yu et al. demonstrated a novel
sodium chloride crystal-induced SERS platform that owns locations and
trapping of illicit drugs for highly sensitive detection [63]. Moreover,
three-dimensional (3D) SERS hotspots were created through 3D silver
spherical colloid (in Fig. 3B). The hotspots existed not only between
every two adjacent particles in 3D space, but also into the third di-
mension along the z-axis [64].

On the basis of colloidal substrate, surface functionalization tech-
nique was gradually used to obtain some expects. Sulk et al. proposed a
selective substrate by modification with 2-mercaptonicotinic acid to

detect illicit drugs of phenylalkylamines [65,66]. Alan Stewart et al.
reported an example of modified silver nanoparticles with thiol
monolayer to promotes adsorption and importantly achieve quantita-
tive detection of MDMA [67]. According to Fig. 4, the analysis and
quantification of the main cocaine metabolite benzoylecgonine (BCG)
were achieved to monitor the vibrational changes occurring at a spe-
cific bio-interface (a monoclonal antibody, mAb) supported on silver-
coated carbon nanotubes (CNT@Ag) [68]. This research provided a
new idea that SERS can be used for the label-free determination and
quantification of relevant small bio-metabolites that are hard to identify
by conventional immunological methods, in the absence of labelling.

On the other hand, one of advances in colloid-based substrates is to
fabricate SERS substrate on the novel support besides silicon wafer
[69,70]. Mabbott et al. exhibited an amusing approach to improve the
performance of SERS, namely deposition of silver onto British 2p coins,
which had been demonstrated to be an efficient and cost effective way
for the detection of illicit materials (in Fig. 5A) [71]. Lee fabricated
polymer-stabilized silver nanoparticle aggregates film mounted on
aluminium roll backing material and the photograph of Poly-SERS film
has been shown in Fig. 5B [72]. The approach provided new in-
vestigative directions by allowing objects containing illicit drugs to be
identified at scenes due to swabbing method. And Yu et al. demon-
strated inkjet-printed silver nanoparticles on paper as SERS substrate
(in Fig. 5C) [73,74]. The paper dipstick combined pump-free loading of
liquid samples into the detection device and analyte concentration in
virtue of capillary-action wicking of cellulose. They combined SERS
with paper chromatography, which help to integrate sample cleanup
and analyte separation without extraction.

Compared to colloid-based SERS substrates fabricated by “bottom-
up” techniques as described, solid surface-based substrates were also
available to illicit drugs SERS analysis. For example, large scale and
reproducible vertically-aligned silver nanorods, prepared by a labora-
tory-made dc magnetron sputtering system with a glancing-angle de-
position technique [75] and controlled fabrication of silver nanoneedles
array [76]. The sample preparation was just needed to drop the analyte
solution on the top of solid-based substrates and the process was simple
with relatively consistent results. Although such substrates could be
commercially available, the price is usually relatively expensive.

To date, more academic research focused on colloidal substrate
[72,77]. And people tend to design devices for implement of SERS as
effective and less expensive diagnostic tools (in Fig. 6) [78].

Fig. 2. Schematic diagram of the optimal hotspots created from D-SERS combined with an internal standard for quantitative detection [60].
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3. Detection of illicit drugs or their metabolites in bio-fluids

SERS, a physicochemical technique, is considered to have excep-
tional potential for use in the analysis of bio-fluids. One of the main
reasons is that water, as the major component of all bio-fluids, is a very
weak Raman scatterer. There has been an increasing demand for rapid

and sensitive techniques for the identification and quantification of il-
licit drugs and their metabolites in human bio-fluids during the past few
decades. However, the applicability of SERS is limited by the fact that
most biological samples are complex and the signals of analytes are
often concealed by vibrational spectra from matrix, particularly when
the concentration of analytes is very low. Moreover, most biological

Fig. 3. (A) The illustration of the liquid-bridge between the Au nanoparticle and Ag nanowire and the schematic of the assembled single hot spot by capillary force-
induced cohesion during the drying process [62]. (B) The process of the self-assembly of Ag nanoparticles into spherical Ag colloidal superstructures [64].

Fig. 4. Schematic representation of label-free SERS detection of BCG on silver-coated carbon with mAb and the corresponding spectra [68].

Fig. 5. (A) Schematic representation of tuppence-based SERS for the detection of illicit materials [71]. (B) Photograph showing disks of Poly-SERS film mounted on
aluminium roll backing material. Inset shows SEM images of Ag nanoparticle clusters isolated within a Poly-SERS film [72]. (C) SERS detection with a portable
spectrometer using inkjet-printed paper-based SERS dipsticks, inset: SEM of silver nanoparticles on paper [73].

B. Yu et al. Talanta 191 (2019) 1–10

4



samples in the visible light region express strong fluorescence.
Dispersive Raman systems have made great progress to improve the
performance of SERS detection, which was not shown in this review. In
order to enhance the detection capability of SERS, more and more
techniques are combined [79,80]. Here, the related contents are now
classified according to the different kinds of bio-fluids.

3.1. Urine

Urine is excess wastes extracted from the bloodstream by the
kidney. And urine could reflect the drug consumption during the pre-
ceding 1–4 days. Because urine can also be collected in a noninvasive
way, it is commonly used to monitor and identify drugs abuse
[7,81,82]. Synthetic drugs, such as methamphetamine and ampheta-
mine, are primarily excreted as intact drugs in urine [83]. Despite of the
potential diagnostic value of urine, there are only a few groups studied
urine samples from drug addicts by SERS. The main components in
human urine include urea, creatinine, uric acid and albumin, which
have particular sensitivity for Raman methods and they can seriously
affect the determination of analytes [84,85].

Alharbi et al. took full advantage of the multiple salts in the com-
plexity of urine to form aggregates spontaneously, which could realize
the sensitivity detection of the opioid tramadol. But the spectra must be
collected immediately after silver hydroxylamine colloid and the sig-
nals would be lost as aggregates precipitates [86]. Dong et al. also
provided a way to directly detect illicit drugs in urine without any
sample pretreatment (in Fig. 7A) [87]. He introduced D-SERS method
with high sensitivity to couple with supporting vector machines (SVM)
to achieve the intelligent spectral analysis. (The SVM method could
help to classify different samples and deal with the SERS spectra for fast
and visual identification.) Nevertheless, people are unable to perceive
the difference of SERS spectra between normal urine and urine spiked
with varying ppm of MAMP. Urea is the principal interference for de-
tection in urine. Nuntawong et al. reported acidulation treatments to
the specimen samples before SERS analysis to remove the interference
from the urea. The organic urea-based byproducts eventually pre-
cipitate and the dissolved urine molecules would lose their affinity to
bind on the silver surface. Thus the SERS signal intensity of MAMP/AM
in the urine was enhanced [75]. However, the urine is of complex
matrix and only removal of urea seems to be not enough for practical
detection.

For the sake of more clear signature of analytes in the complex
human urine, our group then developed liquid-liquid micro-extraction
(LLME) techniques to pretreat urine samples for separation and pur-
ification of analytes (in Fig. 7B) [64]. Afterwards Han et al. used
methoxymercaptopoly (ethylene glycol) (mPEG-SH) modified gold na-
norods to act as SERS chips and proposed a portable kit for reliable
SERS detection of MAMP and MDMA in human urine between 3 and
5min (in Fig. 7C) [88]. On the basis of micro-extraction method cou-
pled with SERS, Ma et al. further developed such technique [89]. They
reported an interfacial SERS platform through the large-scale self-as-
sembly of gold nanoparticles (Au NPs) arrays at the cyclohexane
(CYH)/water interface for detecting trace drug molecules and realized
the substrate-free interfacial SERS detection (in Fig. 7D). The drug
molecules extracted by the CYH phase from a urine sample were di-
rectly localized into the self-organized plasmonic hotspots. Owing to
the distance dependence of SERS, excellent Raman enhancement was
thus yielded. Date to now, we have developed a mature technical route
to achieve sensitive and simple determination of illicit drugs via LLME-
SERS for drug addicts urine. Not only amphetamines, synthetic can-
nabinoids, cocaine and morphine could also be identified via micro-
extraction coupled with SERS [53,90,91].

3.2. Saliva

Saliva (99.5% of water), the biological fluid taken by mouth, is easy
to conduct chemical analysis. And sampling saliva can be implemented
noninvasively and under supervision. For some synthetic drugs, the
concentrations in saliva even exceed those in blood plasma [92–94].
Therefore, the exploration of illicit drugs detection in saliva is very
meaningful.

The team of Stuart Farquharson has been investigating the potential
of SERS to both identify and quantify drugs and their metabolites in
saliva from about 2004, even though the analytes belongs to medicines
of clinical trial in the beginning [95–97]. Considering illicit drugs
abuse, they developed glass capillaries containing porous glass matrix
with fused gold colloids to meet SERS-active need. Due to combining a
solid-phase extraction (SPE) capillary to separate the drugs from saliva,
many kinds of illicit drugs at low concentration could be detected
[98–100]. Moreover, they built a SERS spectra library comprised of
over 150 different drugs (each of which possesses a unique spectrum),
and the results could be screened via a search and match software
program. Furthermore, they developed a sampling kit (a saliva col-
lector, a SPE material, and a SERS-capillary) for detection of illicit
drugs in impaired driver saliva using a portable Raman spectrometer, as
shown in Fig. 8 [101]. The total analysis, from sample collection to
positive identification, was performed during no more than 10min. The
success of work approach was summed up in three ways: 1) the sim-
plicity of extraction method to apply the complex matrices; 2) the high
sensitivity of SERS detection; 3) the ability of Raman spectroscopy to
identify molecular structures.

In order to obtain reproducible real-time SERS signals in saliva,
people also try to combine microfluidic technology with SERS.
Compared to traditional SERS detection in an exposed environment,
microfluidic-SERS allows the direct detection of analytes with interac-
tion between analytes and the active surface under liquid conditions
[102–104]. Andreou et al. designed a microfluidics device to detect
MAMP (in Fig. 9) [92]. Silver nanoparticles suspension, a saliva spe-
cimen sample, and salt solution were loaded and driven to the channel
flow by a vacuum pump. Molecules to be measured in the focused
stream diffused laterally into the side flows and salt ions also diffused
into the colloid stream inducing nanoparticle aggregation, creating
SERS-active clusters, thus provided a sensitive detection. However,
there are some drawbacks in this system. For example, it may take a
long time for the process of aggregation and the channel would accu-
mulate silver nanoparticles over time because of the aggregating agent,
resulting in a memory effect.

Fig. 6. Schematic representation of the SERS-active substrate preparation and
detection process [78].
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3.3. Other kinds of bio-fluids

In this part, illicit drugs analysis in nasal fluid and blood is mainly
presented. For nasal mucus, their main function is to capture small
particles (dust, particulate pollutants, and allergens), avoiding enter the
respiratory system. The parent snorted compound exists in nasal fluid,
which is the natural analysis advantage. And the sampling preparation
was simple, inexpensive and non-invasive [44]. For human blood, it
plays a crucial role in biological activity and is commonly used to
analyze illicit drugs abuse. However, according to investigation, whole
human blood, blood plasma, and red blood cells would produce rich
SERS spectra [105]. Chen et al. developed a microfluidic chip that
consisted of front-end cell capture structures and back-end filters. And
the device could be used to blood plasma separation with gradual fil-
tration to avoid the effects of blood cells [106]. Abdu et al. successfully
assess multiple human bio-fluids (urine, serum and plasma) with a
range of multivariate statistical analysis techniques on the basis of full
SERS spectral data [107]. And they also studied quantitative detection
of codeine in human plasma using SERS via adaptation of the isotopic
labelling principle and the approach was shown in Fig. 10 [108]. Un-
fortunately, detection of illicit drugs in human blood has to be a very
challenging work.

Fig. 7. (A) Schematic procedures of D-SERS coupled with SVM to direct readout of drugs in human urine [87]. (B) Schematic procedures for separation and
concentration of MA or MDMA from real human urine [64]. (C) Illustration of a Portable Kit for Rapid SERS Detection of Drugs in Real Human Urine [88]. (D)
Schematic illustrations and optical images of the urine extract-induced self-assembly of GNP arrays at the liquid/air interface for SERS detection [89].

Fig. 8. (A) Photograph of dispersive Raman system used for impaired driver saliva. (B) Photograph of the components used for manual analysis of drugs in saliva. 1)
Swab, 2) saliva collection tube, 3) 1mL syringe with 4) 0.2 µm filter, 5) Tygon tubing connectors, 6) blunt needle, 7) SPE column, 8) SERS-active capillary, 9) 2mL
vials containing reagents (plus 1 for collecting waste) [101].

Fig. 9. Flow-focusing microfluidic device used for controlled Ag-NP aggrega-
tion [92].
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4. Conclusions and outlooks

In this review, we have summarized the developments and appli-
cations of SERS in the field of drugs analysis in different environments.
On the basis of signatures from standard illicit drugs and common ad-
ditives in street samples, the real analysis in complex environments is
gradually explored in order to solve practical problems. And the eva-
luation of newly developed method was conducted to measure the real
case, not simulation samples. Even though significant progress has been
made as the mentioned, there are still tricky problems considering the
need for fast, reliable and even accurate quantitative measurements.
And the trace levels of drugs and signal interferences may be the main
difficulties for qualitative detection. The challenges must be in-
vestigated and addressed to promote the practical applications (as
shown in Fig. 11).

First, surface coverage. SERS is governed by the plasmon, which is
defined as: “a quantum quasi-particle representing the elementary ex-
citations, or modes, of the charge density oscillations in a plasma” by Le
Ru and Etchegoin [109,110]. Usually, the obtained weak signals by
traditional Raman technique can be overcome via different morpholo-
gies of metallic nanostructures. Metallic nanomaterials however are not
without problems. Among the parameters that play a major role in the
appearance of the SERS spectra, the surface coverage (molecule–metal

interaction) seems to need more attention in the future. If the illicit
drugs do not have strong affinity for the SERS substrate, it will be hard
to obtain sensitive identification [92,111,112]. This is particularly ob-
vious in complex fluids containing multiple species, where moieties
with high affinity could bind to the exclusion of other species that may
be present [65,87]. And advanced by nanotechnology and functiona-
lization, more and more sensitive and reliable SERS substrates will be
fabricated.

Second, multi technologies integration. In face of a target analyte in
a simple solvent, the intensity of Raman signal can be enhanced under
the help of novel substrate, thus improve the sensitivity of detection.
Nevertheless, SERS is not a separation technique. When the target
analyte exists in complex matrices, it is usually too difficult to obtain
the signal of target directly [87,105]. In order to remove matrix in-
terferences for the enhancement of detection capability, one way is to
use capturing techniques via the selectivity for targets molecules, in-
cluding antibody [113,114],aptamer [115–117] and molecular im-
printing [31,118]. Another way is to couple with separation techniques
(solid/liquid-phase extraction [119], thin layer chromatography (TLC)
[120,121], chemical separation [65] or HPLC [122], et al.). Other
techniques devices (colorimetric screening [123] and microfluidic
[80,92]) can help to facilitate high-throughput detection capabilities
and improve the reliability of SERS. For an extended overview of the
SERS based techniques, we refer readers to the excellent review by
Zhang et al. [79] Currently, SERS researches about illicit drugs detec-
tion are still in development stage. Most attention was focused on the
development of various SERS substrates and the developed methods
were evaluated via simple systems. Even though some studies have
demonstrated the advantages of multi techniques integration to illicit
drugs detection in complex environment, the vast majority of subjects
are simulated samples through standard addition. And measurements
will follow with interest actual samples. In addition, a more simplified
pretreatment and analysis procedure are needed, which will lead to a
faster and more convenient analysis in complex matrices compared
with conventional chromatographic procedures.

Third, automated SERS analysis for illicit drugs. On the one hand,
improve the sensitivity of detection, because the concentration of drugs
to be tested is usually very low. On the other hand, get more accurate
and fast test results, which is helpful for law enforcement officers to

Fig. 10. The chemical structures of codeine and codeine-d6 (A). Baseline-corrected SERS spectra of 100 µM codeine spiked into (B) water (C) human plasma [108].

Fig. 11. The trends of SERS development for illicit drugs analysis in the future.
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popularize SERS technology for on-site drug detection. At present, a
range of different statistical analysis techniques, including SVM [87],
PCA [64], principal component–discriminant function analysis (PC-
DFA) [104], partial least square (PLS) [124] and artificial neural net-
works (ANNs) [21] have been employed to investigate the test data.
Even multivariate statistical analysis techniques are conducted. When
the SERS spectra coupled with chemometrics, the clear differentiation
of neat samples and these spiked with varying concentrations of ana-
lytes could be identified. Moreover, the relationship between SERS
spectral data and the concentrations of analytes may be obtained,
which could make quantification detection possible. The results of such
studies demonstrate the potential of SERS application as a diagnostic
screening method. The combination development of SERS and powerful
machine learning technique is an important aspect to achieve on-site
detection, so that nontechnical personnel can conveniently and accu-
rately get the pertinent investigative information. Thus make it possible
to realize economic and on-site SERS analysis using a portable device.

In conclusion, SERS is hopeful to be a versatile and powerful sensor
platform in real-world applications for illicit drugs analysis. Of course,
it ought not to be ignored that quantification is still an absolute chal-
lenge for in situ detection [60,69,70,125]. In terms of the importance to
state long-term abuse of illicit drugs and drug dosing for legal ther-
apeutics, we believe that more and more people will be inspired to use
SERS for the quantitative analysis of analytes instead of lengthy and
time-consuming chromatography. In the next few years, not only la-
boratory but also field methods are expected to flourish.
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