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SUMMARY

For the estimation of principal components an iterative procedure based
on the principle of least squares has recently been reported [19]. Lyttkens in
his report to this Symposium [7] developed the rationale of the new technique,
and showed the close connection between two approaches in multivariate
analysis, (a) principal components [3, 8]; and (b) Young-Whittle’s approach
in factor analysis [12, 21]. The present paper focuses on the flexibility of
the iterative method in adaptations and extensions in various directions.
Section 1 deals with factor models with one factor and. equal residual vari-
ances, and analyzes the component structure in terms of the factor structure.
The ensuing relations are exploited in Section 2 to estimate the one-factor
model, making use of the least-squares estimate of the first principal com-
ponent. Section 3 extends the iterative method to a multidimensional ap-
proach of principal components, and to hybrid models that involve multiple
regression and canonical correlations.

1. COMPONENT STRUCTURE vs. FACTOR STRUCTURE

1.1. Introduction

Sections 1 and 2 of the present paper were planned as a counterpart to [13],
a Monte Carlo illustration of Whittle’s application of principal-component
analysis for the estimation of Young-Whittle’s factor model [12], the in-
centive for a reconsideration being to illustrate the iterative estimation tech-
nique recently reported [7, 19]. Specific attention is now paid to similarities
and differences between component analysis and factor analysis. Whereas
component models and factor models under suitable conditions (equal
variances of the factor residuals) have the same numerical values for the para-
meters f that constitute the loadings in the factor model and the direction
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cosines in the component model, the two approaches differ when it comes to
residuals, factors, and components. The key point is that the models differ;
hence they call for different estimation techniques. The parting of the ways
was not clear to me at the time of the Uppsala Symposium on Psychological
Factor Analysis (1953), where [13] was presented and discussed. Therefore,
I made it a point to emphasize the differences at issue in the first draft of the
present paper as reported and discussed at the Dayton Symposium on Multi-
variate Analysis. By a suitable transformation, as shown in Section 2, esti-
mates of component structure can be used to obtain estimates of factor
structure. In the first draft of the paper, the transformation from component
structure to factor structure was carried out in one stroke, by a jomt treatment
of population properties and sample properties. In the final version, to make
for clarity, the transformation is carried out separately for the population
and the sample.

The differences between component analysis and factor analysis are by no
means a new feature. Specific reference is made to the clarifying paper by
Rao [9]. To quote a statement of Rao’s that bears upon collective analysis
of the variates, principal components aim at reproducing their entire moment
matrix, theoretical p;; or observed m;;, whereas factor analysis only aims
at reproducing the nondiagonal elements, i # j. Thus it is clear from Rao’s
review that the parting of the ways lies in the model itself, and is not primarily
a matter of different estimation techniques, such as maximum likelihood vs.
least squares. To some extent the differences between the two types of models
have been obscured by other issues, notably collective analysis vs. individual
analysis, and the representation of the individual factors or components as
parameters vs. random variates.

The approach of the present paper is limited in two respects. One is that the
method works only for factor models with equal (or known) residual vari-
ances. The other is that the estimation of factor structure provides estimates
not of the individual factor values {, but of the conditional expectation of {,
for given individual component &,. In practice it is an important problem to
estimate the factor structure when the residual variances may be different.
For this extension reference is made to the techniques designed by Jéreskog
[4; 5; 19, Chap. 8]. It is an interesting question how the estimation of factor
structure in Section 2 compares with Joreskog’s and other techniques. This is,
however, an order of problems that falls outside the scope of the present

paper.
1.2. Principal Components vs. Factor Representation

Throughout the paper we shall be concerned with one and the same set of
variates—theoretical,

nla ”"np (13)
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or observed in a sample of n observations,

Yits +++> Vin s i=1, D (1b)

The number of variates, p, will be kept fixed. We shall consider two theoretical
representations,

"
N = Zlﬂiaga + & (2)
k
= ZlﬁiaCa + 5i (3)
where the parameters f3;, are assumed to satisfy conditions
p
Yha=1 (4a)
i=1
p
2. BiuBw=0; a#b. (4b)
i=1

Here and in the following, the unspecified integers run as follows:
a,b=1,..,kork’; Lj=1,...,p; tbtu=1, .., n

Model (2) will be specified as a component structure, model (3) as a
factor structure. Hence the parameters f3;, figure as direction cosines of the
principal components £, in model (2), and as loadings of the factors (,
in model (3). To bring the similarity between approaches (2) and (3) in
relief, we deviate somewhat from current usage, inasmuch as the normaliza-
tion (4a) is current in component analysis, whereas factor analysis usually
adopts the normalization

EC¢H=1.

Any two components &, and &, are assumed to have zero product moments,
just as is customary with factor models,

E() =0, E(L)=0; a#b ®)

and it is known that this involves no loss of generality (see [12]).
Both representations (2) and (3) will be specified in terms of conditional
expectations; thus

I
E(rlt I 61’ o iy 6k’)= Zlﬁiaéa (6)

k
E(nilCla L Ck) = ZlﬂiaCa' (7)

Hence we shall say that the systematic part (6) in relation (2) is a predictor
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of the variate 7;, and similarly for the systematic part (7) of (3); see [18].
Assumption (6) implies

E(g)=0;  E(Ss#)=0 ®
and similarly for (7),
E@G)=0;  E(9)=0. ©)

In model (2) the components ¢, are assumed to allow the reverse repre-
sentation

)4
&= 3 but- (102)
Substituting (10a) to the right in (2), reduction by the use of (4) gives
p
Y Bt =0. (10b)
i=1

The equivalent relations (10a and b) will be referred to as the component

property of the model (cf. [7]).
In model (3) the residuals §; are assumed to have zero product moments:

E(5:5,) =0 (11)

which in conjunction with (9a) implies that the factor residuals are mutually
uncorrelated ; this will be referred to as the factor property of the model.

Comments.! (a) Reference is made to the geometric interpretation of the -
component model (2) in terms of lines and planes of closest fit in the joint
distribution of the variates under analysis, theoretical (1a) or observed (1b)
[3, 8, 12]. The first component &, (a=1) has the largest variance and gives
the line of closest fit in the sense of least squares. If the joint distribution is
nonsingular, the plane of closest fit is orthogonal to the pth component.

The classic estimation method for component structure [3, 8] gives the
variances and loadings of the components as eigenvalues and eigenvectors
of the product-moment matrix u, m of the variates under analysis, theoretical

p=[w;l; Hij = E(nn;) (12a)
or observed,
]_ n
m = [m;]; m;; = " tzlyityjr' (12b)

1 The reader is assumed to have a general orientation about factor and component
analysis. The introductory sections of [5] are very instructive for the purpose. For the
general background in multivariate analysis, see [1, 6].
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(b) Factor models originate from experimental psychology [10, 11].
Distinction is made between individual and collective analysis; that is, in-
dividual representation of the variates 7, as in (2) or (3) vs. models formulated
in terms of product moments (12a). Speaking generally, there is no difference
in principle between an individual model and the corresponding collective
model. Factor models are usually specified in individual terms; factor esti-
mation techniques make use of observed product moments (12b), and the
statement of numerical results and verbal conclusions is often oriented toward
collective rather than individual aspects. Component models are usually
formulated in collective terms. The work of Whittle [12] was pioneering in
that it emphasized the equivalence in the component approach between the
basic assumptions of collective analysis and individual analysis.

We see that the factor and component properties (10) and (11) are mutually
exclusive. This is clearly so, since (10b) implies

(e |-

and this could not be true if the component residuals ¢; and ¢; were to satisfy
an assumption of type (11).

Note the difference in current terminology between the numbers & and £’
in models (2) and (3). For k-factor models (3) such that all residuals §; have
the same variance ¢(d,) it has been shown by Whittle [12] that in the corres-
ponding component structure (2), with k" = p, there are k components that
have larger variance than the remaining p — k ones, all of which have the
same variance ¢2(g;). In such a case, as shown by Lyttkens [7], the variances
of these components are given by

E(&az) = Z Z ﬂiaﬁjaE(rlinj) 5 a'= 13 wisie g k' (14)

(c) In specifying models (2) and (3) in terms of predictors as in (6) and (7),
rather than in terms of residual properties (8) or (9) as is customary, the
operative use of the models for predictive purposes is emphasized (cf. [15,
17, 18]). For given components &,, the parameters f3;, have least-squares
properties in model (2), that is, the residuals ¢; have the smallest possible
standard deviation, and for given factors {, the same f;,’s have least-squares
properties in model (3).

If the probability distribution of the variates #; is jointly normal, specifica-
tion (6) is equivalent to (8), and (7) equivalent to (9).

1.3. Young-Whittle’s Approach with One Factor and Equal Residual
Variances

Following Young [21] and Whittle [12], we shall consider a factor model (3)
with equal residual variances. To estimate such a model Whittle applies the
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Fig. 1. The dual representation (15) and (16) of two variates 7; and 7.

principle of least squares, minimizing the total residual variance. In the case
of one factor, as will be briefly reviewed in this section, his estimation pro-
cedure gives consistent estimates for the loadings f;, and a consistent esti-
mate not of the factor { but of the first principal component &. '

The Dual Representation. We form the factor model (3) in the special case
of one factor, say (,

n=pL+ 9 v (15a)
and assume that all residuals J; have the same standard deviation,
1
a(9;) = const. = W a(d), (15b)
where
S=(6+ -+ (15¢)

is the total residual of the one-factor model.
Further we shall represent the variates #; in terms of component model (2)
with one component ¢ and the same parameters f3;,

=Bl + &. (16a)
Here we rewrite the residuals in the normalized form

8= (16b)
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Fig. 2. The dual representation (15) and (16) of three variates 74, 12, and ;.

with
e=(e+ - +&)"%; o+ +0,2=1 (16c)

where ¢ is the total residual of the component representation (16a).

The dual representation (15) and (16) of the variates 7; is illustrated in
Fig. 1 for p = 2 and in Fig. 2 for p = 3. The graphs show an arbitrary point
P=(y, ...,n,) as generated from model (15) with factor {(=O0B) and re-
siduals §;. The total factor residual § is given by the line PB. The projection
of P on the line L that extends OB gives the point 4 and thereby the com-
ponent &(=0A). The line PA gives the total component residual ¢, and the
projection of PA on the coordinate axes give the component residuals ;.
We see that the coefficients ¢; may be interpreted as direction cosines of e.
Further we note that the ¢,’s for p > 2 are random relative to the direction
cosines f8;, and have p — 2 degrees of freedom.

Orthogonality Properties of Component and Factor Residuals. With
reference to Figs. 1 and 2, three different notions of orthogonality are in
play. We shall see that component and factor residuals have one mode of
orthogonality in common, whereas the two others are characteristic of com-
ponent and factor residuals, respectively.

(a) Geometric orthogonality, first mode. According to (15a), each factor
residual §; is measured along the coordinate axis of the corresponding
variate 7, . Since the coordinate axes are mutually orthogonal, the residuals J;
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are orthogonal ih the same geometric sense. The situation is the same for the
component residuals ¢;. Hence component and factor residuals have this
first mode of orthogonality in common.

(b) Geometric orthogonality, second mode. The total component residual
¢ is the orthogonal distance from the observational point P to the k'-dimen-
sional hyperplane spanned by the k&’ components &,. This mode of orthog-
onality is characteristic of the total component residual ¢, and accordingly is
not shared by the total factor residual 6.

(c) Stochastic orthogonality. The factor residuals J, have zero expectation
and zero product moments, giving

E(6,0;) = E(6;)E(d;) = 0. a7

Hence they are mutually orthogonal in the stochastic sense. Similarly, if
we interpret the residuals J; as elements in a Hilbert space with inner products
(6;, 6;) defined by the product moments E(9,9), the elements §; and §; are
mutually orthogonal in the terminology of Hilbert-space geometry; that is,
if we project one element upon another, the projection will be zero. This
mode of orthogonality is characteristic of the factor residuals J; ; as pointed
out in connection with (13), it is not shared by the component residuals &;.

Component Structure (16) Expressed in Terms of One-Factor Structure (15).

Theorem 1. For any one-factor Young-Whittle model (15) the relations

£=Y B, (18)
g=n— P (19)
whence

e=(l+ -+ e=¢le (20)

define a component representation (16) with the following properties:
B2 = BAEQ) + 5 %0 @1
= B2E(EY) + o%(e?) (22)
E(&) = E(©) (23a)
E(E) = E() + %az (6) (23b)

o\ 1/2

o(e) = (p—p—l) a(9) (24)

E(¢0) = E(C%). 2%)
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Proof. Relations (18) to (20) are immediate implications of (10a) and the
normalized expression (16¢) for the component residuals ¢;. Relations
(21) and (22) follow from definitions (15) and (16) and the general properties
(8) and (9).

Substituting (15a) in (18) we obtain

E=0+Y 8o, (26)
which gives (23a). Further, making use of (9) and ( 15b),

E@)=EC) +d%0)  EE)=EQ(?)

which verifies (23b) and (25). Finally, summing over 7 in (21) and (22) and
paying regard to (23),

> E(n®) = E(C®) + 6%(0) = E(&?) + o2(e) (27a)
= E(?) + i (8) + a*(¢) (27b)

where (27a and b) imply (24). Theorem 1 is proved.

Comment. Writing

& =E(¢|0 (28)
we note that (26) gives the conditional expectations
&=y E[(E*)*1 0] = E(€* 1) = 2.
This gives the unconditional expectations

E(E") =EQ  E[E)1= EE*) = E(C?).

1.4. NILES Estimation of Principal Components?

We shall consider a p x m array of observations (1b) which we assume
to be a sample of variates (la) ruled by the dual model (2) and (3). For two
models as estimated from the sample we write

x
Vi = Zl biaxat + ey (29)

k
= Zl biazat + dit‘ (30)

The NILES procedure gives estimates by,, x;,, e;, of parameters, com-
ponents, and residuals in the component model (2). In Section 2 we shall

2 NILES = Nonlinear Iterative Least Squares. See [19]; also cf. [16]
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adapt the procedure to obtain estimates for the elements z and d of the factor
model (3).

NILES estimation of the component model (2) is an iterative regression
procedure that may be summarized as follows.

(a) The procedure works stepwise, estimating component by component,
a=1, ..., k'. Ineach step the component x,, ..., X,, and its direction cosines
bias --- » by, are estimated by the iterative procedure. Thus when the (¢ — 1)st
component and its cosines have been estimated, the procedure obtains a
sequence of iterative estimates of component and cosines in the ath step,

X bR s=12,.. (31a)
giving in the limit
X = lim x&; b, =1lim b (s —»00) (31b)

as the NILES estimates for the ath component &£, and its direction cosines

B, in model (2).
(b) To start the iteration (31) we make s = 1, and take for 5{) a set of p
arbitrary numbers

b{Y, ..., b suchthat (bY)* + - + (bi)* = 1. (32)

las **+»
For general s, when the cosines proxy

b, ., b with (BE)? + - + (b)) (33)

las =

has been calculated, the iteration (31) proceeds with the following *criss-

cross”’ regressions:
First, we fix ¢ consecutively (=1, ..., n) and calculate for each ¢ the

regression of the rth column y;, (i =1, ..., p) on the cosines (33). This gives
the regression coefficients
xE T = Zb“)y,,, t=1,...,n (34)

which we take for the (s + 1)st component proxy.

Second, we fix i consecutively (i =1, ..., p) and calculate for each 7 the
regression of the ith row y;, (t =1, ..., n) on the component proxy (34). This
gives regression coefficients

n P ’
BE*D = ZIXSH)YH Zl £ ot B U R (35a)
= t=

which we use as auxiliary entities to calculate the (s 4+ 1)st cosines proxy,

fe 1 B(s+l) )
bia = 2; l=1,...,p. (35b)
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In words, we normalize the coefficients B; to a unit square sum to obtain the

cosines b;.
(c) When the calculations (32) to (35) have given estimates for the first

components and their direction cosines, say a = 1, ... , h, the (h + 1)st round
begins by calculating the residuals in the Ath step,
X T= 15 mig B
eith=yit_aglbiaxar; {t= 1, ) (36)

Taking the residuals thus defined to be our observations y;, in the (4 + 1)st
step, we apply procedure (2) anew, obtaining
ht1
€in = bint1Xnt 1 T Cinrt Yie = zl bigXar + €in+1 37
=

Comments. (a) Convergence. As shown by Lyttkens [7], the NILES
procedure of the previous section converges, giving well-defined estimates
bia» Xat, €;, for the direction cosines f8;,, component sample values &,,, and
residual sample values ¢;,, and the resulting cosines estimates b,, are equiva-
lent to those given by Hotelling’s classic method [3]. In his treatment of the
least-squares aspects of principal components, Lyttkens leans heavily on the
fundamental work of Whittle [12].

(b) Consistency. Least-squares estimates of linear predictors are known
to be consistent (that is, a parameter estimate b will tend in probability
to the corresponding theoretical parameter f§ as the sample size is allowed to
increase indefinitely) under very general conditions of statistical regularity [14].
The argument extends to NILES estimation of component models (2) as
specified in terms of predictors (6). The essential requirement is that as the
sample size n increases, each observed moment m;; as defined by (12) tends
to the corresponding theoretical moment y;;,

lim prob m;; = ;; ; ih,j=1,...,p. (38)
n—> o
In different phrasing, condition (38) requires that the sample (1b) under
analysis be ergodic with respect to the observed product moments m; ;-

The key argument in proving the consistency of the NILES estimates (31b)
is that in each step of the iterative procedure (34) and (35) every proxy % is a
continuous function of the moments m,;. In conjunction with the ergodicity
assumption (38) this implies

lim prob b, = i, (39)
n—aow
as stated. In view of (34), the component property (10a) carries over to the
least-squares estimates b;, and x,,, and gives

p
Xat = 21 biayit (40)
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Hence the consistency (39) of the cosine estimates by, extends to components
and residuals, giving
lim prob x;, = &, 5 lim prob e;, = &; 41)
n— oo n—o
Some qualification is needed as to the order of the components and the case
of components £, and &, which are equal in mean square, but these exceptional
cases can readily be checked and taken into account (see [7)).

2. COMPONENT STRUCTURE AS A BASIS FOR THE
ESTIMATION OF ONE-FACTOR STRUCTURE

Considering the one-factor model (15) with equal residual variances, the
problem dealt with in this section is to use the structure of the first principal
component to assess the factor structure. For the limited purpose of this
paper, it suffices to consider the case of one-factor structure, inasmuch as
(a) the one-to-one correspondence between factor and largest component in
the one-factor structure, (15) and (16), extends to the general case of k-factor
models, as we know from the work of Whittle [12] and Lyttkens [7], and (b)
the NILES estimates procedure (Section 1.4) gives the components one by
one, in the order of the component variance.

The transfer from component to factor structure makes no change in the
direction-cosines loading parameters f3;, since these are the same in the
component and factor models, (15) and (16). The components and factors
differ in the two models, as do the residuals. There is a radical difference here,
for the component ¢ and the component residuals ¢; can be assessed to be
exact linear expressions in the variates #;, as we know from Theorem 1,
whereas the corresponding transfer to factor structure necessarily brings in
the unknown factor residuals

oy =n; — P&
with the result that the transfer only provides conditional expectations for the
factor values (.

The population and sampling aspects of the problem will be dealt with
separately. As to population properties, we regard the observations (16)
under analysis to be generated from the factor model (15) with known
theoretical matrix p;;, unknown loadings fB;, and unknown individual
values ¢, and §,, for the factor and the residuals of the factor structure. We
take the loadings B; to be assessed from the theoretical moments y;; by
Hotelling’s classic method. Then relation (10a) provides the corresponding
individual values for the first principal component &, giving

P
&= .;Biyit 5 &y = Yie — Bile- 42)

SRl e b Lo
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Writing
Ct* = E(Ct I gt) (43a)

for the conditional expectations of a factor value ¢, for known component
value &,, and

8 = yu — BL* (43b)

for the corresponding factor residuals, Section 2.1 deals with the assessment
of {,* and ¢,* in terms of component structure. Furthermore, Section 2.1 is
concerned with the collective properties of ¢, and {;* notably the mean
square E((?).

As to the sampling aspects, we consider representation (29) of the observed
sample in terms of the least-squares estimates 4, of the direction cosines of the
first principal component and the estimates x, and e;, of the individual values
of the component and the component residuals. We take the cosines b; to be
estimated either by Hotelling’s classic method or by the NILES procedure
(Section 1.4), which in this respect are equivalent. The estimates x; and e;,
will be given by

p
=Y bvis  ew=yi—bx, (44)
in accordance with (36) and (40). Writing
Zt*a dt*

for the sample estimates of the quantities (43a and b), Section 2.2 deals with
the correction of the factor-structure estimates for finite-sample bias.

2.1. Population Properties

We shall be concerned with two types of problems:

(a) To estimate collective features of the factor structure in terms of the
collective component structure.

(b) To estimate the factor structure when the variates His -+ » 11, are known,
or, equivalently, when the component ¢ is known.

Factor Estimation. The following two simple theorems enter in order
under the headings (a) and (b). The first is an immediate implication of
relations (23b) and (24).

Theorem 2. For any one-factor model (15) with equal residual variances,
the relations

EQ) = K@) - —— ¥ o2 43)
p—1:5

gives the factor mean square in terms of the first principal component.
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Theorem 3. A least-squares estimate of the factor { for known component &
is given by
{*=A (46a)
where
R (5 MR ©
E(L%) + (1/p)a*(9) (p — DEE)
Proof. Relation (462) being in the nature of linear regression, we obtain
_EE)
E(¢%)
which by the use of (23) and (25) transforms to (46b).

A

(46b)

Comment. The following theorem brings in relief that the unknown factor
¢ does not coincide with its estimate {* for known component &

Theorem 4. The conditional estimate (* is a random variate with the
following collective properties:

5 _ E((?)
_ E*((% .

FEI= 5y + (le® “

% _ (1pE(Ha*(9)
HE =01 5@+ @pe ) )

Proof. As to (47), relation (46a) implies
E(* |18 =48 (50)
which gives the unconditional expectation

E(*) = AE(©) (51

in accordance with (47). As to (48), we infer from (46a) that
E[(£*)"] = 2282
Hence
E[({*)*] = AE[¢*]

which by use of (23) and (46b) reduces to (48). As to (49), we obtain by the
same argument,

EQC*19 =47
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which gives
E((*0) = 22E(8).
Hence
E[((* — 01 = EL({*)?] — 2E(C*) + E@®)
E*((%)
E({?) + (1/p)a*(6)

= E@) -
in accordance with (49).

Residual Estimation. The difference between factor values {, and their
estimates {,* carries over to the factor residuals

O = Vi — Bl (52a)
and the corresponding conditional residuals
O = Yu — Bl (SZb)

The unknown factor residuals &;, have zero expectation, E(6;) =0, as we
know from (9a). Expressing their variance in terms of component structure,
we obtain by (15) and (24),

1 1 1
0*(3) = = 07(6) = —— 0%(e) = —— Y o2(e)). 53
)= 70 = ;7O = T o (53)
The conditional residuals §,* are biased,

E(3;") = B(1 — HE() (54)

as readily verified. By deductions similar to the proof of Theorems 3 and 4,
their theoretical mean square comes out as

E[(3:%)"] = B2(L — A)E(E?) + (). (35)

2.2, Sample Estimates of One-Factor Structure. Corrections for
Finite-Sample Bias

Least-squares estimates of the structure of the first principal component
being given by (44), formulas (45) and (53) carry over to yield sample esti-
mates of the one-factor structure. Writing

1 = 1z
m(x*) == 3 x*  mpyA) ==Yyt =m, (56a)
ni:=1 H{=1
1 >
s%(e;) = . Y ek s*(@) = Y s%(e,) (56b)
t=1 i=1

for the observed mean squares of the first principal component and of the
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corresponding residual variances and similarly for the factor structure, we
obtain

m(z?) = m(x

1 2
— () 7

s*(dy) = 5 Sz(d) [s@= s*(e)- (58)

The corresponding estimates for the inleldual factor structure are

« [, 1 s
A= [1 -1 m(x"‘)] 9)

d: =Yu— biZ, . (60)
Formulas (57) and (58) are in the nature of large-sample estimates, with
estimation errors that tend to zero as the sample size increases, whereas
(59) and (60) are subject to an estimation error that does not vanish in
indefinitely large samples. In the following paragraphs we shall adduce three
simple corrections for finite-sample bias in the estimation, one for each of the
elements f8;, {,, &;, of the one-factor model under consideration.
The limited scope of these subsections must be emphasized. All through
we assume that the sample is large relative to the number of variates,

p<n. (61)

The argument is partly heuristic, and the assessment of large-sample standard
errors and confidence intervals is not more than mentioned.

The Residual Variance. The one-factor model (15) involves p parameters
to be estimated, namely B, ..., B,, or rather p — 1 if we take into account the
normalization (4a) to a unit square sum. We see that the estimation of the
individual factor values {, involves no loss of degrees of freedom, since the
estimates are given by (59) on the basis of the observations (1b), formula (44),
and the estimated parameters b;.

The model under estimation involves np residuals, as many as the available
observations (1b). By the argument of the previous paragraph the residual
variance is estimated on the basis of np — (p — 1) degrees of freedom. Hence,
letting “est” denote estimates corrected for finite-sample bias,

) Z e (62)

est 62(g) = = + P

and in consequence,
1
est 6%(5;) = . est 0%() =

? 2T e ©3)

T(-Dmp-p+ D%

1
3 est a%(e)




ESTIMATION OF THE PRINCIPAL COMPONENTS 407

We see that the correction needed in the standard deviation s(d) is of rela-
tive magnitude const./n,

est a(5;) ~ [1 - g ]s(dl) (64)

Factor and Component Corrections. To repeat from Section 1.3, the first
component in (16) ““explains more > than the factor in (15), or, equivalently,
o(e) < o(d). This feature is somewhat exaggerated in the sample, since s2(e)
comes out on the low side, owing to the loss of degrees of freedom, as we know
from Section 2.2. Correcting for this bias, we obtain

est E(£?) = > m(y;2) — est a%(g)

= zl: m(y?) — 3 Y e (65)

np — 17+1 ]

est E({?) = > m(y;?) — est *(5)

2
p 2
= m(yiz) - €it - (66)
Zi (np—p+1)(p—1)§; '

In formula (59) for the individual factor values, the finite-sample bias
affects the negative term under the root sign, and we see that both the numer-
ator and denominator make the term somewhat too small. As a first approxi-
mation we obtain

x|+ _ 1 s*(e)
sty ~[1 p— 1m(x?)

a+ Al)]x, (66a)
with

pre=1 Zim(}’iz)
np  m(x?)

(= (66b)

The Loadings b;. Here we encounter two sources of finite-sample bias.
These will be dealt with separately, and the ensuing corrections are to be
applied in conjunction.

One is the counterpart to the bias in the factor z,. Since the factor estimates
z, come out with a mean square somewhat too large, the negative correction
for bias will have to be balanced by a corresponding positive correction in the
loadings b; to maintain the least-squares approximation

bz, ~ Bl (67)
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Denoting this partial amendment by est’), we obtain

1) == __1__ _‘i(i)
est'” f; = [1 +p 1)
where A, is the same quantity as in (66).

The second source of bias in b; is the normalization (35b) to a unit square
sum. Considering % replications of the sample, let b,(r) denote the direc-
tion cosines of the first principal component as estimated from the rth
replication, and write

1+ Ao]b,- 68)

1 & 1 " 1/2
b= $50): Dby = Y60 - B (©9)

for the mean and standard deviation of b; as formed on the basis of the A
replications. The identity

h
LY b2 = B2 + D(b)
r=1
gives
p D 1 2 h
Y b2+ Y DXb)=1 Y ¥ bl
i=1 =1 h =1 /=4

=3 3 $oi=1

r=1i=1

where the last reduction makes use of (38). Hence

P p

Z Eiz <l= Z .Bi2

i=1 i=1
which shows that b; and b; tend to be too small in.absolute magnitude.
To counteract this bias we assume as a rough approximation that the requisite
correction is multiplicative, and independent of i. This gives, indicating
the second correction by est®,

est?B, = b(1 + A,) (70a)
where

A, ~ 33 DX(b) + 33 D*(b)*]. (70b)

In fact, taking the average of the corrected loadings over the replications,
and forming the square sum of the averages, we obtain

Y b1+ A) = (1 +24, + A Y b7
=1 +24, + 4D [1 = Y, D3]
=14+cAl} +~Y B’ (71)

A B omatend & Sdaden Ahc) boond bl & Locsadel
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which shows that the correction (70) takes into account first and second
powers of Y. D?(b)).

Comment. According to (70b) the second correction for the loadings
estimates is of the same order of magnitude as the sum of squares of the
standard deviations d(b;) of the loadings estimates. Hence for the correction
to work, the sample size » must be so large that this square sum is fairly
small.

The assessment of standard deviations D(b;) falls outside the scope of this
paper. In connection with the correction (70) we quote the following
large-sample formula,

a(e;)

i 62(8 )
(| 1~ pr o |
E@)(A =)
with reference to E. Lyttkens,®> who has recently obtained the formula by a
new argument, under assumptions that involve an extension of related earlier
results.

D(bi) Y

(72)

2.3. lllustrations by Monte Carlo Experiments

We shall now in all brevity report some experiments that have been carried
out to check and illustrate the NILES procedure (Section 1.4) for the esti-

mation of component structure and its adaptation (Section 2.1) for the esti-
mation of one-factor structure.

In the terminology of experimental psychology, our Monte Carlo experi-
ments simulate the observations of 4 ability tests as applied to 50 persons.
This makes 200 observations in each sample. Our experiments involve 100
replications of the sample, once with fixed and once with changing factor
values. This makes in all 200 x 200 = 40,000 observations. Further we shall
report other similar experiments, once with 25 9 of the data missing, and once
with 509%. All in all, the Monte Carlo study involves 120,000 simulated
observations. The numerical work was performed in a pilot round at Battelle
Memorial Institute, Columbus, Ohio, and in the production phase at the
University of Uppsala, Sweden, using IBM-1620 and CDC 3600 computers.*

The One-Factor Structure Taken to Generate the Data of the Experiments
1. Number of variates in the data set (1)

p=4 (73)

3 See [19, Chap. 1].

“ The programs have been written and run by Fil. Kand. S. Wold, Dept. of Chemistry,
Univ. of Uppsala, and Fil. Kand. D. Jonsson and Kand. L. Bodin, Dept. of Statistics, Univ.
of Uppsala, Sweden.
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II. Model. The factor model (3) with one factor and equal residual
variances,

1 1
k=1; a(d;) = 177—2— a(0) = 5 d(6) = const. (74)

111. Sample size n and number of replications h

n=50; h=100. (75)
1V. Loadings
2 1 1 2
hi=—gm: bi=—ms  B=gms P=gme (9

V. Factor values. 1In each sample
Cis oo {50 are nid. (0,1). 77)

That is, the individual factor values (, are generated so as to be normally
distributed and mutually independent with zero expectation and unit standard
deviation.

VI. Residuals. In each sample

Oi15 ---» 0550 are n.id. (0,1). (78)

Since p = 4, each sample involves 200 independent residuals &, .

VIL. Replications with fixed vs. changing factor values. The experiments
have been carried through in two versions:

A. Keeping the factor values (77) fixed in the 100 replications.

B. Generating the factor values (77) anew for each replication.

Having now specified the one-factor model (15) that generates the data
of our experiments, we note the following properties of the model.

Product moment matrix (12a) of the variates #; :

1.4 02 —-02 -04

0.2 1.1 =01 -02

—-04 0.2 0.2 1.4

in accordance with (76) to (78).
Standard deviation of the total factor residual is

(0) = 20(6;) =2 79
in accordance with (73) and (74).

Comments. (a) Small residuals make small differences between the factor

Ao Aamdedo ho L6
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and component models, (15) and (16). To bring the differences in relief we
have used substantial residuals; specifications (77) and (78) give

o(6) = a(() = [E(LH]'?
which makes larger residuals relative to the factors than is usually met in
practice.

(b) Versions A and B of specification VII are analogous to the two
standard situations in regression analysis known as fixed vs. random explana-
tory variates [2]. Just as for many problems in regression analysis, we shall see
that in the estimation of component and factor structure the difference be-
tween the two versions makes little or no difference in the first approximation.

The Experiments Reinterpreted in Terms of Component Structure. Re-
interpreting the data of our experiments as generated by a component model
(2) with k > 1, Theorem 1 allows us to express the first principal component
and its constituent relation (18) in terms of the one-factor structure specified
by (73) to (78). The following results are obtained.

(@) Direction cosines f3; of the first principal component. Same as the loadings
(76). This is in accordance with (18a).

(b) Individual values for the first component

61 e (1/101/2)(_2}’“ — Y+ Y3 + 2y4t) (80)

in accordance with (18).
(c) Component residuals

€1: = 76(6Y1¢ — 2V 2 + 2¥3¢ + 4Y4)
€20 = To(— 21 + 92 + V3 + 240
&3 = ﬁ(ZYIt + Yot 9y3t - 2y4t)
&4t = 1_10(4YIt + 2y2t - 2y3t T+ 6y4-t)

in accordance with (19).
(d) Mean square of the first component

E(&%) =2E((*) =2 @D

in accordance with (23) and (74).
(e) Residual variances

0%(e1) = 0.6; 0%(ey) = 0%(e3) = 0.9 ; a*(g5,) = 0.6 (82)
in accordance with (c). Hence the total residual variance

o) =3 (83)
in accordance with (20) and (24).
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Comments. The features under (a) to (e) suffice to determine the trans-
formation from component to factor structure. The following points provide
further details about component vs. factor structure.

(f) The component property

Bi&ie + Brgae + B33, + Pags, =0 (84)

in accordance with (18), and as readily verified from (76) and (c) above.
(g) The least-squares property (8)

E(Eit) = E(ftsit) =0 (85)

in accordance with (8), and readily verified by the use of (b) and (c). For
example, transforming E(,,,) by expressing the expectation in terms of
E((*) and E(;%), the terms that involve E({?) cancel out if we make repeated
use of the relation 68, — 2, + 285 + 4B, = 0, while the terms that involve
E(5;%) cancel out, since 2 x6—1x2—-1x2—2x4=0,

(h) The factor property. Thanks to the specification (78), the factor
residuals J;, satisfy the factor property (11). The component residuals ¢;,, on
the other hand, do not possess this property; a case in point is

E(81t82t) = —0.2 -',é 0 (86)

as is readily verified from (c) above.

Monte Carlo Results. With reference to Table I, we shall now summarize
the numerical results of our experiments. The loadings (= direction cosines)
B being the same for factor and component models, (15) and (16), under,
analysis, part (1) of the table reports about the estimated loadings. Then'
in parts (2) and (3) we proceed to the estimates of residuals, components, and
factors. Dealing in (2) and (3) with population and sampling aspects of
component vs. factor structures, we return finally to the sampling aspects of
the estimates b; reported in part (1). All through we limit the numerical
illustrations to collective features of the factor and component structures.

I(1) The loadings estimates. For the first of the 100 replications of experi-
ment A the NILES estimates for the four loadings are

by =-0.793; b,=-0209; by=0262; b,=0.508. 87)
The deviations from the theoretical loadings (33) are
Ay = —0.161; A,=0.107; A;=—-0.054; A,=—0.124. (88)

Next we turn to averages and standard deviations calculated in accordance
with (69). Table I(1) shows the four average estimates

bi =15 2 b (89)
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TABLE I
The One-Factor Model (15) with n=50,p =4

(1)? A B
i B b; D) b; D(b) (72)
1 —0.632  —0.573 0.182 —0.572 0.174 0.155
2 —0316  —0.257 0.258  —0.312 0.185 0.187
3 0.316 0.331 0.199 0.304 0.189 0.187
4 0.632 0.555 0.221 0.570 0.239 0.155

I(2)=*= A B

Repl. m(e?) m(d?) estm(8?) m(d?) m(e?)  m(d*) estm(8?) m(8?)

0.612 0.815 0.828 0.836 0.612 0.815 0.828 0.836
0.752 1.003 1.018 1.009 0.654 0.874 0.886 0.923
0.617 0.823 0.836 0.814 0.661 0.882 0.895 0.896
0.699 0.933 0.947 0.991 0.830 1.107 1.124 1.213
0.857 1.143 1.160 1.204 0.721 0.961 0.975 0.980

w B WN =

Aver. 0.714 0.952 0.967 1.003 0.716 0.955 0.969 0.999

1(3) ¢ A B

Repl. m(x?) m(z?) estm((® m((?) m(x?) m(z?) estm((z)v m({?)

1.534 0.719 0.706 0.903 1.534 0.719 0.706 0.903
2.020 1.017 1.002 0.903 2.147 1.274 1.261 1.047
1.788 0.965 0.952 0.903 1.529 0.647 0.634 0.794
2.284 1.352 1.338 0.903 2.480 1.374 1,357 1.130
2.181 1.038 1.021 0.903 2.178 1.217 1.202 0.972

O R S

Aver. 2.114 1.161 1.147 0.903 2.129 1.147 1.160 1.033

2 Two Monte Carlo experiments with 100 replications: A, fixed factor values; B, shifting
factor values.

b Loadings: theoretical, fB; ; average of estimates b; in 100 replications, b; . Standard errors
of loadings estimates b; : assessed from 100 replications, D(b;); theoretical, by (72).

¢ Observed mean squares of total component residuals, m(e?). Mean squares of total
factor residuals: observed, m(d?); corrected for finite sample bias, est m(82); actual, m(53).
Items for five replications, and averages for 100 replications.

4 Observed mean squares of first principal component, m(x?). Mean squares of factor {:
observed, m(z?); corrected for finite-sample bias, est m({?); actual, m({?). Items for five
replications, and averages for 100 replications.
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as based on the 100 replications. We see that the averages compare fairly
well with the theoretical loadings f8; shown in the second column. In accord-
ance with a previous remark, the results are quite similar for the series A
and B of the experiment. On closer comparison with the theoretical loadings
B;, we see that the large loadings b; and b, come out somewhat too small in
absolute value. We shall return to this feature later.

Table 1(1) further gives the standard errors D(b;) of the loadings estimates
b;, observed values calculated from

D(bi) = [T%(T Z (bi - Ei)l]l/Z (90)

and theoretical values given by (72), which covers both cases A and B, and
in the present case gives

D(b,) = D(b,) = (0.024)"/2 = 0.155; D(b,) = D(by) = (0.036)/% = 0.187

The standard errors are about 0.15 to 0.23, well covering the deviations (88)
that we have quoted for the first replication under A.

1(2) Residual variance. Writing
m(52)= 700 225 (2
i t

for the mean square of the 200 residuals generated for each replication of
the experiment, Table 1(2) gives m(5?) for the first five replications in each
version A and B, and its average over all 100 replications. Indicating its
variability by the formula

52
Expectation + standard deviation; that is, E(6%)+ (U()JZ
the specification that d;, is n.i.d. (0.1) gives
m(6%) =1+0.1; m(8') = 1+0.01 (92)

for each replication and, respectively, for the over-all average. As seen from
column m(6?) in Table 1(2), the factor residuals generated in the experiments
are in accordance with this theoretical variability.

Column m(e?) refers to the total component residuals e, as obtained by the
NILES estimation procedure (Section 1.4). Since ¢, =0, the mean square
m(e?) can be interpreted as the observed variance s2(e). Hence m(e?) = s%(e)
may be interpreted as an estimate of either o*(¢) or m(e2). By (24), o%(¢) =
(p — 1)/p = 0.750. The observed estimates are in accordance with this theo-
retical value, as seen from the columns m(e?) under A and B.

Column m(d?) refers to the total factor residuals d,, and is calculated from
ps*(e)/(p — 1), in accordance with (58). Just as for the component residuals e, ,
we have m(d?) = s*(d), and m(d?) may be interpreted as an estimate either of

Shidais baid &
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E(6*)(=1) or m(6%). The accordance between theoretical and observed values
is necessarily the same as for column m(e?).

1(3) Component and factor estimates. Column m({*) in Table 1(3) gives
the mean square
m(*) =<2 93)
t
of the 50 factor values (, generated for the first five replications of experi-
ments A and B, and its average over all 100 replications. Here the variability is
twice as large as in (92),

m*)=1+02

and the numerical results are seen to be in agreement with this theoretical
formula.

Column m(x?) gives the mean square of the first principal component as
assessed by the NILES procedure (Section 1.4). Interpreting m(x?) as an esti-
mate of E(£%) = 2 as given by (81), we see that the observed m(x?) are in fair
agreement with expectation.

Column m(z”) gives the mean square of the factor { as assessed by (57).
Interpreting m(z?) as an estimate either of m({?) as defined by (93) or, more
crudely, as an estimate of E({*) = 1, we see that the observed m(z?) are in fair
agreement with the theoretical values.

Finite-sample corrections. The numerical results we have taken up thus far
are based on Theorems 1 and 2, and thus refer to the population aspects of the
transfer from component structure to factor structure. We shall now turn to
the corrections for finite-sample bias as calculated from the formulas given in
Section 2.2. -

As to the residual variances, we see from (62) and (63) that the corrections
in m(e*) and m(d?) are given by the multiplicative factor

e 20 o,

np—p+1 197
Table I(2) gives the corrected estimate for m(6%), denoted by est m(62).
By 1.59 higher than the uncorrected estimate m(d?), we see that the correc-
tion, although quite small, goes in the right direction.

As to the mean squares of factors and components, the finite-sample
correction as given by (65) and (66) is 1.5% of the corresponding residual
variance. The corrected estimate for the factor mean square m(¢?) is given in
Table 1(3) under est m(5%). Again we see that the correction is quite small,
and that it works in the appropriate direction.

Finally we turn to the two corrections (68) and (70) for the loadings
estimates b;. Both corrections A; and A, are positive, and thus have the
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appropriate sign, as seen from Table I(1). In the present case A, is quite small,
the ensuing correction amounting to about 19, of b;. The correction by A, is
more important, and if we evaluate D?(b,) by the empirical variances reported
in Table I(1), we find that it amounts to about 99 of b;. In all, the two
corrections thus increase b; by 10%. We see from Table I(1) that this
correction brings up b; and b; to the theoretical value ;.

Standard errors of the loadings estimates. As seen from Table I(1), the
standard errors d(b;) of the loadings estimates are on the whole somewhat
larger for case A than for case B. Lyttkens’ formula (72) gives more close
agreement in case B than in case A, especially so for the standard errors of b,
and b5.

Principal-Components Estimation When Some of the Data are Missing.
We shall here report an adaptation of the NILES procedure (Section 1.4) to
situations when the observational material is incomplete. The device, due to
Christoffersson [19, Chap. 4], is to supplement the missing data by dummy
observations y¥ such that when the estimation procedure has been applied
to the data thus supplemented, the dummy observations y} coincide with their
principal-components representation

yjt: = z biaxat (94)

or, otherwise expressed, giving zero residuals for the dummy observations.
In the case of one component, k = 1, the device requires no change-in the
NILES procedure other than to replace all regressions in (34) and (35a) by
weighted regressions, making the weight w = 1 for the existing observations,
and w = 0 for the missing ones. In the case of two or more components, the
computational device is somewhat more complicated.

TABLE II”
The One-Factor Model with 25 %, or 50% of the Data Missing

259 missing 50 % missing

i B b, D(by) b, D(by) b; D(by) b, D)

—0.632 —0.590 0.151 —0.571 0.182 —0.593 0.189 —0.565 0.182
—0.316 —0.294 0.223 —0.297 0.271 —0.314 0214 —0.312 0.184
0.316 0.296  0.209 0.255 0.225 0.247  0.210 0.304  0.190
0.632 0.581 0.154 0.569  0.198 0.543  0.261 0.574 0.243

W N =

7 Same model and table code as in Table 1.
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A Monte Carlo experiment with the dummy device is reported in Table II.
The data are generated in the same way as in Table I, except that either
one of four or one of two observations is missing. The missing observations
are arranged in a systematic pattern; for example, with 259% missing data
one observation is excluded for each ¢, the observation y;, with i = ¢ (mod 4).

Comments. (a) Comparing with Table I(1) we see that the omission of
as much as 259 or even 509, of the data does not make much difference in
the estimation of the loadings. For both versions A and B, the average
estimates b; show fair agreement with the theoretical loadings ;. There is
the same tendency as in Table I(1) to a downward bias in the numerical
value of the numerically largest loadings b, and b,. What is perhaps more
surprising, the observed standard deviations D(b;) come out with about
the same size as in the case of complete observations, Table I(1), maybe
with some very slight increase with the percentage of missing data. The
requisite modification of the theoretical formula (72) will not be taken up
here.

To conclude, our Monte Carlo experiments suggest that the sampling
properties of the loadings estimates b; are influenced primarily by the size
of n, not so much by p or by the percentage of missing data for each ¢.

(b) In applied work there are many situations where principal-components
analysis has to cope with incomplete data. For one thing, this is so because
there are gaps even in very complete data. Sometimes, and this is of great
importance for the scope of the approach, it lies in the very nature of the
situation under analysis that the available information is incomplete. A
case in point is horse-race data [19]. Letting y;, stand for the recorded time
from start to goal for horse ¢ in race 7/, complete data would here mean that
all horses under comparison participate in each race; in reality, only some 10
horses are set up at the same start. Another case in point is the incompleteness
that occurs in controlled experiments in which for some reason or other the
number of replications is limited.

The dummy assumption is just one, and perhaps the simplest, way to handle
incomplete data. Speaking generally, approach (94) is neutral in the sense that
missing data are assumed to occur just by chance, without affinity to any of
the components or loadings.

3. EXTENSIONS OF THE PRINCIPAL-COMPONENTS
APPROACH
To illustrate the flexibility of the principal-components model (2) and its

estimation by the NILES procedure, we shall in all brevity refer to three
generalizations of the approach; cf. [19, Chap. 3 and 4].
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3.1. Hybrid Model of Principal Components and Canonical
Correlation

In the case of one component the model has the form
Vi + 0y = Bil, + & 95)
with
al+a’=1; Y BA=1 (96)

As in Section 2.3 we consider the application to horse-race data, assume
that the primary purpose of the analysis is to assess the racing quality of the
horses, and adopt the device to rank them according to their component
values &,. In Section 2.3 the ranking exploits the information embodied in the
observations y;, on racing times; in model (95) the ranking makes joint use of
observations on y;, and some other variate u;,, for example, the saddle weight
that horse 7 carries as a handicap in race 7.

A NILES estimation procedure is available for the joint estimation of the
parameters o, &, , ¥;, and &, (see [19, Chap. 3]). The model and the estimation
procedure extend (2) to any number of left-hand variates y, u, ..., and (b) to
two or more components &,, in the right-hand member.

3.2. Hybrid Model of Principal Components and Multiple Regression
The model is formally related to (95): '
Yie = Bie + yittie + & o7
with
Y h=1. | (98)

Again considering the model as applied to horse-race data, we assume
that the purpose of the analysis is now to forecast the racing time y;, of horse #
in race i, using the horse component &,, the race loading y;, and the saddle
weight u;, as predictive elements.

The NILES procedure for model (95) [Ref. 19, Chap. 3] can readily be
adapted for the estimation of model (96). The approach extends (a) to two or
more observational variates u, v, ... in the right-hand member, and (b) to two
or more principal components &, .

3.3. Principal Components for a Multidimensional Array of
Observations

This generalization is in a direction other than (95) or (96), the model
being of the type
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Yijg = ﬁi’ngt + &
i=1,...,p
LhE=1;  Yyr=1 J=1; s g %99)
t=1, n
The model can be consistently estimated by the following NILES estimation
procedure [20].
Initial values 5 and g{" are chosen arbitrarily, say

1) _ 1) _
bg ) = U1YiaB> g§~ Y = U1YcjB

where 4, B, and C are fixed subscripts, and the multiplicative factors «, and v,
are determined so as to make

T =Y e =1

When the proxies b{ and g'* have been calculated, the procedure continues
as follows:

x6HD = z Z b(s)gﬂs)y,,, ; =1 wen B

BT = ey R X Oy [T @R NG =1
t

g(sﬂ) = Usyq Z Z b(”l)XfSH)J’ijt/Z (bESH))z Z (xz(”l))z ; J=1...q
it i t

where the multiplicative factors u,,, and v,,, are to be determined so as to
make

Z (b(s+1))2 Z(g(s+1))2

The procedure gives
b;=1imb®; g;=1limg{; x,=limx® (s— )

as NILES estimates for the parameters f3;, y ;»and &,.
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