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ABSTRACT In order to apply a convolutional neural network (CNN) to unseen datasets, a common way is to
train a CNN using a pre-trained model on a big dataset by fine-tuning it instead of starting from scratch. How
to control the fine-tuning progress to get the desired properties is still a challenging problem. Our key
observation is that the visual features of the pre-trained model have rich information and can be explored
during the training process. A natural thought is to employ these features and design a control strategy to
improve the performance of the transfer learning process. In this paper, a procedural learning framework
using the learned low-rank component of the visual features both in the pre-trained model and the training
process is proposed to improve the accuracy and generalizability of the CNN. In this framework, we presented
an approach to yield independent visualization features (IVFs). We found via robust independent component
analysis that the low-rank components of IVFs provided robust features for our framework. Then, we design
a Wasserstein regularization to control the transportation of the distribution of IVFs from a pre-trained
model to a final model via the Wasserstein distance. The experiments on the Cifar-10 and Cifar-100 datasets
via a VGG-style CNN model showed that our method effectively improves the classification results and
convergence speed. The basic idea is that exploring visual features can also potentially inspire other topics,
such as image detection and reinforcement learning.

INDEX TERMS Low-rank approximation, procedural learning, knowledge transfer, robustness visual
feature, sparse.

I. INTRODUCTION
Convolutional neural network (CNN) has achieved remark-
able successes in computer vision, remote sensing image
recognition tasks [1], [2]. The training process of the CNN
is essentially the extraction of the image features layer by
layer. The obtained hierarchical features can be adapted to
the underlying distribution of the input data so that the CNN
can correctly classify images [1], [3]. However, given that
it is limited by the quality and quantity of samples, it is
difficult to learn better features in each layer, which results
in the decline of the network’s generalizability. Therefore,
fine-tuning, which is a method that uses pre-trained network
weights as the initialization weights for new tasks, allows the

model to well learn the image features [4], [5]. Although the
fine-tuning provides a better direction for the initial weight
information, it cannot play a continuous auxiliary role in
training. Recent studies have shown that the rational use of the
features acquired by the pre-trained model can also improve
the performance in transfer learning [6], [7]. To effectively
improve the transfer features, we need to consider the fol-
lowing two basic questions. (1) What are the robust fea-
tures of the CNN? (2) How do we to transfer the features
appropriately?

The activation maximization, which achieves the learned
features using the CNN, is proposed [8]. It is assumed that
when the input data have high activation after the convolution
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kernel, that the features from the convolution kernel have
strong correlations with the input data. We can get the visual
features with the maximum activation after the convolution
kernels by fixing the weights of the trained neural networks
and using the gradient ascent method. However, the visual
features obtained using the naive activation maximization
technique are not a completely independent representation
of the convolution kernel (the details are in the 2nd section).
Therefore, we suppress the activation of the other convolution
kernels in this layer and achieve the independent represen-
tation of the convolution kernel by modifying the objective
function of the generated image. Nevertheless, the visual fea-
tures still have a lot of redundant information that affects the
robust features, and so we obtain independent visual features
via Robust Principal Component Analysis (RPCA). RPCA,
which was proposed by Wright et al. [9], Candès et al. [10],
and Xu et al. [11], seeks the best low-rank estimation of
a matrix. The decomposed visual features contain low-rank
components with robust visual features, sparse errors and
redundant information [12]. RVFs, which are the low-rank
components of IVFs, belong to the robust representation of
a network, which can help new tasks improve without being
affected by datasets.

Further, we need to transfer the robust visual features
(RVFs) to other learning tasks. However, the learned features
of the CNN always change. This means that when using the
same model and the same dataset, in spite of the similar
performances, they may have different weights. Since the
optimization of the CNN is a non-convex problem and the
model is over-parameterized, it cannot get a unique solution.
The CNN weights are therefore very different, and the visual
features also have big differences at the corresponding convo-
lution kernel. It is hard to transfer the RVFs from convolution
kernels. Therefore, we treat all the RVFs in each layer as a
whole and use their distribution as the base property. As we
know, the Wasserstein distance that is sensitive to the differ-
ences between distributions can be applied to measure the
RVFs distribution [13]. It can effectively help us to control
the transfer of RVFs.

Generally speaking, we propose that procedural learning
allows the pretrained model to provide a good initial value
and, through the use of the learned features, the training
performance is improved.We use the distribution of the RVFs
to yield the IFVs via RPCA and design a new Wasserstein
regularization to realize the feature transfer in each layer.
Furthermore, recent works demonstrate that the features in
lower layers tend to converge faster than the learning in
higher layers [14]. The low-layer features are simple and
stable, and the high-layer features are complex and volatile.
Therefore, we use different hyper parameters in each layer.
The experiments show that this method has a good effect on
small datasets. The main contributions of this paper are as
follows.

(1) The robust visual features achieved using the robust
principal component analyses are the robust features of the
CNN. These robust features help to improve the convergence

speed and accuracy of the fine-tuning or transfer process from
one dataset to another one.

(2) The Wasserstein regularization is designed to control
the transfer degree of the robust visual features.We also found
that the difficulty of transferring features is correlated with
the layers, which provided evidence to support the designed
variant strategy for the different layers.

(3) To the best of our knowledge, this is the first time
that robust visual features have been used to supervise the
training phase, which could be a potential requirement for
self-supervised learning.

II. PROCEDURAL LEARNING FRAMEWORK
Due to the limited quality and quantity of samples, although
the fine-tuning method using pre-trained model weights as
the initialization weights of the new tasks allows the model
to well learn the features, the pre-trained model cannot help
in the process of network training. Procedural learning is
a pre-trained model that can help another model with the
same structure or part of the same layer structure to pro-
vide rich visual features in the training of new tasks. This
means that the current task acquires better generalization
performance through the knowledge of the pre-trained model
during the training process. Unlike transfer learning [15],
procedural learning does not have any differences in data
distributions between the source and target domains or any
differences in the predictive functions. The idea of visual
features in a pre-trained model needs be explored. We start
with a good pre-trained model that was trained using large
datasets. The ImageNet datasets contain millions of images
and 1000 classes [16]. Generally, models trained using the
ImageNet datasets have high generalization and contain rich
visual features in each layer. With the activation maximiza-
tion algorithm, we can simply visualize the learned features in
the convolution kernel. This visual feature can be transferred
between the pre-trained model and the new model in the new
task.

We extend the native activation maximization algo-
rithm [8], which only analyzes the visual features (VFs) of
one convolution kernel without considering other convolution
kernels.We propose the independent activationmaximization
algorithm that can retain the visual features of the convolution
kernel while suppressing other convolution kernels’ activa-
tions. However, this is not sufficient because the large datasets
are complex. For the pre-trained model to achieve good
results, the VFs of each convolution kernel will retain a lot
of meaningless noise. We apply robust principal component
analysis (RPCA) to obtain the low-dimensional subspaces of
the independent visual features (IVFs). These robust visual
features (RVFs) better represent the learned features of the
convolution kernel. When each convolution kernel’s visual
feature is disentangled from the features of other convolution
kernels, the overall features in each convolutional layer are
abundant. Considering the hierarchical features of the CNN,
the features in the same layer have relatively similar repre-
sentations. The distribution of the RVFs in each layer in a
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pre-trained model can serve as the target distribution for the
approximation of each layer in the new network’s training
phase. To reduce the computational complexity, the VFs of
the model require generalizability under new tasks. It is only
necessary to obtain the IVFs of the convolution kernel. In this
case, we design aWasserstein regularization that could update
the weights of the new network based on the differences in the
feature distributions in each layer between the training model
and the pre-trained model. Fig.1 gives an illustration of the
procedural learning framework.

III. THE IFV VIA ROBUST PRINCIPAL COMPONENT
ANALYSIS METHOD
A. INDEPENDENT ACTIVATION MAXIMIZATION
In the image classification task, it is assumed that for a
training set D = {Xn, cn}Nn=1. X

n represents the input data
of the n-th sample, and yn represents the corresponding label.
2 = {W l, bl}Ll=1 represents the weights that the CNN needs
to train. W l represents the weight on the l-th layer, and bl

is the bias. The last layer of the softmax output is defined
as f (X ) = eX/

∑|X |
j=1 e

X j . The empirical risk of the CNN is
minimized as

R(f ) = min
2

1
N

N∑
n=1

J (f (Xn), cn). (1)

The CNN mainly uses multiple hidden layers to obtain the
hierarchical features of the input data. The internal learn-
ing mechanism is called the black box, which is still an
open question. To improve the interpretability of CNNs,
Erhan et al. [8] proposed a visualization method for the
learned features using the convolution kernel.

Features of the input data can be captured using the convo-
lution kernel, as well as some visual features of the convolu-
tion kernel. We believe that when the image is input into the
CNN and the output value of the convolution kernel is large,
the convolution kernel is considered to have high activation of
certain features of the image. In fact, the images cannot cover
all styles in the dataset, and some of them are low quality.
High activations of the convolution kernel in this dataset
are obtained; meanwhile, it is also difficult to define what
features the convolution kernel learned. The learned features
of that convolution kernel cannot be determined. Therefore,
in order to obtain the common features, the acquisition of the
visual features can eliminate the data limitations and use the
weights from the CNN. Erhan et al. [8] propose the method
of activation maximization. It initializes the input image with
randomnoise, propagates the image passing through the CNN
to compute the activation of the target convolution kernel, and
then propagates the activation backwards through the CNN to
compute the update direction of the input image.

When the CNN converges using the back propagation
algorithm, we can get a set of weights 2∗. hij(X ,2) is
defined as the value of the j-th convolution kernel in the i-th
layer. By fixing the weights 2∗, we can solve the following

objective function:

X∗ = argmax hij(X ,2∗). (2)

The final picture X∗ can be used as a feature learned from
the convolution kernel, and it is called the maximum activa-
tion image. In the following studies [17]–[20], regularization
is added to the original objective function to make the gen-
erated maximum activation image more intuitive. Recently,
Olah et al. [21] obtained a high-quality maximum activation
image by adjusting the gradient. In general, the main purpose
of these methods is to reduce the high-frequency noise in the
maximum activation image, and to focus on the interpretabil-
ity of the generated maximum activation image. However,
these methods do not consider the effect of the maximum
activation image on other convolution kernels.

We use the maximum activation image for one of the con-
volution kernels in the layer, and then forward it through the
CNN to obtain the output value of all convolution kernels in
that layer. We find that the activation value of the convolution
kernel may not be the maximum of this layer since there are
other kernels on which the image can obtain a larger activa-
tion value. Although this maximum activation image is the
maximum activation of the convolution kernel, it may not be
an independent visual feature of the convolution kernel. This
phenomenon gradually decreases with deeper layers, which
coincide with the observation that it is independent of the
high-layer semantic features [22]. Therefore, the visual fea-
ture of the maximum activation image is entangled between
the convolution kernels.

In procedural learning, we need to extract the IVFs of the
convolution kernels. While the maximum activation image of
the target convolution kernel can be disentangled, the acti-
vations of other convolution kernels are lower. This means
that we need to get the maximum (hij(X ,2∗)−hi,−j(X ,2∗)).
hi,−j(X ,2∗)) represents all the maximum activation images
after removing kernel j in layer i. There are many convolu-
tion kernels in each convolution layer, and the outputs of a
convolution kernel needs to suppress the outputs of all the
other convolution kernels. The average activation value of
each convolution kernel is subtracted to achieve the IVFs as
follows:

X∗ = argmax(hij(X ,2∗)−
1
J

J∑
j=1

hi,−j(X ,2∗)). (3)

The IVFs reflect the independent learned features of the
convolution kernels, and these features alleviate the entangle-
ment of different convolution kernels.

B. THE ROBUST VISUAL FEATURES
For the pre-trainedmodel, it is the provider of the transfer fea-
tures in training. The pre-trainedmodels have rich IVFs based
on large datasets. Nevertheless, the IVFs still have problems.
Each visual feature is not so stable relative to the small
dataset of the new task because the richness of the represen-
tations is already greater than the IVFs of the small dataset.
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FIGURE 1. The framework for procedural learning. The method can be divided into three steps. (1) The RVFs of the
pre-trained model are achieved by the IFV via the RPCA method. (2) The network is trained using fine-tuning, and we
obtain all of the IVFs of each layer of the training model at the same time. (3) The difference in the distributions of the
features is measured using the designed Wasserstein regularization and the network weights are updated.

The IVFs of the pre-trained model contain representations
in other directions in the dataset. These directions have little
effect on the original dataset, but for new tasks, the direction
of feature optimization is greatly affected. Therefore, when
the features of the pre-trained model are used to guide the
learning features of the new task model, it is important to
use the main direction of the IVFs, and additional feature
directionsmake the training results unsatisfactory.We need to
get the robust features of the pre-trained model that preserve
the main structures of the features and are not disturbed.

The structure of the IVFs is decomposed and the noise is
removed. The decomposition form is suitable for the appli-
cation of the RPCA. It is a matrix decomposition method.
To solve the low-rank matrix recovery problem, RPCA
decomposes the matrix into two matrix components. One
of them is a low-rank matrix, which mainly contains the
structure of the matrix. The other is a sparse matrix, which is
mainly redundant noise. The given independent visual feature
is X∗ ∈ Rm×n. Its decomposition process is X∗ = S+N . The
matrix S is the low-rank matrix of the IVFs, which retains the
structure of the features, and it includes the main direction
of the features. The matrix E is sparse redundant noise. The
optimization problem can be shown as follows:

min
S,N

(‖S‖∗, ‖N‖0) s.t. X∗ = S + N . (4)

Let ‖S‖∗ =
∑

i σi(S) denote the nuclear norm of the
matrix S, and let ‖N‖0 denote the `0-norm of N , which is the
number of non-zero elements of the matrix N . The recovery
of the low-rank matrix S and the sparse N is a two-objective
optimization problem. By a factor λ > 0, the optimization

problem in Eq.4 can be converted into a single-objective
optimization problem as follows:

min
S,N

(‖S‖∗ + λ‖N‖0) s.t. X∗ = S + N . (5)

In practice, let λ = 1
√
max(m,n)

[11]. The optimization
problem in Eq.5 is an NP-hard problem, so the objective
function of this problem needs to be relaxed. Since the nuclear
norm of the matrix is the envelope of the matrix rank, the `1
norm of the matrix is a convex hull of the `0 norm. Thus,
the optimization problem in Eq.5 is relaxed to a convex
optimization problem as follows,

min
S,N

(‖S‖∗ + λ‖N‖1) s.t. X∗ = S + N . (6)

Let ‖N‖1 =
∑

ij |Eij| denote the `1-norm of E , which is a
long vector in Rm×n. We use the dual approach to solve this
optimization problem [23]–[25]. Since the dual norm of the
nuclear norm is the spectral norm, the dual problem of the
optimization problem in Eq.6 is shown as follows:

max
Y
〈X∗,Y 〉 s.t. J (Y ) ≤ 1, (7)

where

〈X∗,Y 〉 = tr(X∗TY ) J (Y ) = max(‖Y‖2, λ−1|Y |∞), (8)

and |Y |∞ is the maximum absolute value of the matrix Y .
When the optimization problem in Eq.7 obtains the optimal
value Y ∗, J (Y ∗) = 1 must be satisfied. It is obvious that the
problem is non-linear, non-smooth and can be solved using
the constrained steepest ascent. First, we find the projection
Yk of Y onto the normal coneN (Y ).We defineN (Yk ) = {aD :
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a ≤ 0,D ∈ ∂J (Yk )} and the steepest ascent direction Wk as
Wk = X∗− x∗k . Then, we do a line search along the direction
using

δk = argmax
δ≥0
〈X∗,

Yk + δWk

J (Yk + δWk )
〉, (9)

and the estimate of Y is updated as

Yk+1 =
Yk + δWk

J (Yk + δWk )
. (10)

The matrixes S and N can be easily obtained using the
estimated value Ŷ . The matrix S is the RVF of the pre-trained
model. It effectively helps learn new tasks. The RVFs in each
layer are achieved and stored before the new task begins.
It also needs an algorithm in order to properly use the RVFs
to train new model during the training process.

IV. WASSERSTEIN REGULARIZATION
A. WASSERSTEIN DISTANCE
The optimization problem of the CNN is a non-convex opti-
mization. The local optimal solutions obtained for eachmodel
are different. Intriguingly, the performances of the general-
ization abilities are not significantly different [26]. From the
perspective of the maximum activation image, for example,
we assume that the learned features of the second convolution
kernel in the first layer imply a rightward direction. In another
local optimal, the learned features using the same convolution
kernel may imply a leftward direction. This does not mean
that there is no convolution kernel for representing a leftward
direction for another local optimum solution. The models get
different local optimums, and therefore, the model’s general-
ization have little difference. In addition, these also show that
the RVFs of the corresponding convolution kernel to be used
as the transfer features are inappropriate. We use the RVFs’
distribution in the convolutional layer to promote learning in
new tasks.

Recently, the Wasserstein distance has made a lot of
progress in the field of machine learning [27]–[29]. Com-
pared with the traditional KL algorithm, the Wasserstein dis-
tance is more in line with the mathematical definition of the
distance. The differences between the distributions are also
linearly related to the Wasserstein result. The Wasserstein
distance formula is shown as follows:

w(P,Q) = inf
γ∈5(P,Q)

E(x,y)γ [‖x − y‖]. (11)

P andQ denote two distributions that need to be measured.
5(P,Q) indicates the joint distribution of P and Q. (x, y)
represents the sampling data for some joint distribution γ .
We can see that the Wasserstein distance is defined as the
lower bound of the sample’s expected distance E(x,y)γ [‖x −
y‖] under all joint distributions.

In procedural learning, P represents the distribution of the
RVFs in the convolutional layers in the pre-trained model.
For new tasks, we choose the IVFs with low computational

complexity that better represent the new small dataset.Q rep-
resents the distribution of the IVFs on the same layer in the
new task model. The distribution of features in each layer
can be estimated using an empirical distribution. From [8],
the learned features of each convolution kernel usually appear
repeatedly. This repetitive feature is meaningless, and it
increases the computational complexity. The VFs can be
appropriately reprocessed like with mean pooling. Its empir-
ical distribution can be written as

Pi =
J∑
j=1

x∗p.jδ Qi =
J∑
j=1

x∗q.jδ. (12)

δ represents the Dirac function for each pre-processed VF.
Pi and Qi represent the i-th convolution layer. x∗ represents
the estimation of each visual feature. By setting

∑
x∗p.j =∑

x∗q.j = 1, Eq.11 can be solved using the Kantorovich
formula. Let B denote the probability coupling sets between
two empirical distributions as follows:

B = {γ ∈ Rκ×κ |γ 1κ = Pi, γ T 1κ = Qi}. (13)

1κ represents an all-ones vector with the dimension of κ .
The solution of the Eq.11 is as follows,

γ0 = argmin
γ∈B
〈γ,C〉F . (14)

〈., .〉F represents the Frobenius dot product. C = c(Pi,Qi)
represents the difference between distributions Pi and Qi,
which mainly reflects cost differences between the VFs of the
convolutional kernels from one network to another network.
We define the L1 distance as the difference,

C(a, b) = ‖Pa − Qb‖1. (15)

After the definition is complete, we need to solve the
problem.

B. OPTIMIZATION VIA ENTROPIC REGULARIZATION
γ0 is a linear problem; however, the time complexity of a
direct solution is n3 log n, which is time consuming when
the number of VFs is large. We add a regularization term
so that the accuracy is relaxed while the computations are
significantly accelerated. The loss of accuracy does not affect
the final calculation.
We turn the primal problem into the dual problem

[30]–[32], as shown below

dW p
p (P,Q) = sup

α,β∈CM
α>P+ β>Q,

MC = {(α, β) ∈ Rκ×κ : ακ + βκ ′ ≤ Cκ,κ ′}. (16)

Eq.11 is a linear problem, and so its dual form is equivalent
to the primal problem. It is easy to see that the Lagrange
variable α is the sub-gradient of the first parameter. However,
the computational complexity of α is still very high. Its time
complexity is O(K 2), where K represents the dimension of
the output space. Cuturi [33] proposed a method of adding
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regular terms that turned the primal problem into a strictly
convex function. The form is as follows:

λW p
p (P,Q) = inf

T∈5(P,Q)
〈γ,C〉 −

1
λ
H (γ ),

H (γ ) = −
∑
κ,κ ′

γκ,κ ′ log γκ,κ ′ . (17)

The solution of the transport matrix depends on the diag-
onal scaling of the matrix K = e−λC−1. The solution is as
follows:

γ ∗ = diag(u)Kdiag(v). (18)

for u = eλα and u = eλβ , where α and β are the Largrange
variables for Eq.17. The form of the problem, which is
also equivalent to the matrix balance [34], has been studied
using numerical linear algebra and can be solved using the
Sinkhron-Knopp algorithm [35]. In this case, the gradient a
of the objective function can be determined by the scaling
vector u as

α =
log u
λ
−

log u>1
λK

1. (19)

Therefore, we can use a more efficient iterative algorithm
to compute the gradient, and we use the Wasserstein distance
to train the network weights.

C. PROCEDURAL LEARNING ALGORITHM
When the differences in the distributions of VFs are obtained,
we use the hyper parameter flexibly in each layer that is
a consequence of the diverse complexity of the low-layer
features and high-layer features.

L(θ ) = LB(θ )+
I∑
i=1

αiW (pi, qi). (20)

LB(θ ) represents the normal loss function in the training
process, and I represents the different layers. The IFV-RPCA
algorithm applies RPCA to obtain the RVFs of the IVFs. The
IFVs algorithm is a gradient ascent algorithm, which requires
significant iterations to achieve better convergence. In fact,
the differences between two VFs do not require an exact
solution for procedural learning. Just like with teachers’ guid-
ance to students, it is sufficient to correct the learned features
at some critical moments. Therefore, the regularization term
can be added after a few epochs. We choose one epoch. The
process learning algorithm can be summed up as Alg.1.

V. EXPERIMENTS AND ANALYSIS
A. EXPERIMENTAL SETUP
We design a CNNwith a 4-layer VGG-style architecture. The
number of convolution kernels of each layer is the same as
the first four layers of the VGG16 network [36]. The layer
sizes are as follows (stride, filter sizes, output channels):
(1×1, 3×3, 64), (1×1, 3×3, 64), (2×2, 3×3, 128), and
(1×1, 3×3, 128). The model easily uses the weights of the
pre-trained models in ImageNet and receives guidance from

Algorithm 1 Procedural Learning Algorithm
Data: D, Wpre_trained
Result: Wnew_task
RVFspre_trained ← IFV by RPCA(Wpre_trained ) ;
Fine tune a pre-trained model;
Initialize Wnew_task ∼ Wpre_trained ;
Usual loss function ;
while Dbatch ∈ D do

Wnew_task ← Wnew_task − α∇Wnew_task
end
IVFsnew_task ← IVF(Wpre_task ) ;
Wasserstein regularization ;
W_loss = Wasserstein(IVFsnew_task ,RVFspre_trained );
Wnew_task ← Wnew_task − α∇W_loss

the RVFs in training. Then, we use the VGG16 network.
The datasets are Cifar-10 and Cifar-100 [37], both of which
contain 60,000 images. The difference between them is that
Cifair10 contains 10 classes of images, while Cifar-100 con-
tains 100 classes.

To explore the superiority of visual features in the direct
use of the pre-trained model’s weights, we build another
model where we replace the Wasserstein regularization with
the L2 regularization and compare it with procedural learn-
ing. According to our preliminary analysis, independent max-
imum activation images are more valuable. To prove this,
we compare the RVF algorithm with the IVF algorithm.
Moreover, different initialization methods also have different
impacts on procedural learning. Therefore, we use different
initialization methods. In summary, 8 sets of experiments are
designed for each dataset. They are learning from scratch
(Scratch), learning from fine-tuning (Tune), procedural learn-
ing from scratch (Scratch+RVFs), procedural learning from
fine-tuning and (Tune+RVFs), learning from scratch with
L2 regularization (Scratch+L2), learning from fine-tuning
with L2 regularization (Tune+L2), learning from scratch
with the IVF algorithm (Scratch+IVFs), and learning from
fine-tuning with the IVF algorithm (Tune+IVFs). In the
experiments, the batch size is 32. In the fine-tuning series,
the learning rate is 0.0006. In addition, the learning rate
is 0.001 in the training from scratch series. In procedural
learning, the learning rate of the first two layers is 0.0002,
and the learning rate of the last tow layers is 0.0005.

B. RESULTS AND DISCUSSION
First, we obtain the IVFs of the model and apply the RPCA
algorithm to further obtain the RFVs. Some experimental
results are shown in Fig.2. The RVFs retain their robust
representations for the convolution kernel. Although the
differences between IVFs and RFVs are not significant,
the experimental results are different. According to the exper-
imental settings, the final results of all the experiments on
different datasets are shown in Table.1. The procedural learn-
ing with the initialization of the pre-trained model’s weights

VOLUME 7, 2019 18889



H. Li et al.: Procedural Learning With Robust Visual Features via Low-Rank Prior

FIGURE 2. The relationship between the RVFs and IVFs. The RVF is a
low-rank structure of the IVF.

obtains the best performance on both datasets. The accuracy
and loss of all methods in the training process are shown in
the Fig.3. The methods using the fine-tuning series achieve
better results than the training from scratch series. In both
series, the methods combined with procedural learning have
the best performance. Among all methods, fine-tuning with
procedural learning converges quickly and achieves good
results.

The L2 regularization keeps the new network’s weights
close to the original model. The original weights are used
directly. It is like freezing the corresponding convolutional
layer. Only a small update is made to the weights in the train-
ing process, and the generalization ability is completely lim-
ited by the quality of the pre-trained model. In the fine-tuning

series experimental results, L2 regularization has a negative
impact. The basic fine-tuning model achieves a better result
than combining it with L2 regularization. In the training from
scratch series, the final effect of the L2 regularization is
similar to the benchmark method. However, it has a faster
convergence speed and less loss than the basic training from
scratch method. This also shows that the direct use of weights
for the transfer is not effective.

By comparing the RVFs algorithm with the IVFs algo-
rithm, we find that in the training from scratch series,
the result of using the RVFs algorithm is better than that
obtained by the IVFs algorithm. In the Cifar-10 experiment,
the decrease in the loss of the IVFs algorithm takes a very
rugged route and even has a large jitter. The final classifi-
cation accuracy of the model is also very poor. In the fine-
tuning series of the methods, the method using the RVFs
algorithm on the Cifar-10 dataset achieves the best results.
It converges faster than the baseline fine-tuning method, and
the loss decreases faster. It also can be observed that at
the 15th round, this method exceeds the results of the IVFs
algorithm. However, the accuracy of the procedural learning
method is improved only marginally on the Cifar-100 dataset.
Its effectiveness is not obvious.

We use a deeper model, the VGG16, on Cifar-10, and the
accuracy of the test set during the training process is shown
in Fig.4. The method of fine-tuning series is still better than
training from scratch. The results of each method are shown

FIGURE 3. Training on the Cifar-10 and Cifar-100 datasets. In this plot, we compare procedural learning with other methods. (a) Accuracy on
Cifar-10. (b) Training error on Cifar-10. (c) Accuracy on Cifar-100. (d) Training error on Cifar-100.
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TABLE 1. Accuracy on the Cifar-10 + Cifar-100 datasets with various methods on the shallow network.

FIGURE 4. Accuracy on Cifar-10. We compare the procedural learning
with other methods using VGG16.

TABLE 2. Accuracy on the Cifar-10 datasets with various methods using
VGG16.

in Table.2. In addition to the L2 regularizationmethod, among
the various methods, the performance of the deep network is
much better than that of the shallow network. The method of
using L2 regularization to utilize the knowledge of the pre-
trained model during the training process damages the per-
formance of the network, and its accuracy declines in the
later stage of training. The fine-tuning with procedural learn-
ing achieves the best results. To analyze these phenomena,
we compare the differences between two VFs algorithms.

We select the 22nd convolution kernel of the third con-
volutional layer in the pre-trained model. Two algorithms
are used to obtain the corresponding visual features. Then,
we propagate the images forward in the network and sum up
the activation values of each convolution kernel in this layer.
The level of this value reflects the response of the convolution
kernel to the features. The experimental results are shown
as Fig.5.

As shown in Fig.5, both visual feature images have large
outputs for the 22nd convolution kernel, but neither of them
is the largest value for this layer. The number of convolution
kernels with larger activation values than the 22nd kernel with
the visual feature image using the RVFs is less than when
using the IVFs. Therefore, the feature of each convolution
kernel can be better represented by the RVFs algorithm.When
the representations of each convolution kernel are relatively

FIGURE 5. The activation value of the maximum activation image of the
other convolution kernel on the same layer. (a) The summed output value
of each channel of the image using the RVFs algorithm. (b) The summed
output value of each channel of the image using the IVFs algorithm.

independent and robust, the feature distribution obtained
from the convolutional layer will be more abundant. Then,
we select some convolution kernels in this convolution layer
and generate images using the IVFs and RVFs algorithms.
The images obtained by the two algorithms are compared
in Fig.6.

The images obtained by two generation algorithms are very
similar from the perspective of feature representation. By the
comparisons in Fig.5, we can see that the RVFs retain the
main contents of the features and suppress the redundant
responses of the other convolution kernels, which improves
the richness of the feature representations. On the other hand,
the visual feature images obtained by filter3 in layer2 are
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FIGURE 6. Comparison of the maximum activation images of the RVFs
and IVFs algorithms.

basically the same for the two algorithms, which means that
the learned features from this convolution kernel are highly
robust. The visual differences between the RVFs and IVFs
are small, but this difference has a great influence on the
final results from Table.1 and Table.2. Procedural learning
achieves better results using RVFs. It also shows that the
differences between the RVFs and IVFs become smaller as
the number of layers increases. Because it is close to the
classifier, the convolution kernels have richer semantic infor-
mation of the visual features.

Through the analysis of these two algorithms, the RVFs
allow the convolution layer to have richer feature represen-
tation. In the Cifar-10 experiment, the training from scratch
with the IVFs algorithm has poor performance, and the curve
of the loss decrease has large variations . Compared to the
loss curve of procedural learning, the latter is very stable
and has achieved a better result. In the fine-tuning series,
a good initialization value guarantees the learning founda-
tion. These two algorithms do not have large jitters in their
loss curves. However, the RVFs algorithm guarantees robust
feature representations and gradually takes the lead during
training. In the Cifar-100 experiment, the results of the two
algorithms do not have very large differences. Even the best
result achieved using this dataset for all the models is still not
good. This shows that the learned features of the model are
not rich enough. The generalization ability of this model is
low.

VI. CONCLUSIONS AND FUTURE WORKS
The procedural learning method can make use of the good
initial values of the pre-trainedmodel, but it also acquires use-
ful RVFs via the low rank priors during the training process.
It can help the CNN to learn using small datasets. Procedural
learning uses the rich feature distribution to improve the
generalization ability of the pre-trained model on new tasks.

This method of using prior knowledge is different from
existing studies. In the experiment, although the procedural
learning algorithm has better final results than the other
methods, the improvement is not very large. In procedural
learning, we use the empirical distribution method to estimate
the distribution of the maximum activation images. By using
this method, it is difficult to precisely estimate the true
distribution of the features. As a result, the visual features
provided during the training process are relatively limited.
Second, the RVFs algorithm only considers suppressing other
convolution kernels, but it does not consider how to achieve
a better representation of a certain convolution kernel. This
leaves room for future improvements in procedural learning.
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