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a b s t r a c t

The Effective thermal conductivity (keff) is one of the key thermal properties for packed beds in the pres-
ence of a stagnant fluid. In this study, a thermal discrete element model (DEM) based on the original
Cheng-Yu-Zulli analytical model for mono-sized packed beds has been improved and implemented espe-
cially for mixed beds of different particle sizes or materials. In order to perform the DEM simulation for
packed beds, a thermal contact theory considering three heat transfer mechanisms (solid contact conduc-
tion, solid-fluid-solid conduction and radiation) was derived and applied in the network of Voronoi cells
obtained by radical Voronoi tessellation of the relevant beds. The numerical model was validated through
a comparison with experimental results already reported in literature and a good prediction for the effec-
tive thermal conductivity was obtained for both mono-sized and multi-sized packed beds in a wide range
of solid-to-fluid conductivity ratio. The model also showed a good performance to study the heat flow
distribution as well as the coupled thermo-mechanical behavior of packed beds.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Packed beds have been widely used in various thermal energy
systems such as catalytic reactors [1], heat exchangers [2], and
high temperature gas-cooled reactors (HTGR) [3,4], and they are
under consideration for the solid breeding blankets for fusion
reactors [5,6], Thermal properties, especially the effective thermal
conductivity (keff), are key parameters with regard to heat transfer
in packed beds. A variety of previous experimental research studies
[7–13], theoretical models [14–20] and numerical simulations
[21–26] have been performed to obtain keff of packed beds. Con-
cerning experiments, the majority of the research [10–13] focused
on pebble beds of a single particle material due to their wide appli-
cations, but only limited data were measured for mixed pebble
beds with different materials [8,9]. Besides, less experiments
[7–9] were reported on binary pebble beds with different particle
sizes. In regard to theoretical models, most of the researchers, such
as Kunii and Smith [14], Bauer et al. (the ZBS model) [15], and Hall
and Martin [16] estimated keff based on the heat transfer analysis
within a representative cell for unitary, i.e. mono-sized pebble
beds of a single material. Although these semi-empirical formulas
have successfully predicted good results for keff, they are not appli-
cable for mixed beds of different materials and are probably not
accurate enough for multi-sized or polydisperse pebble beds due
to their complex packing structures. The thought of representative
cell model was further improved by Cheng et al. [18] and Hsu et al.
[17] to illustrate periodic porous structures composed of arrays of
touching composite materials with various shapes. Their models
were found effective in a wide range of solid-to-fluid conductivity
ratio up to 10,000. More recently, Van Antwerpen et al. [20] pro-
posed a multi-sphere unit cell model considering the conduction
and radiation heat transfer mechanisms to reflect the influence
of local packing structures on keff. More theoretical models were
summarized by Cheng et al. [18] and Van Antwerpen et al. [19].
Besides, various numerical models based on volume average
method [21], unit cell approach [22], DEM method [24,26,27],
and CFD-DEM method [4,25] were also introduced to predict keff
of pebble beds. In recent years, the influence of the pebble bed
packing structure has been considered in the heat transfer model-
ing in many studies. Cheng et al. (called Cheng-Yu-Zulli model in
the present study) [23,28] estimated keff for mono-sized pebble
beds by using Voronoi tessellation. Namely, in their model, the
nominal heat transfer area of a contact pair is given by Voronoi
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Nomenclature

A dimensionless quantity in Eq. (14), [–]
Am effective heat transfer area of a contact, [m2]
Ai; Aj radiant exchange areas of surfaces on the corresponding

spheres, [m2]
Ai0 ; Aj0 projective area of Ai;Aj, [m

2]
An nominal heat transfer area of a contact, [m2]
Aw area of the top wall, [m2]
B dimensionless quantity in Eq. (14), [–]
ci; cj ci ¼ Rci=Ri; cj ¼ Rcj=Rj, [–]
Cpi specific heat capacity of particle i, [W/kg/K]
dp particle diameter, [m]
Ee equivalent modulus, [Pa]
Ei; Ej Young’s modulus of particle i or j, [Pa]
Fn normal contact force, [N]
Fij; FiR; FjR Fi0j0 ; Fi0 j; Fij0 view factor between corresponding sur-

faces, [–]
Ht

ij; H
d
ij; H

r
ij effective heat conductance of a thermal contact/con
tact/conduction/radiation part, [W/K]

Hm; �Hm; Hij effective heat conductance of a contact, [W/K]
km effective conductivity in contact, [W/m/K]
keff effective thermal conductivity, [W/m/K]
kf ; kg fluid/gas conductivity, [W/m/K]
kxx; kyy; kzz corresponding components of the keff tensor,

[W/m/K]
ks; ksi; ksj solid conductivity of particles, [W/m/K]
Ksi; Ksj dimensionless solid conductivity, [–]
Lm contact length, [m]
Lij; Li0j0 contact length/distance between surface i0 and j0, [m]
Mi mass of particle i, [kg]
nm; �nm contact number on a particle/average coordination

number, [–]
Nm; Np; Npw total contact number/particle number within a

packed bed/contacted with top wall, [–]
DNmu contact number in u � uþ Du direction, [–]
n̂q;m; n̂L;m unit vector along the direction of q or L, [–]
P pressure, [Pa]
P0 initial mechanical load, [Pa]
Pf packing factor, [–]
q; qm heat flux/heat flux within a contact, [W/m2]
Q total heat flow through all contacts, [W]
Qm; Qmu heat flow in a contact/in u direction, [W]
DQu heat flow in u � uþ Du direction, [W]
Qi heat power in particle i, [W]
Qij; Qji heat flow between particle i or j, [W]
Qt

ij; Q
d
ji; Q

r
ji contact/conduction/radiation heat flow, [W]

Qav average heat flow in contact, [W]
r coordinate in radial direction, [m]
rt radius of a contact surface, [m]
Re equivalent radius, [m]
Rc; Rci; Rcj core radius of particle i or j, [m]

Ri; Rj radius of smaller particle i or the larger j, [m]
Ri0 ; Rj0 projective radius of surface i0 or j0, [m]
T temperature, [K]
Ti; Tj core temperature of particle i or j, [K]
Th fluid temperature at Point P on the rotational hyper-

boloid, [K]
Thi; Thj surface temperature of particle i or j, [K]
V volume of a packed bed, [m3]
X; Xmin; Xmax dimensionless quantity in Eq. (17), [–]
Y1; Y2; dimensionless quantity in Eq. (16), [–]
x; y; z coordinate, [m]

Greek symbols
ai; aj ai ¼ Ri=Lij; aj ¼ Rj=Lij, [–]
Da Da ¼ aj � ai, [–]
di; dj di ¼ qi=Lij; dj ¼ qj=Lij, [–]
dimax; djmax maximum value of di; dj, [–]
dn normal overlap, [m]
e e ¼ Rj=Ri P 1, radius ratio, [–]
eri; erj emissivity of particles i or j, [–]
hi; hj angle from the central axis of a contact, [rad]
him; hjm maximum angle of hi; hj, [rad]
K discriminant for the integration of Eq. (13), [–]
mi; mj Poisson’s ratio of particle i or j, [–]
qi; qj distance away from the center of particle i or j, [m]
r the Stephan-Boltzmann constant, 5.67 � 10�8

[W/m2/K4]
s time, [s]
u contact angle, [rad]

Superscripts and Subscripts
t; d; r contact, conduction, radiation
m thermal contact
e equivalent
eff effective
f ; g fluid, gas
i; j particle No.
max; min maximum, minimum
n normal/nominal
s solid

Abbreviations
CFD computational fluid dynamics
DEM discrete element method
HTGR high temperature gas-cooled reactor
PDF probability density function
ZBS Zehner-Bauer-Schlünder
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tessellation for the mono-sized bed. Therefore, the calculated keff
reflects the impact of packing structure. Wu et al. [4] also utilized
Voronoi tessellation in their CFD-DEM simulation work taking into
account the radiation heat transfer, which is essential for the
packed fuel pebbles of about 60 mm used in HTGR at a high tem-
perature (about 1100 K). Moscardini et al. [26] and Gan et al.
[27] improved the original Batchelor and O’Brien’s analytical
model [29] and developed an in-house thermal DEM code for
fusion breeding blanket pebble beds. The thermal DEM code can
be applied to unitary, binary, and polydisperse pebble beds, but
radiation heat transfer is not implemented as the relevant pebble
beds are composed of very small particles with a range of about
0.3–1.2 mm and in that case the radiation effect can be neglected
[26]. All the above numerical studies made significant progress
and have proven that the DEM method is a promising approach
to simulate the heat transfer and fluid flow of fixed or fluidized
beds. However, further studies are still necessary to improve the
reliability of the DEM models and extend the applicable field.
Therefore, in this study the original Cheng-Yu-Zulli model for
mono-sized bed was extended to account for packed beds consist-
ing of different particle sizes or materials and implemented into a
DEM code running in the PFC software [30]. The solid contact con-
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duction, solid-fluid-solid conduction, and radiation are considered
in the current thermal DEMmodel as the main heat transfer mech-
anisms in packed beds with stagnant fluid.

In this paper, Section 2 describes the thermal contact theory
implemented by the DEM approach and the numerical methodol-
ogy to predict keff of pebble beds. Results and discussions are pre-
sented in Section 3, while the conclusions are reported in Section 4.
2. Methodology

2.1. Heat transfer modeling by DEM approach

In recent years, the DEM method has been utilized to simulate
the heat transfer characteristics of packed beds [4,26,27,31]. Since
the pebble bed is usually a mixture of solid particles and surround-
ing flowing fluid, an accurate heat transfer model for the pebble
bed will be very complex. One possible assumption is that each
individual particle i has a characteristic temperature Ti. Therefore,
the heat transfer equation of particle i can be simplified to

MiCpi
dTi

ds
¼
Xnm
j¼1

Qji þ Qi; ð1Þ

where Mi and Cpi are the particle mass and specific heat capacity,
respectively, Qi denotes the volume heat power coming from the
inner heating and can be estimated by a volume average method
[27], while Qji is the heat flow transferred through each neighboring
particle j. Then Qji is summed over all the nm particles adjacent to
particle i. As a consequence, heat transfer of the whole granular sys-
tem is calculated from a system of linear equations for all the par-
ticles as well as additional thermal equations describing initial
settings and boundary conditions. But before that, the unknown
Qji should be determined by a thermal contact model which is sim-
ilar to the mechanical contact model defined in DEM models.

Fig. 1 shows the flow diagram for the current DEM simulation.
In the mechanical DEM simulation, the pebble bed assemblies
are created by a previous self-developed mechanical DEM code
[32] running in PFC [30]. One or several groups of spherical
particles with the specified size distribution and material proper-
ties are randomly initialized in a pre-defined container with rigid
walls or periodic boundaries. Huge overlaps may exist between
these particles, which induces large repulsive contact forces.
Fig. 1. Flow diagram for the
Therefore, these overlapping pebbles move away from each other
and eventually reach a static equilibrium state. Meanwhile the
positions of lateral walls or periodic boundaries are adjusted
through a control scheme as in a servo hydraulic machine until
the mean stress of the assembly is close to the initial mechanical
load P0 [32]. As examples, a mono-sized bed with rigid walls and
a multi-sized bed with periodic boundaries for the lateral sides
and flat top and bottom walls are shown in Fig. 2(a) and Fig. 2
(b), respectively. A given Gaussian distribution shown in Fig. 2(c)
is assumed for the multi-sized case. In both cases, the Hertz-
Mindlin mechanical contact model is used to calculate the
particle-particle or particle-wall contact forces. Virtual ghost parti-
cles are generated in PFC to transfer the contact force between par-
ticles nearby the periodic boundaries.

In the subsequent thermal DEM simulation, the pebble bed
assembly is reloaded to perform the heat transfer simulation. Dur-
ing this process, Eq. (1) is discretized by expressing the time
derivative using forward finite differences defined in PFC [30],
and the thermal timestep is adjusted to achieve the numerical sta-
bility of the explicit scheme. The user-defined thermal contact
model, which defines the heat flow between adjacent particles
(or ghost particles in case of periodic boundaries), is implemented
by a C++ code and then compiled as an executable DLL (Dynamic
Link Library) file running in PFC. Once the average ratio of the
unbalanced to total heat power for all particles is lower than
10�4, the granular system is supposed to reach the steady-state
temperature field. The temperature distribution under certain
thermal boundary conditions can be used to compute the effective
thermal conductivity and thus validate the thermal DEM model.

In order to capture the influence of the packing structure on
heat transfer of mono-sized pebble beds, Cheng et al. [23,28] and
Wu et al. [4] introduced Voronoi tessellation. By this method, the
considered bed (pebbles and void space) is divided into Voronoi
polyhedrons containing single pebbles individually. This work
extends the Cheng-Yu-Zulli model to the case of polydisperse
pebble beds by using the radical Voronoi tessellation algorithm
[33] implemented in a C++ library. Fig. 2(a) and (b) also show the
Voronoi tessellations for the above cases of pebble beds. Two
neighboring Voronoi polyhedrons coming from the multi-sized
pebble bed assembly are shown in Fig. 2(d). The two Voronoi cells
have a common polygonal surface with a nominal area of An. For
simplicity, the common polygon is assumed to be equivalent to a
current DEM simulation.



Fig. 2. Assemblies of the pebble beds and their Voronoi tessellations. (a) Mono-sized bed in a rigid structure; (b) Multi-sized bed with top/bottom walls and lateral periodic
boundary; (c) Pebble size distribution in the multi-sized bed; (d) Two neighboring Voronoi cells; (e) A double-cone model. The double-cone represents one thermal contact.
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circular surface (shown in Fig. 2(e)) with the same area An and heat
flow between the two particles is assumed to pass through the cir-
cular double-cone zone only. Similar assumptions have been made
by Cheng et al. [33] to study the heat transfer of mono-sized beds.

2.2. Thermal contact model

In general, Qji in Eq. (1) can be expressed as

Qji ¼ �Qij ¼ �Hij Ti � Tj
� �

; ð2Þ
where Hij is the effective heat conductance [W/K] between particles
i and j. Yagi and Kunni [7] summarized the heat transfer mecha-
nisms in fluid-filled packed beds: (1) heat conduction through the
solid and fluid phase; (2) heat conduction through the contact area
of solid; (3) radiant heat transfer between solid surfaces (in case of
gas); (4) radiant heat transfer between adjacent voids (in case of
gas); (5) convective heat transfer, including the solid-fluid convec-
tion and the fluid mixing convection. However, for packed beds
filled with a stagnant fluid, only the first three dominant mecha-
nisms will be initially considered in the current work. Therefore,
the effective heat conductance can be rewritten as

Hij ¼ Ht
ij þ Hd

ij þ Hr
ij; ð3Þ

where Hij includes the solid contact conduction part Ht
ij, the solid-

fluid-solid conduction part Hd
ij and the radiation part Hr

ij. It is noted
that thermal contacts between adjacent particles with separating
gaps should also be considered because the solid-fluid-solid con-
duction and the radiation part still exist even though in this situa-
tion the solid contact part has no contribution.
2.2.1. Solid contact conduction
Solid contact conduction exists between two touching particles

with a contact area, as shown in Fig. 3(a). As reported in literatures
[29,34], the temperature distribution in the near-contact region is
significantly different from that far away from the contact region,
which indicates that solid contact conduction must be considered.
Batchelor and O’Brien [29] proposed an approximate analytical
solution for the effective heat conductance Ht

ij between two
smooth elastic spheres with a contact surface of radius rt (deter-
mined by Hertzian contact theory), which is also used by [26,23]
and written as

Ht
ij ¼ 2rtks ¼ 4

ffiffiffiffiffiffiffiffiffiffi
Redn

p

1=ksi þ 1=ksj
¼ 4

1=ksi þ 1=ksj
3FnRe

4Ee

� �1=3

ð4Þ

with

Ee ¼ 1� m2i
Ei

þ 1� m2j
Ej

 !�1

;Re ¼ 1
Ri

þ 1
Rj

� ��1

; and

dn ¼ Ri þ Rj � Lij; ð5Þ



Fig. 3. Thermal contact model for two adjacent particles. (a) solid contact conduction part; (b) solid-fluid-solid conduction part; (c) radiation part.
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where ks; t; E and R are the particle conductivity, Poisson’s ratio,
Young’s modulus and radius, respectively, and with subscript i
and j indicating the corresponding particle number. Fn denotes
the normal contact force induced by the normal overlap dn. Ee and
Re are the equivalent modulus and radius defined by the Hertzian
contact theory. Note that the solid conductivity ks in Eq. (4) has
been replaced with 2ksiksj= ksi þ ksj

� �
to consider particles with dif-

ferent thermal properties. Eq. (4) shows the relationship between
the conductance and the contact force, which enables the current
model to estimate the impact of an external mechanical load on
the effective thermal conductivity.

2.2.2. Solid-fluid-solid conduction
In most of the fluid-filled packed beds, the solid phase has a

larger thermal conductivity than the fluid phase, which means
the temperature distribution across the solid phase will be more
uniform, especially in the central part of the particle. In view of
that, Cheng et al. [23] assumed each particle had an isothermal
Fig. 4. Temperature distribution of two adjacent particles. (a) equal-sized particles; (b) m
lines perpendicular to the white lines represent the heat flowlines.
core part of radius Rc and representative temperature. Following
such a basic assumption, the temperature distribution of two adja-
cent equal-sized and multi-sized particles is solved numerically by
using the commercial software COMSOL Multiphysics, as shown in
Fig. 4. In both cases, the two particles of a unit temperature differ-
ence are surrounded by a stagnant fluid with a conductivity of kf
assuming to be 0:05ks, and the core part radius Rc , sketched in
Fig. 4 by black circles within the particle boundaries, is assumed
as half of the corresponding particle radius. For the equal-sized
case, the two particles with the same radius of 3 mm have a small
gap. while for the multi-sized case, the two particles have radii of
1 mm and 3 mm, respectively. As an approximation of the far-field
boundary condition, the stagnant fluid is contained in a large zone
with a radius of 30 times of the maximum particle radius. For the
equal-sized particles, heat flux indicated by the black flowlines
flows from the higher-temperature particle centroid to the
lower-temperature particle centroid, passing through a Point P
equidistant from both particle surfaces. For simplicity, Cheng
ulti-sized particles. The white lines indicate the isothermal surfaces and the black
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et al. [23] supposed that the approximate heat flux path for two
equal-sized particles is along the dashed polyline shown in Fig. 4
(a). A similar heat flux path is now introduced here for the multi-
sized particle pair, but Point P might deviate from the middle vir-
tual plane. As shown in Fig. 4(b), we assume in this situation Point
P still has the same distance to both particle surfaces, which means
Point P is located on a rotational hyperboloid with both particle
centroids as the focal points and the central axis of the contact pair
as the rotation axis. It is noted that the hyperboloid turns into the
middle virtual plane for the case of equal-sized particles.

Based on the above assumptions of an isothermal core and the

heat flux path, heat flow dQd
ij through the infinitesimal volume

within the smaller sphere shown in Fig. 3(b) is

dQd
ij ¼ 2pr2 sin hidhi �ksi

dT
dr

� �
or dT ¼ dQd

ij

2pksi sin hidhi
�dr

r2

� �
: ð6Þ

Here, hi is the angle between the central axis and the investigated
flow path (plotted in blue in Fig. 4), and r is the distance away from
the corresponding particle centroid.

Integrating Eq. (6) from the boundary of the core part
(r ¼ Rci; T ¼ Ti) to the boundary of the smaller particle
(r ¼ Ri; T ¼ Th;i), we obtain

Ti � Th;i ¼
dQd

ij

2pksi sin hidhi
1
Rci

� 1
Ri

� �
: ð7Þ

Similarly, analyses of the heat flow through outer fluid regions
and the larger particle give equations

Th;i � Th ¼
dQd

ij

2pkf sin hidhi
1
Ri

� 1
qi

� �
; ð8Þ

Th � Th;j ¼
dQd

ij

2pkf sin hjdhj
1
Rj

� 1
qj

 !
; ð9Þ

Th;j � Tj ¼
dQd

ij

2pksj sin hjdhj
1
Rcj

� 1
Rj

� �
; ð10Þ

where qi and qj are the distances from Point P to the corresponding
sphere centroid of the particles i and j, respectively. Th represents
the fluid temperature at Point P on the rotational hyperboloid
(Fig. 3(b)). Combining Eqs. (7), (8), (9) and (10)and rearranging

the final equation, we get dQd
ij as

dQd
ij ¼

2pkf Ti � Tj
� �

1=Rci�1=Ri
Ksi sin hidhi

þ 1=Ri�1=qi
sin hidhi

þ 1=Rj�1=qj

sin hjdhj
þ 1=Rcj�1=Rj

Ksj sin hjdhj

ð11Þ

with Ksi ¼ ksi=kf and Ksj ¼ ksj=kf denoting dimensionless solid con-
ductivities of particles i and j, respectively. Appling the cosine law
in triangle DOiOjP in Fig. 3(b) the following equations are obtained,

cos hi ¼
q2

i þ L2ij � q2
j

2qiLij
¼ 1� Da2

2di
� Da; cos hj ¼

q2
j þ L2ij � q2

i

2qjLij

¼ 1� Da2

2 di þ Dað Þ þ Da; ð12aÞ

or the differential form as

sin hidhi ¼ 1� Da2

2d2i
ddi; sin hjdhj ¼ 1� Da2

2 di þ Dað Þ2
ddi; ð12bÞ

where di ¼ qi=Lij; dj ¼ qj=Lij;ai ¼ Ri=Lij;aj ¼ Rj=Lij and

Da ¼ qj � qi

� �
=Lij ¼ Rj � Ri

� �
=Lij are the dimensionless length for

qi;qj;Ri;Rj and the particle radius difference, respectively. Substi-
tuting Eq. (12b) and the listed dimensionless variables into Eq.
(11) yields

dQd
ij ¼

pkf Lij Ti � Tj
� �

1� Da2
� �

ddi
Aþ Bð Þd2i � 2 1� DaBð Þdi � 1� DaBð ÞDa ; ð13Þ

where

A ¼ 1
aiKsi

1
ci
� 1

� �
þ 1
ai

;B ¼ 1
ajKsj

1
cj
� 1

� �
þ 1
aj

;

ci ¼ Rci=Ri; cj ¼ Rcj=Rj: ð14Þ
The integration of Eq. (13) will give

Hd
ij ¼

Qd
ij

Ti � Tj
� � ¼

pkf Lij 1�Da2ð Þ
2
ffiffiffiffiffi
Kj j

p ln 1�Y1
1þY1

			 			;K > 0

pkf Lij 1�Da2ð Þ
AþB

1
dimin

� 1
dimax

� �
;K ¼ 0

pkf Lij 1�Da2ð Þffiffiffiffiffi
Kj j

p arctanY2;K < 0

8>>>>>><
>>>>>>:

ð15Þ

with

Y1 ¼ Xmax � Xmin

1� XmaxXmin
; Y2 ¼ Xmax � Xmin

1þ XmaxXmin
; ð16Þ

Xmax ¼ �1þ DaBþ Aþ Bð Þdimaxffiffiffiffiffiffiffi
Kj jp ; Xmin ¼ �1þ DaBþ Aþ Bð Þdiminffiffiffiffiffiffiffi

Kj jp ;

ð17Þ
where K ¼ 1þ DaAð Þ 1� DaBð Þ represents the discriminant for the
integration. Note that K > 0 can be simplified to
Ksj > e� 1ð Þ 1=cj � 1

� �
. Considering e ¼ Rj=Ri P 1 and

cj ¼ Rcj=Rj < 1, K > 0 is always true for the mono-sized bed. But
for the multi-sized case, K < 0 is also possible if the conductivity
ratio Ksj is not very high.

The upper limit of integral dimax can be linked to the nominal
area An for the neighboring Voronoi cells shown in Fig. 2(d).
According to the geometrical relationship, dimax can be expressed as

dimax ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4An

pL2ij 1� Da2ð Þ

s
� Da

 !
: ð18Þ

The lower limit of integral dimin is determined by the particle
contact state. For the situation of particles in mechanical contact,
dimin is estimated to be

dimin ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r2t

L2ij 1� Da2ð Þ

s
� Da

 !
; ð19Þ

where the contact radius rt can be solved from Eq. (4). For the non-
contacting or point-contacting particles, rt in Eq. (19) should be
zero.

For the contact of equal-sized particles (Ri ¼ Rj and Da ¼ 0), Eq.
(15) gives a result consistent with Cheng-Yu-Zulli model [23].

2.2.3. Radiation heat transfer
Radiation is an important heat transfer mechanism for high-

temperature packed beds. However, it is very difficult to predict
the radiation heat transfer accurately due to the complex packing
structures in the pebble beds. Cheng et al. [28] proposed a simpli-
fied radiation heat transfer model for mono-sized beds by adopting
the following assumptions: (1) All particles are opaque spheres
much larger than the radiation wavelength and the particle
surfaces are gray emitting; (2) DT/T across a sphere layer is much
less than unity; (3) Radiation heat transfer between two adjacent
particles only exists in the virtual double-cone shown in Fig. 2(e)
and the cones are enclosed by an imaginary re-radiating surface
R (surface MPmNN

0P0
mM

0 in Fig. 3(c)). This work follows the same
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assumptions used in Cheng-Yu-Zulli model and extends it to the
situation of multi-sized beds. Actually, Cheng et al. have given
the radiative heat flow for adjacent Voronoi cells (see Fig. 3(c)) as

Qr
ij ¼

r T4
i � T4

j

� �
1�eri
eriAi

þ 1

AiFijþ 1= AiFiRð Þþ1= AjFjRð Þ½ ��1 þ 1�erj
erjAj

; ð20Þ

where eri and erj are the emissivities of the related particles i and j,

while Ai ¼ 2pR2
i 1� cos hið Þ and Aj ¼ 2pR2

j 1� cos hj
� �

represent the
radiant exchange areas of surfaces MM0 and NN0 on the correspond-
ing spheres. Fij, FiR, and FjR are the view factors of the surface pairs
MM0 and NN0, MM0 and MPmNN

0P0
mM

0, as well as NN0 and
MPmNN

0P0
mM

0, respectively.
By the reciprocity rule of the view factor,

AiFiR ¼ Ai 1� Fij
� �

; AjFjR ¼ Aj 1� Fji
� � ¼ Aj � AiFij: ð21Þ

Substituting Eq. (21) into (20), we have

Hr
ij ¼

Qr
ij

Ti � Tj
� � ¼ rAi T4

i � T4
j

� �
= Ti � Tj
� �

1�eri
eri

þ 1�erj
erjAj=Ai

þ 1þAj=Ai�2Fij
Aj=Ai�F2ij

� 4rAiT
3
i

1�eri
eri

þ 1�erj
erjAj=Ai

þ 1þAj=Ai�2Fij
Aj=Ai�F2ij

ð22Þ

The approximation in Eq. (22) is reasonable if the particle tem-
perature difference is small enough. For mono-sized particles with
the same material properties, erj ¼ erj;Ai ¼ Aj. Therefore, in this
case

Hr
ij ¼

rAi T4
i � T4

j

� �
= Ti � Tj
� �

2 1�eri
eri

þ 1
1þFij

� � � 4rAiT
3
i

2 1�eri
eri

þ 1
1þFij

� � : ð23Þ

This is in accordance with the equation given by Cheng-Yu-Zulli
model [28]. Cheng et al. determined the view factor Fij in Eq. (23)
by a numerical method. Actually, an analytical solution can be
obtained by further derivation.

The view factor from Ai to Aj is actually equal to that from Ai to
A0
j (the projected surface of Aj in the vertical direction). This is

because any ray of radiant energy emanating from Ai and striking
Aj will also strike A0

j and vice versa – if it strikes A0
j it will also strike

Aj. Together with the reciprocity rule, we have

Fij ¼ Fij0 ¼
A0
i

Ai
Fi0 j0 ¼

1þ cos him
2

Fi0 j0 ; ð24Þ

where Fi0 j0 is the view factor between the two coaxial circular planes

A0
i (projected surface of Ai) and A0

j with a vertical distance of
Li0 j0 ¼ Lij � Ri cos him � Rj cos hjm. According to [35],

Fi0 j0 ¼
1
2

z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 4R02

j

R02
i

vuut
0
@

1
A ð25Þ

with

z ¼ 1þ 4R02
j

R02
i

þ L2i0 j0

R02
i

; ð26Þ

cos him ¼ 1� Da2

2dimax
� Da; cos hjm ¼ 1� Da2

2 dimax þ Dað Þ þ Da; ð27Þ

where R0
i ¼ Ri sin him and R0

j ¼ Rj sin hjm are the radius of A0
i and A0

j,
respectively. For particles in mechanical contact, the central con-
tacting part will have no radiant exchange, but this effect is
neglected due to the limited fraction of the mechanical contact area
in the total heat exchange area.

2.3. Effective thermal conductivity

In this work the effective thermal conductivity keff at a certain
temperature is evaluated by the thermal DEM simulation in a rep-
resentative rectangular assembly of a packed bed with a small
temperature difference between the top and bottom walls as fol-
lows. As shown in Fig. 5(a), in the thermal DEM simulation, the
bottom layer of particles is kept as a constant temperature Tw,
while an equivalent volume heat power of qAw=Npw is applied to
all the Npw particles in contact with the top wall with an area of
Aw. Therefore, it seems that there is an equivalent surface heat flux
of q applied on the top wall. Besides, periodic boundary conditions
are imposed on the lateral surfaces of the assembly and no heat
source is located in the pebble bed. In this situation, the effective
heat flux through each cross-sectional surface perpendicular to z
axis will be equal to a constant value of q when the bed reaches
the steady thermal state (see Fig. 5(b)). Hence, the one-
dimensional Fourier heat conduction law can be applied to calcu-
late keff of the bed by

keff ¼ �q= DT=Dzð Þ: ð28Þ
Fig. 5(c) shows the particle temperature against the particle

position in z direction for the example case of a Li2TiO3 pebble
bed filled with helium gas expected to be used in a fusion reactor
[10]. The linear correlation between temperature and position in
the bulk region indicates that thermal conductivity almost stays
constant in the obtained temperature range and that the bulk
region is homogeneous. Therefore, an equivalent parameter, keff ,
can be used to characterize the heat transfer. In this situation,
DT=Dz can be obtained by linear regression of the temperature pro-
file in the bulk region which is about 5 particle diameters from the
wall in our model. According to this figure, for a heat flux of 100 W/
m2 at the top, the linear correlation for the temperature profile of
the pebble bed is T �C½ � ¼ 106z m½ � þ 424. Therefore, the slope DT=Dz
will be 106 �C=m. Based on Eq. (28), keff is estimated to be 0.94 W/
(m K) for the Li2TiO3/He pebble bed at a mean temperature of
424 �C. The other results of the linear regression at different tem-
peratures are shown in Table 1.

Alternatively, the effective thermal conductivity of the packed
bed can also be explicitly expressed by the total effective heat con-
ductance Hm (or Hij in Eq. (2)) of all the thermal contacts consider-
ing the solid contact conduction, solid-fluid-solid conduction and
radiation. Assuming that the heat transfer mechanisms from radi-
ation and convection in voids (i. e., mechanisms (4) and (5) men-
tioned in Section 2.2) can be neglected, and that heat flow in
packed beds with stagnant fluid only exists within the correspond-
ing thermal contacts represented by double-cone zones, the vol-
ume average heat flux can be replaced by a sum over all the Nm

contacts interior to the volume of the whole investigated bed V ,
i. e.

q
� ¼ �k

�
effrT ¼ 1

V

Z
qdV ¼ 1

V

XNm

m¼1

n̂q;mqmAmLm; ð29Þ

where �keff is the volume average conductivity tensor, qm;Am and Lm
denote the heat flux, effective heat transfer area and distance
between the centroids of two particles in contact, respectively,
and n̂q;m is the unit vector directed along heat flux.

Substituting Eq. (2) and Qm ¼ qmAm into Eq. (29), and noting
that in a thermal contact,

DT � n̂L;mxLm
@T
@x

þ n̂L;myLm
@T
@y

þ n̂L;mzLm
@T
@z

; ð30Þ



Fig. 5. Thermal DEM model for a Li2TiO3/He pebble bed (8121 particles with a diameter of 1.91 mm). (a) boundary conditions; (b) temperature field; (c) Particle temperature
as a function of particle position z.

Table 1
Simulation results of a Li2TiO3 pebble bed with He gas.

Tw [�C] q [W/m2] T-z linear regression (T = a z + b) keff [W/(m K)]

a b R2a Eq. (28) Eq. (32a) [keff kxx=kyy=kzz
� �

] Measured [10]

421 100 106 424 0.9999 0.94 0.89(0.90/0.90/0.87) 1.00
521 99.7 524 1.00 0.92(0.93/0.93/0.90) 1.01
624 92.7 627 1.08 0.96(0.97/0.97/0.94) 1.11
670 89.5 672 1.12 0.98(0.99/0.99/0.96) 1.17
725 85.4 728 1.17 1.01(1.02/1.02/0.99) 1.16
773 81.8 776 1.22 1.04(1.05/1.05/1.02) 1.21

a R2 is the goodness of fit of the least method.
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we have

�keff ¼ � 1
V

XNm

m¼1

HmL
2
mn̂

T
q;m � n̂L;m; ð31Þ

where n̂T
q;m is the transpose of n̂q;m, n̂L;m is the unit vector directed

from the lower-temperature particle centroid to the higher-
temperature one, Hm is the effective heat conductance synonymous
with Hij in Eq. (2), and � represents the outer product of vectors. For
a pebble bed of spherical particles with an isotropic packing struc-
ture, n̂q;m ¼ �n̂L;m. Therefore,

keff ¼ kxx þ kyy þ kzz
3

¼ 1
3V

XNm

m¼1

HmL
2
m: ð32aÞ

Combining Eq. (32a) and the equation for the bed volume

V ¼ p
6Pf

PNp
p¼1d

3
p ¼ pNp d3ph i

6Pf
, leads to
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keff ¼
�nmPf

p d3
p

D E HmL
2
m

D E
; ð32bÞ

where HmL
2
m

D E
denotes the average value of HmL

2
m, and the packing

factor Pf as well as the average coordination number, �nm ¼ 2Nm=Np,
which represents the average number of contacts with each individ-
ual particle, are two important parameters characterizing the pack-
ing structure of pebble beds. Therefore, Eqs. (31), (32a) and (32b)
associate the effective thermal conductivity to the pebble bed pack-
ing structure. Furthermore, Eq. (31) is also suitable for anisotropic
pebble beds with textures in the packing structure, for instance.
Batchelor and O’Brien [29] and Shuo Zhao [36] also obtained similar
equations by using a different approach on the basis of Batchelor
and O’Brien’s analytical model. These equations can give the effec-
tive thermal conductivity without the calculation of the tempera-
ture field, which significantly speeds up the calculation. However,
for a two-way thermo-mechanical coupling problem involving the
thermal expansion effect, the temperature field calculation is still
necessary because the particle expansion cannot be determined
without the temperature distribution. Further details related to
the influence of the packing configuration on keff are reported in
Section 3.2.1 for mono-sized pebble beds and in Section 3.1.2 for
binary pebble beds.

The keff values calculated by employing Eq. (32a) for the Li2TiO3

pebble bed are also listed in Table 1. Both methods gives results
that deviate by a maximum of ±16% from experimental data [10].
It is noted that Eq. (28) gives values very close to experimental
measurements, whereas Eq. (32a) underestimates the measured
values by up to about 16%.

3. Results and discussions

In this section, simulation cases for different packed beds have
been performed in order to validate the current thermal DEM
model by comparing the results with existing experimental data
of mono-sized and multi-sized beds. After that, the model was fur-
ther applied to analyze the heat flow distribution in packed beds
and the influence of the packing structure and the effect of the
mechanical load on the effective thermal conductivity. Some ther-
mal properties used in the simulations are listed in Table 2.

3.1. Model validation

3.1.1. Validation for unitary pebble beds
As discussed above, the result predicted by the current model

for the Li2TiO3 pebble bed where the thermal conductivity ratio
ks=kf only varies from 6 to 10 is good. However, as reported by
Table 2
Material thermal properties.

Material Thermal conductivity (W/(m K))

Li2TiO3 [42] 1�e0
1þbe0 4:77� 5:11� 10�3T þ 3:12� 10�6T2

� �
b ¼ 1:06� 2:88� 10�4T; 0:07 6 e0 6 0:27; 300 K 6 T 6 1050 K

ZrO2 [39]a 2:64þ 0:989� 10�3T � 3:65� 10�6T2 þ 1:67� 10�9T3; 700 K 6

Graphite [20] 73:8428� 0:0898607T þ 5:57553� 10�5T2 � 1:27420� 10�8T3,
700 K 6 T 6 1900 K

Beryllium [43] 291 1�e0ð Þ
1þ3:7e20

1� 1:65� 10�3T þ 1:464� 10�6T2 � 5:125� 10�10T3
� �

0 6 e0 6 0:8;300 K 6 T 6 873 K
Air 9:611� 10�3 þ 6� 10�5T , T (K), 0.1 MPa
Helium [44] 0:1448 T=273ð Þ0:68 1þ 2:5� 10�3P1:17 T=273ð Þ�1:85

h i
, T(K), P(MPa)

a Correlation fitted to data from Ref. [39].
b Estimated value.
c For unpolished surface.
Aichlmayr [13], the thermal conductivity ratio ks=kf for some
investigated pebble beds can range from 0.1 to 10,000. Aichlmayr
[13] has collected about 160 points of experimental data for a vari-
ety of bed materials from different studies [13,21,37,38], including
river sand, glass, steel and aluminum as solid particles, and water,
glycerol, air, helium and CO2 as the fluid phase. Fig. 6 shows these
measured data as well as the results of keff calculated by using Eqs.
(28) or (32a) against the thermal conductivity ratio. In the current
calculation, the example case is assumed to be a bed assembled
from 1.0 mm pebbles in the presence of 0.1 MPa air. The bed tem-
perature is 23 �C as most of the relevant experimental data are
measured at room temperature. In addition, the air conductivity
is fixed as a constant (0.0259W/(m K)) while the solid conductivity
is adjusted to obtain the different conductivity ratios correspond-
ing to the experiments. Since the temperature is very low, the radi-
ation part contributes less than 0.01% and thus can be neglected.
Therefore, only the solid-fluid-solid conduction part and the solid
contact conduction part are important in the present simulations.
As shown in Fig. 6(a), both Eqs. (28) and (32a) give consistent
results with a deviation less than 7%. Therefore, in the following
discussion, only the results of Eq. (32a) are taken as the example.
When the conductivity ratio is below unity, which means the solid
conductivity is less than the fluid conductivity (for example, water-
filled sand bed), our model predicts a lower keff than the measured
data. This is because in such a situation, the low solid conductivity
leads to a relatively high-temperature drop across the solid particle
and thus the current assumption of an isothermal core within the
pebble is no longer suitable. But for a high conductivity ratio larger
than unity, which is more relevant for gas-filled pebble beds, our
model matches the trend exhibited by the measured keff in a wide
range. For the intermediate conductivity ratio range 1–5, c = 0.6
(c ¼ ci ¼ cj, see Eq. (14)) was found to be the best to fit the exper-
imental data. Especially, with this value the predicted curve in
Fig. 6(a) more or less passes through the point (1.0, 1.0), which is
reasonable when the fluid and solid conductivities within the
bed are equal. For the high conductivity ratio range 5–10,000, the
calculated dimensionless effective conductivity keff=kf agrees well
with the experimental data and slight variations of the parameter
c from 0.45 to 0.55 do not affect the results significantly, which
confirms the suitability of the suggested value of 0.5 in the
Cheng-Yu-Zulli model. Therefore, it is suggested that c ¼ 0:5 for
5 < ks=kf < 10000 and c ¼ 0:6 for 1 < ks=kf < 5.

In Fig. 6(a), the additional predicted data for pebble beds of
50 mm particles almost coincides with the data for 1 mm particles,
which suggests, in the present case, the influence of the investi-
gated particle size on the effective thermal conductivity can be
negligible. This can be explained by Eqs. (31) or (32). In our model,
Emissivity

0.8b

T 6 1300 K �0:323þ 3:61� 10�3T � 4:55� 10�6T2 þ 1:67� 10�9T3;

700 K 6 T 6 1300 K

0:505586þ 7:92943� 10�4T � 5:228643� 10�7T2

þ1:10479� 10�10T3, 700 K 6 T 6 1900 K

; 0.6c

–

–



Fig. 6. Validation for unitary pebble beds with different thermal conductivity
ratios. (a) The determination of the fitting parameter c; (b) Influence of initial
mechanical load P0.

Fig. 7. Validation for unitary pebble beds at high temperature. (a) ZrO2 pebble beds
in vacuum condition; (b) Graphite pebble beds in vacuum condition.
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it is clear that the contact conductance and the solid-fluid-solid

conduction conductance satisfy Ht
ij / rt / dp and Hd

ij / Lij / dp,

respectively, while for the radiation part, Hr
ij / Ai / d2

p . Hence the

total effective conductance Hij / x1dp þx2d
2
p . Considering V / d3

p

and Lm / dp, Eqs. (31) or (32) will lead to keff / f x1ð Þ þ f x2ð Þdp.
Therefore, keff should be almost consistent for different particle
sizes when the second linear part given by the radiation can be
neglected, as in the present case.

Fig. 6(b) shows the effective thermal conductivity affected by
the initial mechanical load P0. In these cases, the mechanical load
is calculated by using the code of Chen [32] and fixed to P0 during
the thermal DEM simulation. The particle Young’s modulus and
Poisson’s ratio are assumed to be 90 GPa and 0.25 (from Li4SiO4

material widely used in fusion blankets), respectively. It can be
seen that in the lower conductivity ratio range 1 < ks=kf < 100,
the solid-fluid-solid conduction part absolutely dominates the
total effective conductivity of the bed, while in the transition range
100 < ks=kf < 2000, both conduction part and the contact part are
important. In the higher conductivity ratio range ks=kf > 2000,
comparing the contributions of the conduction part and the con-
tact part, it is obvious that the contact part starts governing the
total effective conductivity, and keff rises rapidly with the increas-
ing mechanical load. For example, if the conductivity ratio is fixed
at 2000, keff=kf grows from 22.5 to 42.1 when the mechanical load
increases from 5 kPa to 0.1 MPa. The influence of mechanical load
on keff will be further discussed in Section 3.2.3.

The current model reveals the contribution of the two conduc-
tion heat transfer mechanisms and works well for a wide range of
conductivity ratios. However, on one hand, since keff is sensitive to
the external mechanical load for pebble beds with high solid-to-
fluid conductivity ratio, more exact experimental data with error
bars are necessary to validate the current model. On the other
hand, the radiation part cannot be verified by the above data
because in these experiments the contribution of radiation part
can be ignored. One possible way for the validation of the radiation
part is to compare the calculated keff with the measured data of
high-temperature pebble beds in a vacuum condition where the
solid-fluid-solid conduction part has no contribution. Breitbach
and Barthels [39] measured the effective thermal conductivity of
a 45 mm ZrO2 pebble bed and a 40 mm Graphite pebble bed under
vacuum condition. Robold [19] also measured this for a 40 mm
Graphite pebble bed. Their experimental data are plotted in
Fig. 7. As shown by the dashed curves in the figure, the contact
conduction part only contributes less than 1% to the total effective
thermal conductivity indicated by the red solid line, so the radia-
tion part dominates the heat transfer in both pebble beds. It can
be seen that the calculated results match the experimental data
within a deviation of ±30%. The effective thermal conductivity for
both beds shows a significantly increasing tendency with rising
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temperature. However, in the temperature range of 400–1300 �C,
the model underestimates the effective thermal conductivity with
a deviation of up to �30%, but when the temperature grows
beyond 1300 �C, the model overestimates the value by a deviation
up to +30%, which means that the predictive capability is not
exactly in accordance with the experiments. This is probably
because the current model neglects the temperature variation
inside the pebbles during the derivation of the radiation heat
transfer model. Also, the long-range radiation [20] between two
different Voronoi cells is not included in the current calculation.
Further study is necessary to update the radiation part. But for
many engineering purposes, including solid breeder pebble beds
for fusion reactors, the contribution of the radiation heat transfer
is not very significant [26]. Therefore, the accuracy of the present
model will be sufficient for the time being.
Fig. 8. Validation for pebble beds with different particle sizes and different
materials. (a) pebble beds with the same size but different materials; (b) pebble
beds with different sizes and the same material; (c) pebble beds with different sizes
and different materials.
3.1.2. Validation for pebble beds with different particle sizes or
different materials

Particles in real packed beds are usually not equal-sized but
have a size distribution. Besides, some mixed pebble beds consist
of two or more components with different thermal properties [5].
In order to validate the current model for such situations, the pre-
dicted data were compared with experimental data from Okazaki
et al. [8]. Okazaki et al. measured the effective thermal
conductivity for binary mixtures of glass beads
(Ei ¼ 88 GPa; mi ¼ 0:215), acrylic resin (Ei ¼ 2:5 GPa; mi ¼ 0:4) and
copper (Ei ¼ 120 GPa; mi ¼ 0:34) with a size ratio up to 2.82 at room
temperature. The current results are reported in Fig. 8 where three
graphs are presented. In these cases, the mechanical load is
assumed to be 5 kPa. As shown in Fig. 8(a), for packed beds com-
posed of two components with the same size distribution but dif-
ferent materials, effective thermal conductivities predicted by the
current model are in agreement with those measured by Okazaki
et al. and calculated by using the Cheng-Yu-Zulli model [23]. It is
also observed that effective thermal conductivity increases with
the increasing volume fraction of the particles with the higher
thermal conductivity because they contribute more to keff com-
pared to the particles with the lower thermal conductivity.

Fig. 8(b) gives the data for two cases of pebble beds with differ-
ent diameters but the samematerial. In the two cases, the size ratio
of the two components is about 1.69 and 2.82, respectively. The
Cheng-Yu-Zulli model for mono-sized beds is not applicable now
[23,28], but the current model still predicts values with a maxi-
mum deviation of ±15%. It is noted that in such cases the trend
of the effective thermal conductivity is dependent on that of the
packing factor. When the volume fraction of the large particle
increases from zero to unity, both the packing factor and the effec-
tive thermal conductivity first grow to a peak and then drop to a
lower value. Figs. 8(c) and 9 also show the results of two pebble
beds with different diameters and different materials and the tem-
perature distribution of two example cases, respectively. It can be
seen that the trend of effective thermal conductivity is related to
not only the packing factor but also the solid conductivity ratio
of the large to small particles. The solid conductivity ratio seems
to dominate the variation of the effective thermal conductivity,
but the peak packing factor still leads to a small local fluctuation
of keff at a volume fraction of about 0.6. For these mixed pebble
beds, higher deviations are observed at some points, but still
within ±15%. The deviation might partially be due to the different
packing factors (shown in Fig. 8(c)) between experiments and
simulation. Besides, the homogeneity in the mixed beds might also
affect the measured keff .

As shown above, the current model demonstrates a good
predictive capability for the binary mixtures when the size ratio
reaches up to 2.8 as well as when the large-to-small particle
conductivity ratio varies from 0.23 to 5.8, but more measured data
are still necessary to verify it for binary pebble beds with a higher
size ratio and a wider solid conductivity ratio range.
3.2. Model application

3.2.1. Influence of packing structure on the effective thermal
conductivity

The discussion in the last section indicates that the keff of binary
mixtures is related to the packing structure parameters such as the



Fig. 9. Temperature profile of binary pebble beds. (a) Materials: Copper (0.125–0.149 mm)/Glass beads (0.074–0.088 mm)/Air; large particle volume fraction: 0.813; packing
factor, 0.624; (b) Materials: Acrylic resin (0.125–0.149 mm)/Glass beads (0.044–0.053 mm)/Air; large particle volume fraction, 0.62; packing factor, 0.661.
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packing factor and the volume fraction of each component. Addi-
tionally, in order to demonstrate the influence of the packing struc-
ture of unitary beds, the effective thermal conductivity for a Li2TiO3

pebble bed consisting of 1.91 mm particles with different packing
structures is listed in Table 3. The considered packing structures
are SC (simple cubic), RCP (random close packing), BCC (body cen-
tered cubic) and FCC (face centered cubic), respectively. Obviously,
pebble beds of different packing structures have different values
for keff . For the mono-sized bed with small mechanical load, most
of the thermal contacts are nearly in point contact and about 84%
contacts have a length of less than 1:1dp for the current case of
the Li2TiO3 pebble bed, which leads to Lm � dp. Therefore, Eq.
(32b) can be simplified as
keff �
�nmPf

pdp

�Hm: ð33Þ
Eq. (33) further indicates that the keff of a mono-sized bed is propor-
tional to a dimensionless quantity related to the packing structure,
namely �nmPf , as well as to the effective heat conductance per unit
length, �Hm=dp. Given the equation for packed beds of spherical par-

ticles Pf V ¼ Pf
PNm

m¼1
An;mLm

3 ¼ p
6

PNp
p¼1d

3
p and the approximation
Table 3
Effective thermal conductivity of pebble beds with different packing structures.a

Packing Structure Packing factor Coordination number

SC 0.52 (p=6) 6
RCP 0.604 9.7b

BCC 0.68(
ffiffiffi
3

p
p=8) 8

FCC 0.74(
ffiffiffi
2

p
p=6) 12

a Results for 1.91 mm Li2TO3 pebble bed in the presence of helium (421 �C).
b Thermal contact statistics includes the area-/point- contact particle pairs, as well a

Therefore, it is larger than the coordination number defined by the mechanical contacts
c Obtained by the current DEM simulation.
d Calculated by Eq. (3).
e By Eq. (35).
Lm � dp, the average nominal area �An for the mono-sized bed with
small mechanical load can be estimated to be

�An � pd2
p

�nmPf
ð34Þ

Substitution of Eq. (34) into Eq. (33) yields

keff � dp

�An

�Hm � Lm
�An

�Hm ¼def km ð35Þ

Combination of Eqs. (35), (34) and (3) provides us with an esti-
mated keff for a unitary bed without the DEM calculation. The
results of km calculated by Eq. (35) and keff by the DEM simulation
are listed in Table 3. They agree well with each other. This equation
implies that one can estimate the effective thermal conductivity of
the whole packed bed by the effective conductivity of one single
contact within a unitary bed, which is reasonable because most
of the thermal contacts in the mono-sized bed with small mechan-
ical load have similar effective conductivities and thus the whole
pebble bed has the same properties for all local contacts. This also
explains why many cell-based theoretical models for the effective
thermal conductivity prediction of mono-sized beds, such as the
ZBS model [15] as well as Kunii and Smith model [14], obtain sub-
stantial success. Concerning a binary bed of different particle sizes
keff
c (W/(m K)) �Hm

d (W/K) kme (W/(m K))

0.57 1.11 � 10�3 0.58
0.89 0.89 � 10�3 0.87
0.88 0.92 � 10�3 0.83

1.06 0.73 � 10�3 1.09

s the non-contacted particle pairs (because heat transfer exists in this situation).
.
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or different materials, the packing structure is complex, and each
individual contact might have a unique effective conductivity, such
that the cell-based theoretical models might predict inapplicable
results. In such a situation, the present model can be a better
choice.

3.2.2. Heat flow distribution
As the current numerical model is based on the heat transfer

between pebble-scale Voronoi cells generated in the whole pebble
bed assembly, it can be used to visualize the heat flow distribution.

Fig. 10(a) presents the angular distribution of the contact angle
and the heat flow of a random 1.91 mm Li2TiO3/helium pebble bed
at a temperature of 421 �C. Here, the contact angle u is defined as
the acute angle between the central axis of the corresponding con-
tact and the global heat flux direction, namely the vertical direc-
tion in the assembly. In the present analysis, the probability
density of the contact angle PDFu is obtained from

PDFu ¼ DNmu= NmDuð Þ; ð36Þ
where DNmu denotes the contact number falling in the contact angle
range of u � uþ Du, and Nm, which is the total contact number in
the assembly, has been included in Eq. (36) as a normalizing factor
to ensure the overall probability equals unity. Additionally, the
average heat flow through a single thermal contact in u direction
is calculated by

Qmu ¼ DQu=DNmu ð37Þ
with the heat flow falling in the range of u � uþ Du computed by
Fig. 10. Heat flow distribution in pebble beds. (a) and (b), Angular distribution of contac
(d), Probability density distribution of dimensionless contact heat flow for a mono-sized
DQu ¼
XDNmu

n¼1

Qmu;n; ð38Þ

where Qmu;n is the heat flow through the nth contact in u � uþ Du
direction. The probability density of the total heat flow is therefore
obtained from

PDFQu ¼ DQu= QDuð Þ: ð39Þ
Here, Q is the total heat flow through all the thermal contacts in the
assembly.

As shown in Fig. 10(a), the calculated probability density of
the contact angle increases with rising angle and reaches a max-
imum value in the horizontal direction. The probability density
of the contact angle PDFu is close to a sine-type distribution,
which was also observed in Reimann’s experiment by X-ray
microtomography [40]. On the contrary, as indicated by the
green dotted solid line, the normalized average contact heat flow
through a single thermal contact decreases with rising angle and
comes up to the maximum in the vertical direction, which is
similar with a cosine-type distribution. The angular distribution
of the heat flow through a single thermal contact can be
explained by the heat conduction within the contact. The heat
flow through the contact along u direction can be estimated
by Fourier’s law

Qmu � �kmAm
DT
Lm

¼ �kmAm
DT
Dz

cosu: ð40Þ
t angle and heat flow for a mono-sized pebble bed and a mixed pebble bed; (c) and
pebble bed and a mixed pebble bed.
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If fixed heat flux of q is defined in z direction for an isotropic
pebble bed, applying Fourier’s law for the whole assembly leads
to q ¼ �keffDT=Dz. Using the above approximate formula keff � km
and combining these equations yields

Qmu � qAm cosu: ð41Þ
As the effective heat transfer area in a contact (Am) does not

change too much for all the contacts in mono-sized beds, Qmu

through a contact will present cosine-type distribution.
Multiplying the probability density of contact angle and the

related average heat flow through a single thermal contact results
in the total heat flow in the corresponding contact angle direction.
Therefore, given the above approximate sine-type distribution for
the contact angle (dNmu � Nm sinudu), the amount of the total
heat flow falling in the range of u � uþ du will be

dQu ¼ QmudNmu � 1
2
qAmNm sin 2udu: ð42Þ

This explains why the probability density of the total heat flow
has a sin 2uð Þ -type distribution. This in turn indicates that the total
heat flowmainly passes through the direction of 45�. But it is noted
that in reality Am and km also have a distribution. The heat flow is
therefore deviates away from the standard regular distribution. As
shown in Fig. 10(b), this deviation between them seems to be more
obvious for a binary bed in which about 60% of the contacts are
formed between two smaller particles and more than 30% contacts
are between the larger and smaller particles.

The probability density distributions of the dimensionless con-
tact heat flow, i.e. Qm=Qav (Qav ¼ Q=Nm is the average heat flow for
all the contacts), and the fraction of the three heat transfer mech-
anisms contributing to it are shown in Fig. 10(c) for a mono-sized
and in Fig. 10(d) for a multi-sized bed. The distributions of Qm=Qav

in both cases are different, although their angular distributions
shown in Fig. 10 are similar. Concerning the contribution of the
three heat transfer mechanisms, the solid-fluid-solid conduction
dominates the heat transfer in both the mono-sized and the
multi-sized bed by a fraction of more than 90%. The contact part
and the radiation part only contribute less than 10% because the
solid-to-fluid conductivity ratio and the temperature are not very
high. It is noted that the contributions of radiation and contact part
in the two cases are swapped, which is probably due to the differ-
ent pebble sizes and different temperatures since packed beds of
larger pebbles at higher temperature are more affected by
radiation.
Fig. 11. Heat transfer characteristics of the beryllium pebble bed under mechanical
load. (a) Effective thermal conductivity; (b) Probability density distribution of heat
flow; (c) Angular distribution of contact angle and heat flow.
3.2.3. Influence of mechanical load on effective thermal conductivity
As discussed in Section 3.1.1 and shown in Fig. 6(b), a mechan-

ical load has a significant influence on the effective thermal con-
ductivity of pebble beds with high solid-to-fluid conductivity
ratios. Reimann et al. [11,12] measured the effective thermal con-
ductivity for a beryllium pebble bed which is a neutron multiplier
for solid breeder blankets in fusion reactors. 0.8–1.2 mm beryllium
particles of 98% theoretical density (ks ¼ 177:9 W/(m K)) and
helium at room temperature (25 �C) and atmospheric pressure
(kf ¼ 0:154 W/(m K))) compose the bed. Hence, the solid-to-gas
conductivity ratio is about 1155. The pebble bed was compressed
up to a maximum uniaxial mechanical load of 6 MPa and was then
unloaded slowly to zero stress. Meanwhile the effective thermal
conductivity and the strain-stress curve were measured during
the quasi-static loading/unloading process. The numerical results
of thermo-mechanical characteristics were calculated by using
the mechanical DEM code of Chen [32] and the current thermal
DEM code. Both the numerical results and Reimann’s experimental
data are shown in Fig. 11(a). The calculated strain-stress results are
close to the observed data in the experiments during the loading
process while the simulations yielded less residual strain after
the unloading process. Concerning the heat transfer characteristics,
the calculated keff shows a dramatic linearly increasing trend when
the strain rises, which was also observed in the experiments. How-
ever, the current numerical DEM model overpredicts keff by about
50% under the zero-stress state. This is probably because the effect
of particle roughness is neglected in the present model. Particle
roughness, on one hand, introduces plastic deformation on the
surface of particles due to poor initial contact area while the bulk
regions of the particles are still elastic, which is helpful to under-
stand the missing residual strain in our model. On the other hand,
if the mechanical load is small enough, poor initial contact area
caused by particle roughness might result in a large thermal
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resistance within the ‘‘contact regions” of contact pairs [41]. How-
ever, this thermal resistance will become smaller if the mechanical
load increases. This explains why the thermal DEM model predicts
keff better under a larger stress state. In view of that, further studies
are necessary to evaluate the impact of particle roughness and the
resulting interface resistance.

Fig. 11(a) also shows keff of the beryllium pebble bed without
the contribution of the solid contact conduction. Due to the
increase of the packing factor and the coordination number after
loading up to 6 MPa, the contribution of the solid-fluid-solid con-
duction part and the radiation part only grows by 23.2%, while
the total keff increases rapidly by 294%. This indicates that the
mechanical load has a strong effect on the solid contact conduction
which in turn dominates the overall behavior. As shown in Fig. 11
(b), for the better conductive contacts with Qm=Qav P 1, the contri-
bution of the contact part increases from below 30% to over 70%
after the bed is loaded up to 6 MPa, while the contribution of the
solid-fluid-solid conduction part decreases from over 70% to below
30%. This further confirms the dominant contribution of the con-
tact part in the present bed under the mechanical load. However,
the solid-fluid-solid conduction part still dominates the heat trans-
fer in those less conductive contacts with Qm=Q av < 0:5, which in
turn leads to the probability density peak of the contact heat flow
in the corresponding range of Qm=Qav. Besides, results shown in
Fig. 11(c) indicate that the uniaxial mechanical load has limited
influence on the angular distribution of the contact angle and the
heat flow. This is probably because the uniaxial stress in the pre-
sent case is still not high enough to cause an obvious change of
the angular distribution and the pebble bed might synchronously
adjust the packing structure in three dimensions and partially dis-
tributes the uniaxial load in each contact direction.
4. Conclusions

In this paper, a thermal contact theory for the heat transfer
between two adjacent spherical particles has been derived and
applied for packed beds using the discrete element method. Radical
Voronoi tessellationwas used to generate a network of Voronoi cells
for mono-sized and multi-sized beds and three heat transfer mech-
anisms, namely solid contact conduction, solid-fluid-solid conduc-
tion, and radiation were considered within each individual
thermal contact. By comparison to existing experimental data for
the effective thermal conductivity of mono-sized packed beds, the
proposed thermal DEMmodel was proven effective in a wide range
of solid-to-fluid conductivity ratios from 1.0 to 10,000. In addition,
the model predicted correct effective thermal conductivities for
mixed beds with a large-to-small particle size ratio up to 2.8 and a
large-to-small particle conductivity ratios from 0.23 to 5.8.

By further application of the current structure-based model, the
heat flow distributions and the influence of local packing structure
on the macro thermal properties such as the keff were analyzed.
Besides, itwasalso found that the keff of packedbedswithahighcon-
ductivity ratio is significantly dependent on the externalmechanical
load, which indicated a strong thermo-mechanical coupling effect
for such beds. Nevertheless, for a more accurate prediction of the
coupled thermo-mechanical behavior, the implementation of the
particle roughness effect and thermal expansionhas to be taken into
account in the future work. Besides, heat transfer mechanisms due
to radiation between adjacent voids and convection should also be
considered in the next step to estimate their effects.
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