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An efficient method is proposed for determining the chemical rank of three-way fluorescence data arrays. At
first, the original three-way fluorescence data arrays are preprocessed by Monte Carlo simulation and a new
set of data arrays is generated. The new set of data arrays obtained does not only keep all the useful
information, but the noises from the common background are largely removed, which results in the
improvement of the signal to noise ratio of the data and is beneficial for the later frequency analysis. Then,
we perform singular value decomposition over the new data and frequency analysis on the subsequent
eigenvectors, with which it is very easy to distinguish the spectra from the noises. Furthermore, a new
quantity frequency localization is introduced to quantify the frequency characteristics of the eigenvectors.
With this quantity, we can easily and accurately select out the spectra from the mess of data. The feasibility
of the method is verified by determining the chemical rank of two-component mixtures with simple
calculation procedures and high efficiency. Finally, the efficiency of our method is further illustrated by
comparison with the core consistency diagnostic (CORCONDIA) method in the analysis of mixtures with
different concentration and different number of components.
lsevier B.V.
© 2010 Published by Elsevier B.V.
1. Introduction

Estimation of the chemical rank, also known as the number of
components in mixtures, is an important or even a primary issue in
multi-component system analysis. In identifying and calibrating the
multi-component systems, many approaches depend on the pre-
estimation of the component number. Either overestimation or
underestimation will lead to less efficiency or even failure of certain
algorithms. Although some methods are not very sensitive to the
component number, prerequisites must be met that estimation of the
component number should be greater than the actual component
number. Under this condition, the approach may work, but the run
time, storage and number of iterations will increase with the
overestimation of component number and this will inevitably affect
the efficiency of the algorithm. Therefore, the accurate estimation of
the number of components in multi-component systems is very
important, especially in the field experiments.

It is well known that three-way fluorescence data arrays are con-
stituted by a collection of two-way fluorescence excitation–emission
matrices which are stacked together along the sample space. Without
loss of generality, the three-way data arrays can be denoted by matrix
XI× J×K, where I denotes the dimension of excitation, J the dimension of
emission and K the dimension of the sample (the number of samples
measured) and the value of each matrix element is the fluorescence
intensity of the corresponding point in the three dimensional space
spanned by excitation, emission and sample.

In order to estimate the chemical rank of three-way data arrays,
many methods have been proposed so far mainly as follows: (1)
residual analysis [1]. This approach determines the correctness of the
selected number of factors according to the residuals between the
value of the PARAFAC algorithm [2] and the three-way data arrays. (2)
CORCONDIA [3]. Based on the equivalence of the PARAFAC model [2]
and the constrained Tucker3 model [4], this method defines a core
consistency function to estimate the component number. (3) ADD-
ONE-UP [5]. This approach starts unfolding XI× J×K along the excitation
and emission space, then performs singular value decomposition
(SVD) and reconstructs XI× J×K by different eigenvectors. The compo-
nent number is determined by the residual of PARAFAC algorithm and
the three-way data array. (4) PNVOP [6]. The three-way data array
XI× J×K is unfolded and an orthogonal projectionmatrix is constructed.
Then the component number is estimated by F-test. (5) TMSC [7]. The
three-way data array is preprocessed by unfolding XI× J×K to form two
two-way matrices with dimensions I× JK and J× IK (here JK and IK
mean J×K and I×K, respectively). After singular value decomposition,
the component number is determined by the residual of orthogonal
projection matrix which is formed by the first i columns of
eigenvectors. (6) Pseudo-sample extraction and the projection
technique [8]. This method firstly produces two pseudo-samples by

mailto:yjzhang@aiofm.ac.cn
http://dx.doi.org/10.1016/j.chemolab.2010.04.006
http://www.sciencedirect.com/science/journal/01697439


84 S. Yu et al. / Chemometrics and Intelligent Laboratory Systems 103 (2010) 83–89
DTLD algorithm [9] and continues with singular value decomposition,
then estimates the component number by the residual of projection
space. (7) SPPH [10]. This method is carried out by unfolding XI× J×K,
producing two-way arrays and performing singular value decompo-
sition. Then the component number is determined by the residual
resulting from different factors. (8) LTMC [11]. There are twomatrices
R1 and R2 produced in this method. R1 is formed by the sum of X..k

(k=1, ⋯, K) and R2 is produced by multiplying each X..k(k=1, ⋯, K)
with random non-zero number and adding them together. As the
subspace spanned by the corresponding spectra eigenvectors of N
components is the same but orthogonal with the subspace spanned by
noise eigenvectors, the component number can be estimated by
subspace projection method together with Monte Carlo simulation.
(9) Canonical correlation technique [12]. This approach estimates the
number of component by the fact that the subspace spanned by
different spectra eigenvectors is the same and orthogonal with the
noise eigenvectors subspace. The difference from that in Reference
[11] is the introduction of a canonical correlation technique. (10)
Morphological approach [13]. Amorphological function is constructed
by using the eigenvectors of singular value decomposition and the
component number is estimated by the morphological function in
Reference [13].

Since the eigenvectors from the singular value decomposition of
the original three-way data arrays contain much more information
than the eigenvalues, estimation of component number from
eigenvectors is a good starting point and in fact, it has been taken
by many methods. It can be seen that the above methods for
estimation of the chemical rank of three-way fluorescence data arrays
fall into two groups. In the first group, the component number is
determined by comparing the residual between three-way data arrays
and numerical solution from PARAFAC algorithm. This kind of method
which is influenced by signal to noise ratio, requires a lot of compu-
tation because of the multiple executions of PARAFAC algorithms. In
the second group, the chemical rank is determined by projection
space which is spanned by eigenvectors after singular value
decomposition. Though these kinds of approaches take advantage of
the frequency characteristics of spectra and noises to certain extent,
they are possibly also influenced by signal to noise ratio. In a word, the
above methods work well only on certain three-way fluorescence
data arrays due to their intrinsic limitations. In practice, at present, the
joint application of several different approaches is usually adopted to
evaluate the component number of a multi-component system. So, it
is of great significance to explore ways of accurate estimation of
component number by taking into full consideration all possible
differences between the spectra and the noises. Rossi et al. [14] have
estimated the rank of excitation–emission arrays by frequency
analysis of eigenvectors. They investigate the ratio of the amplitude
sum in one specific frequency range over the amplitude sum in the
whole frequency range of each eigenvector. Since it requires to set an
artificial threshold and repeatedly try different frequency ranges, this
method has not been widely adopted and developed.

Inspired by frequency analysis of eigenvectors, we propose a new
scheme to estimate the chemical rank of three-way fluorescence data
arrays from multi-component systems. Firstly, in order to eliminate
the noise effect as possible as we can, the original measured data are
preprocessed by subtracting any two data arrays with Monte Carlo
simulation to produce new sample data. Then singular value
decomposition is applied to the new three-way data arrays and fre-
quency analysis is performed on the subsequent eigenvectors. By
inspecting the frequency spectra, we can already accurately select out
the spectra. Finally, a new quantity frequency localization is defined for
the eigenvectors to quantify their localization degree in frequency
space and the component number is accurately determined by
comparison of frequency localization of different eigenvectors.

The rest of the paper is organized as follows: The theoretical
concepts and steps of the method including Monte Carlo preproces-
sing, singular value decomposition, time-frequency transform and
frequency localization are introduced in Section 2. In Section 3, the
feasibility of the method is testified by analyzing the three-way
fluorescence data arrays of a two-component system with and
without Monte Carlo preprocessing and by comparing the results
from our method and the popular CORCONDIA. At last, a comprehen-
sive summary is given in Section 4.

2. Theory

2.1. The preprocessing of the three-way data arrays

In measurement of the fluorescence of mixtures, we obtain a
collection of two-way excitation–emission matrices X..k(k=1, ⋯, K).
The obtained data contain specral signals and noises and the noises
mainly arise from two origins, with one from the common back-
ground, such as those from the instruments used in the measure-
ments and water in the solution, etc., and the other from the random
noises. Generally, the noises from the common background are much
smoother than the random noises and have similarities to spectral
signals, thus the common background can greatly affect the
estimation of the chemical rank. In order to suppress the effects of
the noises in the analysis, the obtained data matrices X..k are
preprocessed by Monte Carlo simulation before singular value
decomposition is performed, i.e., two data arrays are randomly
extracted from X..k(k=1, ⋯, K) and then one is subtracted from the
other to produce a new two-way data array. This process is repeated
for N times and we obtain N new two-way data arrays:

Y::n = X::i−X::jðn = 1; ⋯;NÞ; ð1Þ

with i, j ∈ 1, ⋯, K, i≠ j and K≤N≤CK
2. In this way, we can produce a

new set of “samples” as many as CK2=K(K−1)/2. However, we do not
need so many new “samples” and only part of them are enough. For
example, we can choose N=K. Note that, in the construction of the
new data arrays Y..n, we should make sure that each of the original K
samples is chosen at least for once so that all the measured data are
processed without any lose of them. The new samples Y..n(n=1,⋯, N)
are different from the common pseudo-samples [9] in chemometrics
in that the new samples keep all the useful information contained in
the initial samples, but the known and unknown common back-
ground is removed, which results in the better satisfaction of the
trilinearity of the data matrix which is the basis of singular value
decomposition that will be discussed in the next subsection. In
addition, the subtraction of the data arrays may bring the increase of
the random noises but it does not change the basic features of them,
such as randomness and high-frequency oscillation and thus it will
not affect the frequency analysis in this work. Since the noises from
the common background are largely eliminated in the subtraction, the
signal to noise ratio of the data is improved.

2.2. Singular value decomposition

The matrix X..k
T X..k for each sample k can be decomposed into three

matrices U, Λ, Vwith SVD and since X..k
T X..k is symmetrical and positive

semi-definite, we have U=V and thus

XT
::kX::k = UΛUT

; ð2Þ

where U is an orthogonal matrix, the superscript T of U denotes
transposition, and Λ is a diagonal matrix with the elements
Λ11≥Λ22≥⋯≥ΛJJ≥0. Note that for a symmetrical and positive semi-
definite matrix, the SVD of it is equivalent to its eigenvalue
decomposition. So following the routine in literatures (see, e.g.,
Reference [13]), we call U here as the eigenvectors and Λii as the
eigenvalues. If X..k is free of noise, the number of non-zero elements in



Fig. 1. The three-dimension fluorescence spectra of: (a) cresol and (b) phenol. EX
means the excitation wavelength and EM means the emission wavelength.
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Λ is exactly the component number. But actually, noises are always
mixed in X..k, thus all the values of the elements in Λ are greater than
zero. This means that it is hard to distinguish the spectra from the
noises only by eigenvalues Λii in matrix Λ. On the contrary, it is a good
idea to turn to analyze the eigenvectors since they containmuchmore
information than the eigenvalues.

2.3. Time-frequency transform of eigenvectors

In order to obtain the exact component number of a multi-
component system, firstly, we unfold Y..n(n=1, ⋯, N) along the sample
space to form an augmented matrix [Y..1, ⋯, Y..N] and then perform
singular value decomposition over it,

U; S;V½ � = svd Y::1; ⋯;Y::N½ �T Y::1; ⋯; Y::N½ �
� �

: ð3Þ

Since the matrix [Y..1, ⋯, Y..N]T[Y..1, ⋯, Y..N] of the new samples is also
symmetrical, we have U=V in Eq. (3).

Then we construct a continuous function U(t) from each
eigenvector {Ui}(i=1, ⋯, N) by artificially setting the time interval
between any two nearest elements in this eigenvector as 1 s and do
Fourier transform over the function U(t),

A uð Þ = 1
T
∑
T−1

t=0
U tð Þ exp −i2πut

T

� �
ð4Þ

where t is the artificial time point, T is the total row number of U and u
is the frequency.

In the frequency space, the value of eigenvector A(u) is complex.
Its amplitude as a function of frequency can be computed by

Z uð Þ = jA uð Þ j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Areal uð Þð Þ2 + Aimag uð Þ

� �2r
: ð5Þ

Since in this work singular value decomposition is performed on
the new samples produced by Monte Carlo preprocessing, it will
be easier to distinguish between spectra and noise from the amplitude
Z(u). In comparison, the method introduced in Reference [14] is
greatly influenced by artificial intervention owing to the requirement
of setting a threshold value and a frequency range which have to be
tried repeatedly for several times. Furthermore, the threshold value is
highly dependent on the selected frequency range. In doing so, a
different threshold value or a different frequency rangemay result in a
different conclusion, thus it is hard to control.

2.4. Frequency localization

As noises are high-frequency vectors, they are uniform and highly
oscillating functions of frequency. On the contrary, the spectra are
low-frequency ones which are much smoother than the noises and
finite values are localized at a very small range around some specific
frequencies. So following the idea of introducing inverse participation
ration (IPR) to quantify the localization of states in real space in solid
state physics [15], we can also define a similar quantity frequency
localization FL(Z) to describe the localization of an eigenvector Z(u) in
the frequency space. Firstly, Z(u) is normalized,

Z uð Þ = Z uð Þ= ∑
T

u=1
Z uð Þ

 !
; ð6Þ

where u, like t, has the same total number T. Thus the new Z(u) at each
frequency u has value between 0 and 1. Then, frequency localization
can be defined as follows:

FL Zð Þ = ∑
T

u=1
Z uð Þð Þ2: ð7Þ
From this definition, we know that 1/T≤FL(Z)≤1 for each Z(u),
where the maximum value of 1 means the most localized state since
Z(u) is not zero only at one specific frequency, while the minimum
value 1/T means the most extended state and Z(u) is equal at all
frequencies. Thus a more localized eigenvector has larger frequency
localization. Since the spectra appear only in a very small range
around some specific frequencies while noises are much more
irregularly distributed in the whole frequency space, as will be seen
later, the spectra has a much larger FL(Z) than the noises. Therefore,
we can determine whether one eigenvector is from a signal or from a
noise only with the aid of FL(Z) and it is not necessary to inspect how
the eigenvector Z(u) is distributed in the frequency space. Corre-
spondingly, the component number can be determined accurately.

3. Experiment results and discussions

As universal concerns in the monitoring of priority pollutants,
cresol and phenol have low concentration in water and high similarity
in spectra (see Fig. 1), so the qualitative and quantitative analysis of
cresol and phenol in water is always a difficult but very important
problem. In this work, cresol and phenol are taken as experimental
reagents to verify the feasibility of the proposed method.

Ten mixtures of cresol and phenol with different concentration are
prepared and the concentration of each mixture is listed in Table 1.
Each mixture is scanned by fluorescence spectrophotometer with
excitation wavelength EX 220–290 nm and emission wavelength EM
291–400 nm. In the measurement, the intervals are taken as 2.0 nm
for the excitation wavelength and 1.0 nm for the emission wave-
length. The scanning speed is 12,000 nm/min and the measured data
form three-way data arrays Xijk(i=1, ⋯, 110; j=1, ⋯, 36; k=1, ⋯, 10).
In many previous methods, generally, singular value decomposition is
performed directly on Xijk, and then the diagonal elements of Λ is
arranged in descending order and the component number is usually
estimated according to the relative magnitude of these eigenvalues
since generally noises have smaller eigenvalues than the spectra. In
order to see more clearly the difference between the cases with and



Table 1
The two-component mixtures of cresol and phenol with different concentrations
(Unit: mg/l).

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10

Cresol 0 0.05 0.08 0.1 0.2 0.3 0.5 0.8 1 0.05
Phenol 1 0.8 0.5 0.3 0.2 0.1 0.08 0.05 0 1
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without Monte Carlo preprocessing, at first, we also perform SVD over
the original data matrix Xijk and do Fourier transform over the
eigenvectors U to obtain their frequency spectra. The results for the
first six eigenvectors are plotted in Fig. 2.

From Fig. 2, we can see that it is very difficult to distinguish the
spectra from the noises. For example, Fig. 2(a) and (b) are from the
spectra, but they do not show any better frequency characteristics
than the other eigenvectors, namely, the noises. It indicates that the
contrast of the spectra over the noises in the frequency space is very
bad.
Fig. 2. Frequency spectra of the first six eigenvectors after singular value decompo
Though the frequency spectrum is intuitive when it is visualized in
a figure, we have to inspect them one by one to extract the spectra and
exclude all the noises. When there are many components in the
mixtures or when the data matrix is huge, it is not convenient to
directly determine the component number from the frequency
spectra. Therefore, the frequency spectrum needs to be quantified
and it will be very convenient if we can describe each eigenvector
with only one quantity. To this aim, frequency localization is
calculated and the information about all the eigenvectors is shown
in Fig. 3. It can be seen that the frequency localizations of the first
seven eigenvectors are significantly greater than the others, but the
first two corresponding to the spectra eigenvectors, especially the
second one, have no obvious difference from the other five noises.
Clearly, the common background and the random noises in the
original fluorescence data severely affect the estimation of chemical
rank.

In comparison, if singular value decomposition is imposed on the
new data arrays (in fact it is the matrix [Y..1, ⋯, Y..N]) produced by
sition for the case with no Monte Carlo preprocessing over the original data.



Fig. 3. Frequency localization for the case with no Monte Carlo preprocessing over the
original data.

Fig. 4. Frequency spectra of the first six eigenvectors of Y..n after singular value deco
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Monte Carlo preprocessing and with the common background
removed, the spectra of the eigenvectors corresponding to the first
six largest eigenvalues are obviously different from those in Fig. 2 and
we can easily tell that Fig. 4(a) and (b) are from the spectra, while
Fig. 4(c)–(f) are from the noises. In contrast, the eigenvectors shown
in Fig. 4(c)–(f) are much more oscillative than those in Fig. 2(c)–(f).
This is because, on one hand, the effect of the common background
has been excluded and on the other hand, the subtraction of the data
arrays may increase the randomness (frequency) of the random
noises.

It has been shown that frequency localization is a good quantity to
measure the localization degree of eigenvectors in the frequency
space. The frequency localizations of the eigenvectors with Monte
Carlo preprocessing are shown in Fig. 5. From this figure, it can be seen
that the localization (about 7.0×10−3) of the first two eigenvectors
are far greater than the other eigenvectors, so the first two
eigenvectors are the corresponding spectra. The localization of all
the latter eigenvectors is around 3.5×10−3, which fully demonstrates
the common characteristics of the noises, namely, random frequency
mposition for the case with Monte Carlo preprocessing over the original data.



Fig. 5. Frequency localization for the case with Monte Carlo preprocessing over the
original data.

Table 2
The three-component mixtures of cresol, thymol and phenol with different concentra-
tions (Unit: mg/l).

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10

Cresol 0 0.05 0.08 0.1 0.2 0.3 0.5 0.8 1 0.05
Thymol 0.3 0.5 0.2 0.8 0.08 1.0 0 0.1 0.05 0.4
Phenol 1 0.8 0.5 0.3 0.2 0.1 0.08 0.05 0 1
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distribution. Thereby, the component number of the three-way
fluorescence data arrays studied in this experiment is easily obtained
as 2 by the frequency localization. This is simpler andmore direct than
by visualizing the frequency spectrum one by one, especially for
mixtures in field experiments with probably many components. In
this example, we see that we do not need to set up an artificial
threshold. However, if it is in a case with very difficult data, a suitable
decision criterion is still suggested. The component number can be
decided as the number of the eigenvectors whose frequency
localization is larger than the value FLmin+a×(FLmax−FLmin),
where FLmin denotes the minimum of the frequency localization and
FLmax the maximum of the frequency localization. The parameter a is
tunable and 0.5 is suggested generally. Here note that, what shown in
Figs. 4 and 5 are the results for N=10 chosen in Eq. (1). In fact, we
have tried many different ways to select out the original data matrices
for producing the new data arrays for a fixed N and we have tried
different N which is between 10 and 45(=C10

2 ). In all these tests we
get the same conclusion.
Fig. 6. The excitation and emission spectra for the three components in the three-comp
wavelength and EM means the emission wavelength. “1” stands for thymol, “2” for cresol a
To further illustrate the effectiveness of the method, we have
compared our method and the currently popular CORCONDIA [3] in
the analysis of mixtures with different concentration and different
number of components including two or three components. We find
that, in all the cases where CORCONDIA succeeds, our method can also
get the correct component number. In addition, we find several cases
where CORCONDIA fails while our method can still get the correct
results. In the following, we show such an example.

Ten three-component mixtures of cresol, thymol and phenol with
different concentrations are prepared and the concentration of each
mixture is listed in Table 2. Cresol, thymol and phenol are selected in
this experiment since they have highly similar excitation and
emission spectra (See Fig. 6) and are difficult to distinguish. The
three-way fluorescence data arrays of the ten mixtures are measured
under the same conditions and analyzed with the same procedure as
in the previous experiment. The frequency localizations of the first
thirty eigenvectors are showed in Fig. 7. From Fig. 7, we can easily tell
that the component number of the ten mixtures is 3, as the first three
localizations are obviously far greater than the others.

We have also calculated the chemical rank by the CORCONDIA
method. However, a wrong number of 2 is obtained by this method.
Analysis shows that the main reason that CORCONDIA fails in this
example is that the spectra of two components (cresol and phenol) in
the mixtures are severely overlapped, which are very difficult to deal
with in CORCONDIA especially for the low concentration. However,
our method can still easily select out all the spectra signals. From the
comparisons that have been made, we find that the efficiency of our
method is at least comparable to CORCONDIA and even better in some
situations. Of course, one difference should be noted that, our method
is based on frequency analysis while CORCONDIA is not. Furthermore,
our method is much simpler than CORCONDIA due to the requirement
of multiple executions of PARAFAC algorithms which are generally
very time consuming in CORCONDIA.

4. Conclusion

An efficient method based on frequency analysis for determining
the component number of multi-component system is proposed.
Compared with other similar methods that are based on frequency
analysis, the advantages of this approach are the following: 1. Before
the singular value decomposition, the original three-way fluorescence
data arrays are preprocessed by Monte Carlo simulation. The obtained
new three-way fluorescence data arrays keep all the useful informa-
tion and in the meantime the effects from the common background
are removed and the signal to noise ratio of frequency characteristics
is greatly improved. 2. A new quantity frequency localization FL(Z) is
onent system: (a) Excitation spectra; (b) Emission spectra. EX means the excitation
nd “3” for phenol.



Fig. 7. Frequency localization for the three-component system with Monte Carlo
preprocessing.
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introduced for describing the frequency characteristics of the eigen-
vectors after Fourier transform. Generally, the frequency localization
of spectra is far larger than that of the noises. Thus, in most cases, it is
not necessary to set an artificial threshold for frequency analysis as
done in other methods. By investigation of the FL(Z), the spectra and
noises can be easily distinguished by the relative magnitude of the
frequency localization of the eigenvectors. This will not only make the
results more reliable but also more intuitive and simpler. Neverthe-
less, we note that, in cases of very difficult data, a suitable decision
criterion is still necessary. Although the feasibility of the method is
shown in detail only by examples of the three-way fluorescence data
arrays of the two-component and three-component mixtures, it is
applicable to any kind of three-way data arrays and even multi-way
data arrays. In addition, the method is not sensitive to the signal to
noise ratio in the original data owing to the adoption of Monte Carlo
preprocessing of the original data arrays. Although the proposed
method is very successful in determining the number of components
of mixtures in laboratory and has advantages over other methods that
are based on frequency analysis, for sake of safety, the application of a
combination of several different methods is still recommended in
practical problems due to the complications involved in these
problems such as spectral overlapping, diversity of noises and the
fluorescence quenching, etc. Finally, it must be mentioned that like
any other methods that are based on frequency analysis, the proposed
method works best when the spectra are broad band and the noises
are narrow band, which is generally the case in most situations.
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