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Abstract:
We describehowchaoticdynamicsmay appearin somefundamentalaswell as practicalproblemsof quantumoptics. Thisessayis intendedfor

researchersin thegeneralareasof quantumoptics and laserphysics,especiallythoseunfamiliarwith thebasicideasand implicationsof “chaos”.
Our aim is to describewhat chaos is, how it may beidentified, andwhy it may be important. We suggestthat quantumoptics offersan attractive
arenafor the study of chaotic behavior.To support this suggestionwe considerseveralexamplesinvolving Maxwell—Bloch equations,lasers,
nonlinearoptics, and infrared laser—moleculeinteractions.

1. Introduction

A very activeareaof researchin physics thesedayscomes underthe generalheadingof “chaos”.
What this rubric is meantto imply is a moreor lessrandomtypeof behaviorin a systemdescribedby
completelydeterministicequationsof motion (a dynamicalsystem).From a practicalstandpointthe
studyof chaoticdynamicsreflectsin part the influenceof computerson theoreticalphysics,for chaotic
systemsare “nonintegrable”,andmuch of the work in the field involvesnumerical“experiments”. In
the grander schemeof things, chaotic dynamics may herald a “new paradigm, a turning point in
science”[1].

A glanceat the tableof contentsrevealsthat this reviewfocuseson a modestcollection of examples
of chaoticbehavior.Specifically,we considerexamplesin quantumopticsand quantumelectronics.We
believethat researchersin thesefields can benefit from someappreciationof what “chaos” is, andthis
reviewis written with their needsin mind. It is only peripherallythat we discussvariousimplicationsof
chaoticdynamicsin a more generalcontext, in order to provide someindication of why this field is
attractingso muchgeneralinterestamongphysicists.

Lasershave in several instancesbeen used to test general and fundamentalideas in physics,
particularly in statisticalmechanics.They mayplay an equallyvaluablerole in chaoticdynamics,and
indeed some observationsof chaotic behavior in lasers have recently been reported (section 4).
Observationsof chaotic behaviorhave also beenmadein optically bistable devices(section 5). We
emphasizethroughoutthisreviewthat chaosis not an exoticmathematicalcuriosity, but that it appears
in somequite fundamentalproblemsin laserphysicsand quantumoptics.

A generaloverview of chaosis given in the following section,and the ideasare illustrated with
severalexamples.In section3 we considerthemodelof a single-modefield interactingwith a collection
of two-level atoms,andshowthat this apparently“simple” modelcan exhibit chaoticdynamics.Chaos
in lasers and nonlinearoptics is discussedin sections4 and 5, respectively,wherewe describesome
results that have been reportedby various experimenters.In section 6 we discuss the interesting
possibility that chaos,rather than “order”, is a prevailing featureof multiple-photonlaser—molecule
interactions.

We shouldemphasizeat the outsetthat the literatureon chaosis expandingso rapidly that no review
at this time is likely to be “complete”. Furthermoreour own interestsare in the generalarea of
quantumoptics, andso we apologizein advanceto the manyauthors,either in otherfields or on the
moremathematicalsideof chaos,whosework we havenot cited.

2. Overview of chaotic dynamics

2.1. Introduction

We will be concernedmainly with chaoticevolution of dynamical systemsof differential equations.
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However, to introducesomebasic ideasit is simpler to begin with discretemappings.In addition to
beingeasierto work with, discretemappingscan be constructedfrom systemsof differentialequations
in variousways. For instance,useis frequentlymadeof Poincarémaps.For many purposesone might
just as well concentrateon discretemappingsratherthan “continuous flows”. We will begin with two
celebratedexamples,the logistic andHénonmappings.

2.2. Thelogistic mapping

A simple model for the rate of changeof some population x is basedon the logistic equation,
x = Bx— Dx2, if the deathrateis assumedto vary linearly with the population.Sometimessuch a rate
equationis replacedby a discretemapping,x~÷

1= f(x~),which is assumedto relatethe populationsof
successivegenerations.Sucha discrete-timevariantof the logistic equationis the logisticmapping[2—51

x~+1=4Ax~(1—x~),0~x0, A.�1 (2.2.1)

which is a noninvertible(becausex~_1is not uniquelydeterminedby x~)mappingof the interval [0,1]
into itself. An important role is played by the parameterA; for certain values of this “knob”, the
sequence{x~}is “orderly”, for othersit is chaotic.

Considerthe caseA = 1. Letting x~= sin
2 0,,, we havefrom (2.2.1) sin20,,÷~= sin220,,, or 0,,±~= 20.

(modir/2). In this case,therefore,the logistic mappingreducesto

0,, = ~ (2.2.2)

In this form it is easyto seethat the sequenceof numbersgeneratedby the mapis verysensitiveto the
valueof the initial seedvalue 0~.If Oo —~ 0~+Eo, then 0. -+ 0. + r,,, where

= 2”e
0 = e~en(Iog

2) (2.2.3)

The deviation e,, thus grows exponentiallyat the rate log 2, which may be called the Lyapunov

exponent.Sincethe Lyapunovexponentin this caseis positive, the sequencegeneratedby the logistic
mapis very sensitiveto the choiceof the initial seed.This very sensitivedependenceon initial conditions
is a hallmark of chaos.Thus the sequence{x,,} generatedby the logistic map for A = 1 is “chaotic”
ratherthan “orderly”.

When A � 1 we havex,, + s,, = f~(x
0+ ~ wheref” is the nth iterateof f, i.e., x1 = f(x0) ~f

1(xo),
x
2 = f(xj) = f(f(xo)) anf

2(xo),etc.Thus

x~+ r,, _f~(x
0)+ ~of~’(xo)= x,, + rof~’(xo) (2.2.4)

or e,, = eof”(xo), wheref”’ = df”/dx. From the chain rule for derivativesit follows that

f”’(xo)=flf’(xt) (2.2.5)

and therefore



J.R.Ackerhalteta!., Chaosin quantumoptics 209

= so) flf’(x~)= E~)e”~ (2.2.6)

where

x~= ~ log If’(x~)). (2.2.7)n 1=0

The limit

I
x = lim ~,, = lim — ~ log (f1(x

1)) (2.2.8)
,,-~ ,,.... n 1=0

defines the Lyapunovcharacteristicexponent(LCE) of the map. A numericalcomputation for the
logistic mappingwith A = 1 gives x = log 2, in agreementwith (2.2.3). If x >0 we havevery sensitive
dependenceon initial conditions. For the logistic map with A = 1, for instance,we haveexponential
growth of the deviations e,, for almost every x0, i.e., we have a chaotic sequence.Lyapunov
characteristicexponentsare definedfor generaldynamicalsystems,anda positiveLCE is a signatureof
chaoticevolution.

It is found empirically that the limit (2.2.7) existsand is independentof x0. In the generalcasethe
ordinarylimit maynot exist,andx shouldbedefinedas a limit superior (lim sup). Figure2.1 showsthe
resultof the computation(2.2.8) for A = 0.95, usingthreedifferent valuesof x0. ,~‘ hasbeenplottedas a
function of A by HubermanandRudnick [6].

A closely relatedcharacteristicof chaoticsystemsis the absenceof any truly periodic behavior.This
hasbeen studied in detail for the caseof the logistic map [2—5].A brief summaryis nevertheless
essentialfor our purposes.

The fixedpointsf’ of the mappingx,,+1 = f(x,,) are definedby x* = f(x*). For the logistic mapwe
havethe two fixed points,x~= 0 and xT = 1 — 1/4A. It is important to know whethera fixed point is
stable againstasmall perturbation;following the sameapproachusedabove,we concludethat x* is a

11 ...Xo” 0.6 -

0.1- X0=O.9 -

0 2 4 6

LOG10 (n/2O)
Fig. 2.1. Computation of the Lyapunov characteristic exponent (2.2.8) for the logistic mapping.
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stable fixed point if fl(x*)J < 1, an unstablefixed point if f(x*))> 1, and a “marginally stable” fixed
point if Ifl(x*)I = 1.

For the logistic map,we deducefrom this stability criterion that for 0 < A <~the only fixed point is
= 0, andit is stable.Whateverthe seedvalue x0, we eventuallysettleon x~after successiveiterations

of the map;x~is thereforecalled an attractor of period one,or aone-cycle.For ~< A <~, xo* is unstable,
but the fixed point x~is stable.For A > ~, however,both fixed pointsareunstable.The readerwho has
not alreadydoneso may enjoy checkingthesepropertieswith a programmablepocket calculator.

Just beyond A = A1 = ~, there appear two stable fixed points, x~and x~,of f
2. After initial

“transients”,successiveiteratesx,, bounceto andfro betweenthesefixed pointsof f2, so we now have
an attractorof period two, or atwo-cycle. A perioddoubling,from a one-cyclefor A <A

1 to a two-cycle
for A � A1, hasoccurred by “turning the A knob”, The two fixed points of f

2 are stableuntil A is
increasedto A

2 = ~(1+ ‘~/6)= 0.862372...,whereanotherperiod-doublingbifurcation occurs, andwe
then have a four-cycle a, b, c, d, a, b, c, d,... As A is increasedfurther we continue to see
perioddoublings,and the “window” of A valuesassociatedwith a given n-cyclegetsrapidly narrower
with increasing n. Feigenbaum[3,4], by a combination of functional and numerical analysis, has
establishedthat the sequence{A,,} of A values,at which period doublingsoccur, convergesgeometric-
ally at a rategiven by

Jim ~“ ‘~‘~ = = 4.6692016091... (2.2.9)

Feigenbaum’sconstant 8 is universal in the sensethat (2.2.9) applies to all mapswith quadratic
maxima, such as the logistic map or the map x,,÷1= A sin ipx,,. The sequence{A,,} has a limit point

= 0.892... Beyond this value of the “knob”, the sequence{x,,} appearsto be a chaotic sequence
without a periodic attractor, except for certain “windows” of A values.The period has doubled ad
infinitum. Feigenbaum’sdiscovery stimulated a lot of interest becauseit uncovereda quantitative
universalityin a period-doublingroute to chaos.

Thusfar we havereferredto chaoticbehavior in termsof (1) a positiveLCE implying very sensitive
dependenceon initial conditions, and (2) the absenceof any periodicity. These two propertiesare
closelyrelated.Suppose,for instance,that A is suchthat theredoesexistastablen-cycle. Thentherearen
stablefixed pointsx’~,i = 1,2,. .., n, of f”, sothat f~’(x~< 1, and

x = urn -~-- log III f’(x~))
m—~m 1=1

1 1~ \m/n 1
= lirn _log(flIf’(xj)I) =—log)f”’(x~<0. (2.2.10)

m-.ocm i=1

It thereforefollows also that a positiveLCE implies the absenceof any n-cycle.The converseneednot
be true; aperiodicity doesnot necessarilyimply very sensitivedependenceon initial conditions.

Throughoutthis review we will refer to a dynamicalsystemhavingproperties(1) and (2) aboveas
chaotic.

We have mentioned that periodic windows appearin the chaotic regime A > A * of the logistic
mapping.When an n-cycle is found, it is possibleto infer the existence(but not the stability) of other
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cycles[7-9].Definetheorderedsets{2°~3,2°.5,2°~7,...21.3,2’.5,2’~7,...22.3,22•5,22.7,...=3,
5, 7, . . . 6, 10, 14,.. . 12, 20, 28,.. .} and{.. . , 32, 16, 8, 4, 2, 1}. Sarkovskii’s theorem[7—9]saysthat if a
continuousunimodal mappingf on an interval of the real line hasan n-cycle, then it has an m-
cycle for every m such that n4 m in the ordering 3 4 5 4 7.. . 6 ~ 104 14.. . 12 4 20 4 28...
32 4 164 84 4‘~24 1. In particular,a 3-cycleimpliestheexistenceof all n-cycles,includingaperiodic
sequencesassociatedwith period doubling ad infinitum. That is, “Period ThreeImplies Chaos” [9].

Let us return to the caseA = 1. The sequence{x,,} in this caseis known to be densein the interval
[0,1], i.e., it passesarbitrarily closeto any point on the interval for almost every x

0 [10].The fact that
the sequenceis chaotic,with very sensitivedependenceon x0, meansthat all memoryof the initial seed
is eventually lost; an effectively “random” behavior is presenteven though the mapping itself is
perfectly deterministic.However, we can besureof the way the sequenceof iteratesis distributedover
the interval: Defining a “probability” distribution P(x) such that P(x)dx is the relative number of
termsappearingin the interval [0, 1], and noting that for large n the 0,, are uniformly distributedon
[0,IT/2], we write P(x)dx = (2/ir) dO, andtherefore,sincex = sin

2 0,

P(x)= Vx~x2~ (2.2.11)

Such a probability distribution for a chaotic system would frequently be of interest in physical
applications.Unfortunatelythe logistic map with A = 1 is a very specialcaseof a chaoticsystem; in
general it is not known how to determinesuch probability distributionswithout numerical “experi-
ments”.

Thereis anotheruniversalFeigenbaumconstant(denoteda)for mapswith quadraticmaxima[3—5].
Sincewe will not discussthis aspectof the logistic map,we refer the interestedreaderto Feigenbaum’s
papers.Thereonecan find generalconditionson f leadingto a period-doublingroute to chaos.

2.3. TheHénon mapping

The Hénon mappingis “A Two-DimensionalMapping with a StrangeAttractor” [11]. It hasthe
form

x,,÷
1= y,, + 1— ax~,,

(2.3.1)
y~÷ibx,,

wherea, b are constants,a >0 and0< b < 1. Unlike (2.2.1), the Hénon mapis invertible, i.e., ~
y,,+1 determinex,,, y,, uniquely. It has the fixed pointsx~,y~= bx~,where

x~ { - (1-b) ±[(1- b~+ 4a]1/2}. (2.3.2)

By proceedingin the sameway as for thelogisticmap,it is found that the fixed point (x~,bx~)is always
unstable,whereas(xi, bx÷~)is unstableif a > ~ (1 — b)

2.
We will focus our attention on the caseb = 0.3 [11].The sequenceof points {x,,, y,,} generatedby

(2.3.1) settlesonto an attractoror divergesto infinity, dependingon the initial seed(x
0, yo). (The set of
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all points(x0, yo) for whichthe sequence{x,,, y,,} convergesonto an attractormay be called the basin of
attraction of that attractor.)

For b = 0.3,both fixed pointsof (2.3.1)areunstablewhen a > a1 0.3675.Beyondthis valueof a the
situationis analogousto that for the logistic mapwith A > A1. At a1 a two-cycle (or attractorof period
two) is born. Then at a = a2 = 0.9125 this attractorbecomesunstable,and a stablefour-cycle is born.
Successiveperiod-doublingbifurcations are found as a is further increasedand, remarkably, the
sequence{a,,} of a values at which a 2”-cycle is born convergesgeometrically at the universal
Feigenbaumrate (2.2.9). This is seenfrom the “experimental”resultsof table2.1, following Derridaet
al. [121.

The Jacobianof the transformation(2.3.1) is

a(x,,÷1,y,,+1) —2ax,, 1 ——b (233)

— b 0 —

For b = 0.3 the map (2.3.1) is thereforearea-contracting,i.e., the modulusof the Jacobiandeterminant
is lessthan unity. The attractorsof the mapthereforehavezero area.With this in mindit is perhapsa
little less surprising that the (two-dimensional)Hénon map can undergo the same kind of period-
doubling sequence,governedby Feigenbaum’s6, as the one-dimensionallogistic map [12].

Because it is a two-dimensional mapping, the Hénon map has two characteristicLyapunov
exponents.These are defined by proceeding along the same lines as for the logistic map. Let
x0—*x0+s0,yo-~yo+ôo.Thenx1—~x1+s1and yi-*yi+

6i, wherefor small ~ 8~

fEo\
(~) = J(xo, yo) ~ ) (2.3.4)

01 00

andthe Jacobianmatrix

jaf/ax ôfIôy\
J(x, y) = j. (2.3.5)

‘ag/ax 3g/öyi

Table 2.1
Valuesof a at which period-doublingbifurcationsoccurin the

Hénonmapwith b = 0.3

Period(2’) a, (a,—a,_i)I(a,+i—a,)

2 0.3675
4 0.9125 4.844
8 1.026 4.3269

16 1.051 4.696
32 1.056536 4.636
64 1.05773083 4.7748

128 1.0579808931 4.6696
256 1.05803445215 4.6691
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After n interationsthe perturbationss,,, 6,, aresimilarly

(~:)=Jn1(:) (2.3.6)

whereJ(n)= J(x,,_1,y~~)J(x~_2,yn—2)~ . . J(x~,yo). In a coordinatesystemin which J(n) is diagonalwe
have

= )Ai(n) S~) So) exp(n~~
1)) (2.3.7)

8~)= )A
2(n)6~)= oo) exp(n~~

2)) (2.3.8)

whereA
1(n), A2(n) are theeigenvaluesof J(n). Thelimits [13,14]

A”~
2~= Jim [magnitudeof eigenvaluesof J(n)]ll’n (2.3.9)

arecalled the Lyapunovnumbersof the mapping,and

~“‘2~= log A°2~ (2.3.10)

arethe Lyapunovcharacteristicexponents.
Computationsfor the Hénon map with a = 1.4, b = 0.3 yield A”1_~1.52, At2~0.197,~1”~O.42,

—1.62. Mathematicalaspectsof the LCE for the Hénonmap,andnumericalresultsfor a rangeof
a, b values,havebeendescribedby Feit [15].

The fact that oneof the LCE is positivein thisexamplemeansthat in a certaindirection themapping
is “stretching”, i.e., thereis very sensitivedependenceon initial conditions. If thereis stretchingin
somedirectionsandcontraction(negativeLCE) in others,as in this example,we havea situationcalled
hyperbolicity. The directions associatedwith the positive LCE are inside the attractor, the other
directionsbeingcontractingdirections.For our purposesit is sufficientto recognizethat thereneedonly
be one stretchingdirection for the systemto bechaotic(very sensitivedependenceon initial conditions).
That is, adynamicalsystemmaybe regardedas chaoticif thereis at leastonepositiveLCE.

The largestLCE is generallymucheasierto computethanthefull spectrumof exponents.Supposewe
introducesmallperturbations~o, ~o and proceedto solve (2.3.1) and(2.3.6) simultaneously,computing
alongthe way the quantity

a(n) = -~-log [s~+ 8~]h/2. (2.3.11)

For large n this is equivalentto

a(n) = -~-log)e~)= (2.3.12)

sinceonly the stretchingdirection survivesthe large-n limit. Thus urn,,.... a(n)gives the largestLCE.
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The procedurebasedon (2.3.11) is much simpler to usethan (2.3.10), as it does not require finding
eigenvalues.It may be extendedto N-dimensional systems.We will see later that an analogous
approachmay be usedto find the largestLCE for a systemof differential equations.

We will loosely refer to a chaotic attractor, having the property of hyperbolicity, as a strange
attractor. Strangeattractorshave a sort of “structure within structure”, or “self-similarity”, that is
frequentlythe reason(but not the original reason)for calling them strange.Figure2.2 showsthe Hénon
(chaotic) attractorfor a = 1.4, b = 0.3. The structurewithin structureis seenby expandingthe scale,
looking in finer andfiner detail at the attractor, asin fig. 2.3.

It is interesting that, becausethe map is area-contracting,the attractingset shownin 11g. 2.2 must
havezero area. However, the dimensionof the attractoris not zero or one, as it would be for an
obviouszero-areaset in the plane(e.g., a point or a curve). In fact the attractoris closely akin to what
Mandelbrot calls a fractal [16]. To briefly motivate this idea, consider that a unit cube contains
N(s)= s3 cubesof sides, a unit squarecontainsN(s) = squaresof side e, anda unit line segment
contains N(s)= s~segmentsof side s; in each case the dimension of the object is d =

log N(s)/log(1/s). We definethe fractal dimension,or (loosely) Hausdorffdimension,as

d = lim log N(s)~ (2.3.13)
log (1/s)

(This is only oneof avariety of possibledefinitionsof dimension.To be moreprecise,we mightcall d a
“capacity”.)The definition appliesto an n-dimensionalspaceas well, if wetakeN(s) to bethe number
of n-dimensionalhypercubesof sides neededto cover the object.A fractal maybe consideredto be an
objecthavingnonintegralHausdorffdimension.The strangeattractorof figs. 2.2 and2.3 is a fractal of

0.4 — —

~

>-00— —

—0.4 — - —

—1.5 —0.5 0.5 1.5

x

Fig. 2.2. The 1-lénonattractorfor a = 1.4, b = 0.3.
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I 0.23

0.4 - - :

0.21 -

“-00 - ~)- ~ ‘~TIIIE1 — —

- —...----= 0.17 — ----..-~ —

—0.4 - - — .- -

015~’
— .5 —0.5 0.5 1.5 0.54 0.60 0.66 0.72

0.191 I I

0.189 — —

0.187 — —

01 I I Iv.620 0.626 0.632 0.638

It

Fig.2.3. Structurewithin structureof theHénonattractor,obtainedby expandingthescaleof fig. 2.2.

dimensiond 1.26 [13].(Mandelbrot[16] definesa fractal as a set havinga “fractal” dimensiongreater
than its “topological” dimension.)

A famousexampleof a set with fractionalHausdorifdimension,and “structurewithin structure”, is
the Cantorset, which may be definedby the following construction:Divide the line segment[0,1] into
thirds andremovethe middle (open)third. Do thesamewith theremainingtwo segments,andcontinue
the processof removingmiddle thirds.The set obtainedby continuingthe processad infinitum is the
Cantorset.It hasa numberof illustrative mathematicalproperties; for instance,it is nondenumerable
but has measurezero. Using line segmentsof side s = (1/3)”, with N(s) = 2”, it follows from (2.3.5)
that the Hausdorifdimensionof the Cantorset is log 2/log 3. The Hénon strangeattractor,with its
fractal dimensionality,hasa transverseCantor-likestructure.(In generalit is verydifficult to prove that
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an attractoris strange.We use“strangeattractor”and “chaotic attractor” synonymously,andbaseour
discussionson numericalevidence ratherthanrigorousproofs.)A chaotic attractor can be simultaneously
hyperbolicand of zero-volumebecauseit has a structure within structure, or ribbon-like aspect, that keeps
the motionboundedbut allowsexponentialdivergenceofinitially closetrajectories.

2.4. Dynamicalsystemsof differentialequations

We now turn our attention to a different type of (deterministic)dynamical system,namely a set
of ordinary differential equations.Once againwe will have periodic or aperiodicbehavior,the latter
being chaoticwhenthe systemhasa positiveLCE. Just as the logistic and Hénonmapshavebecome
“standard” examplesof chaosin one- and two-dimensionalmappings,thereis a standardexampleof
chaosin systemsof ordinary differential equations.This is the Lorenzmodel,which was discussedby
Lorenz in 1963 [17]. The Lorenz model has a rich variety of behaviors,and hasbeenthe subjectof
many papersand at least one monograph [181.Before discussingthe Lorenz model, let us quickly
review somepertinent featuresof ordinarydifferentialequationsin general.

By solving for the independentvariable t in termsof the dependentvariablesand their derivatives,
we can (in principle) write any ordinary differential equation(ODE) as an autonomousone of one
higher order. (“Autonomous” meansthereis no explicit t dependence.)Further, by letting y1 = y,

= ~, y~= y we can write an autonomousODE of order N in the form of N first-order
autonomousODE:

~,,=F,,(yl,y2,...yN), n=1,2,3,...N. (2.4.1)

F,, andaFnjaym areassumedto bebounded,continuousfunctionsof their arguments.The existenceand
uniquenesstheoremfor differentialequationsis thereforeapplicable.

We regard the system (2.4.1) as giving the motion of a point in the N-dimensionalphasespace
(y1,Y2, . . . y~.4.This motion is called a trajectory. The uniquenesstheorem for (2.4.1) guaranteesthat
trajectoriesassociatedwith different initial conditionscannot intersect.We will only be interestedin
systemshavingboundedtrajectoriesin phasespace.

Hamiltoniansystemsarea specialcaseof (2.4.1) in which thereexistsa function H(q5, q2, . . . q,,,; p~,

P2,~. ‘Pm) such that

4, = oH/op, and j3~= — aH/aq1. (2.4.2)

In this case the phase space is the usual 2m-dimensional phase space of classical Hamiltonian
mechanics.

We will also be concernedwith dissipative systemswhere, in contrastto Liouville’s theorem for
Hamiltoniansystems,the time evolutionof our dynamicalsystemcontracts volume in phasespace.The
dissipationarisesphysically as a resultof spontaneousemission,collisionaldamping, lossycavities,etc.
Even though we deal fundamentally with Hamiltonian systems,we restrict our attention to an
interestingsubsystemand regard everythingelse as a sink into which the subsystemcan irreversibly
decay.The dynamicsof our subsystemis thennon-Hamiltonian.

Justas in thecaseof discretemappings,it is convenientto define fixed points of the dynamicalsystem
(2.4.1). (Thesearealso called critical pointsor equilibrium points.)Thesearepoints (y~, y~, . . . y~.r)of
phasespacefor which
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F,,(y~,y~,. . . y~,) = 0 for all n (2.4.3)

or in otherwordsthe pointswhereall ~,, = 0. Also as in the caseof discretemaps,it is usefulto know
whether the fixed points are stable against small perturbations.This may usually be determinedby
linearizingaboutthe fixed points.

If trajectoriesin the neighborhoodof a stablefixed point are closedloops, the fixed point is calleda
center. For instance,the equilibrium point of a simple (undamped)harmonicoscillator is a center,the
closed loops being just the circles p2+ q2 = constantin the phaseplane. In fact stablefixed points of
Hamiltonian systemsare alwayscenters.If all the trajectoriesin the neighborhoodof a stable fixed
point approachit along curveswhich are asymptoticallystraight lines, the fixed point is called a stable
node; if neighboringtrajectoriesspiral into the fixed point it is called a stablespiral point. If we displace
a systemaway from a stable node or spiral point by a small amount,it will return to the equilibrium
point. If the stableequilibriumpoint is acenter,however,thesystemwill remainnear to it. Similarly we
can classifyunstablefixed pointsas unstablenodes,unstablespiral points, or saddlepoints.

Stablenodesandspiral pointsaresimple examplesof attractors.Another importantexampleof an
attractoris a stablelimit cycle. A limit cycle is a closed,periodic trajectory,“isolated” in the sensethat
no nearbytrajectory is also closed. (The closed loops of the harmonic oscillator, for instance,are
obviouslynot isolated.)In numericalcomputationswe find a limit cycle asa periodic motion a nonlinear
systemsettlesinto afterinitial transientsdie out; after the transientsdecaywe are on the attractor.The
periodicity of the motion implies that the trajectoryin phasespaceis a closedloop.

Limit cycles, which arise only in dissipative nonlinearsystems,are of great practical importance
[19,20]. Within its “basin of attraction” in phasespacea stablelimit cycle, like a stablenode or spiral
point, is independentof initial conditionsandis determinedby the parametersin the equations.

In somephysical applicationsit is not difficult to understandthe appearanceof a limit cycle as a
balancebetween“self-excitation” and damping.An exampleis providedby the pendulumclock. Here
the anchorclip controlling the rotation of the escapewheel also deliversperiodic impulses to the
pendulumbob. Thedampingof the pendulum’soscillationsin turn increaseswith increasingoscillation
amplitude, and an equilibrium situationis reached.This limit cycle is independentof the starting
impulseandis stableagainstsmallperturbations(asoccur, for instance,when the clock is movedfrom
oneplace to another).

Anotherexampleis providedby the van der Pol equation[201

I+b(x2—1)i+x=0, b>0. (2.4.4)

Here there is positive damping when )x)> 1, negative damping when )x) < 1. Equation (2.4.4) is
equivalentto j~= y

2, Y2 = —b(y~— i)Y2 — Yi. Thereis onefixed point, (y~, y~)= 0, anda linearstability
analysis shows that this fixed point is an unstablespiral point. Trajectories in the phase space
(yr, y~)= (x, x) nearthe origin thereforespiral outward,but for x)> 1 thereis positivedamping.What
happenswhen (2.4.4) is integratedis that a limit cycle is reachedas a balancebetweenpositive and
negativedamping.Figure2.4 showsthe trajectoryin the phaseplane,startingout with initial conditions
inside the limit-cycle loop. The limit cycle is obtainedfor arbitraryinitial conditions.

A stablelimit cycle should bethoughtof as an equilibrium stateof oscillationof a nonlinearsystem,
just as a stable fixed point representsa stationaryequilibrium. Unfortunately, mathematiciansat
presentcannottell us in generalwhethera limit cycle exists in a given system,althoughsomedefinite
statementscan be madefor systemswhose phasespaceis the plane (N = 2 in (2.4.1)). For instance,
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Fig. 2.4. The van der Pol limit cycle obtained by numerical integration of (2.4.4).

Bendixson’sNegativeCriterionstatesthatif aF1/ay1+ aF2/ay2 is of onesignin a simply-connected(“no
holes”)domain,thereareno closedloops.And it is known that a limit-cycle closedloop cannotenclose
a region containingno fixed points.

The system (2.4.1) is “chaotic” if it has the property of very sensitive dependenceon initial
conditions.(We of courseexcludesystemslike ~ = y1, whichhavea trivial sort of sensitivedependence
on initial conditionsbecausethemotion is unbounded;we areonly interestedin boundedtrajectoriesin
phasespace.)A chaoticsystemwill be nonperiodic.This leadsus to the conclusionthat systemsof the
form (2.4.1)with N � 2 cannotbe chaotic.If N = 1, for instance,the noncrossingof trajectoriesseverely
restrictsthe motion on the “phaseline”: The trajectorycan be a fixed point, it can approacha fixed
point as t —~~, or it goes to ±ooas t —~~ thereare no other possibilitieswhen N = 1 if trajectories
cannotintersect.If N = 2 the Poincaré—Bendixsontheoremsaysthat a boundedtrajectory can either
approacha fixed point as t-+00 or a closed curve, which may be a limit cycle. Fixed pointsand closed
curvesrepresentregular (periodic)behavior, and so for a system (2.4.1) to have chaoticbehaviorwe
must haveN> 2. The restriction that trajectoriesdo not crossprecludesany possibility of chaosfor
N = 1 or 2.

For the Lorenz model, N= 3 and thereis chaotic behavior. We thereforeconcludethat we must
haveN � 3 as a necessaryconditionfor the system(2.4.1) to be chaotic.Furthermorea linear systemis
exactly solvableandit is easyto seethat boundedmotion mustbe regularin this case,at leastfor finite
N. In summary,then, systemsof theform (2.4.1) can be chaoticonly if theyare nonlinearand !f N � 3.

Frequently a discrete mapping can be constructedfrom the continuous flow in phase space
representedby (2.4.1). The Poincarémap (or surfaceof section) techniqueis one way to accomplish
this, andis mostusefulin the caseN= 3. Figure2.5 illustratesthe basicidea in this case.We plot x3(t)
vs. x2(t) (for instance)only at thosetimes t at which x1(t)= 0 and~1(t) <0. The Poincarémap is thusa
two-dimensionalmappingof the planeinto itself, althoughof coursewe cannotexpect to be able in
generalto write down an explicit functional form like (2.3.1). If we could, however,the mapwould be
invertible; this follows simply from the uniquenesstheoremfor (2.4.1).

The Hénonmapwas originally studiedas an approximationto a Poincarémapobtainednumerically
for the Lorenzmodel.Becausethe Lorenzequationscontractvolume in phasespace,the Poincarémaps
will be area-contracting.For a Hamiltonian system,on the other hand, the Poincarémapsmay be
proven to be area-preserving.
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Fig. 2.5. Constructionof a Poincarémapwith thex2x3 planeasthesurfaceof section.In this illustrationthePoincarémaptakespoint 1 into point 2,
and point 2 into point 3.

If the system (2.4.1) hasregular time evolution, a Poiiicaré map will consistof a repeatingset of
points. For chaotictime evolution, on the other hand,successivepoints will appearto bouncearound
haphazardly.They maybe constrainedto a particularattractor,such as in fig. 2.2, but on this attractor
theyappearto wandererratically.

A simple way to check for periodicity is to computethe (discrete)Fourier transformy,,(f~)of the
time seriesy,,(z,)generatedby numericalintegrationof (2.4.1):

9n(fk)= ~ y,,(t,)exp(—2~ilk/M), k= 0,1,...M— 1 (2.4.5)

where t, = I i~t,fk = kIM i.~t,andM is the total numberof time points,separatedby L~t,sampledfrom
the time seriesto computethe Fourier transform.Note that the maximum frequencycomponentthat
can be obtainedis determinedby the spacingi~tbetweensampledpointsof the time series.(i~tneed
not, of course,be the sameas the stepsize usedin the integration.)In practiceit is convenientto use
the Fast FourierTransform(FFT) algorithm[21] to evaluate(2.4.5); in this caseM is taken to be an
integralpowerof 2, typically 1024,2048or 4096.To obtainan accurateFFT, a “cosinebell” function or
someother“windowing” function is appliedto the sampledtime seriesbeforethe FFT is applied [22].
Thiseliminatesspuriousfrequencycomponentsassociatedwith sharpedgesin the time series.

Chaoticsystemshavea frequencyspectrumwith abroad-bandcomponent,as if therewere “noise”
present.This is to be expectedfrom our discussionof the logistic mapping, where a positive LCE
implies nonperiodicity. We will later see several examplesof broad-bandspectra for systemsof
differentialequations.

A rigorous test for chaosis to determinewhether thereis “very sensitivedependenceon initial
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conditions”. Supposewe perturbthe initial conditionsfor (2.4.1) very slightly. The resulting pertur-
bationsin the y,,(t) then satisfythe (linearized)equations

~,, (t) = —f- by,,, (i’) (2.4.6)
m = i aYrn

or in matrix form

~(t) = J(t)~y(t). (2.4.7)

The solutionof this equationis

8y(t) = exp[J dt1 J(ti)]6y(0) A (t) ~y(O) (2.4.8)

wherethe N x N matrix A satisfies

A (t) = J(t) A (t). (2.4.9)

We maydefinethe Lyapunov type numbers[23]

A = iim~log)A1(t)) (2.4.10)

wherethe ,ç(t) are theeigenvaluesof thematrix A (t). (As mentionedearlier, the limit aboveneednot
exist,and we should write lim sup in general.)Note the similarity of (2.4.10)to the LCE (2.3.10)for a
discretemapping.

If one of the A1 is greater than zero, we havevery sensitivedependenceon initial conditions.In
connectionwith the Hénon mapwe notedthat the largestLCE maybe computedwithout solving the
eigenvalueproblem,simply by introducing“random” initial perturbationsso, 6~andcomputing(2.3.11)
and (2.3.12). Benettinetal. [24] haveshownhow to computethe largestLCE in the generalcase;they
havealsogiven a procedurefor computingthe full LCE spectrum[25].We will only considerthe much
simpler computationof the largest LCE, which is the main oneof interest, of course,in determining
whetherthe systemis chaoticor not.

The methodof computingthemaximal LCE for (2.4.1) is completelyanalogousto the methodbased
on (2.3.11) and (2.3.12) for the Hénon map. We solve the 2N equations(2.4.1) and (2.4.6) simul-
taneously,assuming“random” valuesof the initial variations~y,,(O).We compute

A(t) = log )~y(t)j) (2.4.11)

where ).. .1) denotesthe Euclideannorm (or any otherreasonablenorm):
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N 1/2

JI~YH {~(oyn)2] . (2.4.12)

Thenx = lim,... A(t) (or more rigorously lim supA(t)) is the largestLCE of the system.The systemis
chaoticif andonly if x >0. We will laterseesomeexamplesof this numericalprocedure.

In connection with the full LCE spectrum, it should be mentionedthat there appearsto be a
relationshipbetweenit andthe fractal dimensionof a chaoticattractor,at least in somecases[13]. In
this introductoryreview, however,it doesnot seemappropriateto go into this matter.In anycasewe
will only be interestedin the largestLCE, which tells uswhetherthe systemis chaotic.

2.5. TheDuffingoscillator

Considerthe anharmonicpotential (fig. 2.6)

V(x)=~x2—~/3x4. (2.5.1)

A particleof unit massin this potential,undergoinga frictional force —yl anda sinusoidaldriving force
cossat, satisfiestheequation

I+yi+x—/9x3=cos,ut (2.5.2)

which we will call the Duffingequation.Chaoticbehaviorof the Duffing oscillatorwas first reportedby
HubermanandCrutchfield [26].

Let us begin by applying to (2.5.2) a well-known approximation of quantumoptics, namely the
rotating-waveapproximation(RWA). We write

x(t) = ~[a(t) e’~”+ a*(t) e’~’] (2.5.3)

lii

Position
Fig. 2.6. The anharmonicpotential (2.5.1) for $= 0.1587.
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and assumethat jii(t)l~~2Ia(t)I.Thenthe Duffing equationreducesto

(~‘+ 2i~)a + (1 ~2 + ~ — 3,8~aI2)a = 1. (2.5.4)

The steady-statesolutionof this equationgives the amplitude a, of the steady-statepart of x(t):

x,(t) = ~[a, e1’~’+ a~e~”]. (2.5.5)

a, satisfiesthe equation

(1— /L2+ iy~— ~/3Ia,I2)a, = 1 (2.5.6)

which is equivalentto a cubic equationfor a,12. As Ia,I is real and positive, therewill be eitherone
solutionor threesolutionsto the cubicequation.

Figure 2.7 showsa plot of the solution of (2.5.6) for a,~,assuming/3 = 0.1587 and y = 0.72. Also
indicated is the “dissociation threshold”, i.e., the value of Ja,I at which the potential turns over
(dV/dx= 0) and the particleis outsidethe well.

In order to comparethe RWA solution (2.5.5) with the exactsteady-statedynamics,we note from
(2.5.3) that x2(t) averagedovera driving period is

x2(t)= ~a(t)~2. (2.5.7)

We therefore compare [2x2(t)]112,obtained by numerical integration o~J~5.2),with the RWA
steady-stateamplitude a,I. The circles in fig. 2.7 arecomputedvaluesof [2x2(t)]112, and show that the
RWA is a good approximation when it predicts an oscillation amplitude below the dissociation
threshold.

However, the steady-stateRWA solution (2.5.5) predicts a regular oscillation at the driving
frequency,whereasthe exact solution x(t) has harmonics(and in some casessubharmonics)of the
driving frequency. Figure 2.8a shows x(t) obtained by solving (2.5.2) numerically for /3 = 0.1587,

~

2.0 ~—==~~ -1 .0 _~_~__~~0 00

0.0 1
0.0 0.2 0.4 0.6 0.8 1.0

1LL

Fig. 2.7. The solutionof (2.5.6) for a,I with /3 = 0. 1587 and y = 0.72. The dotted line indicatesthe dissociationthreshold” for escapingfrom the
potentialwell. Thecircles areobtainedfrom theintegrationof theDuffing equation.(Seetext.)
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TIME

Fig. 2.8a. x(t) obtainedby integratingtheDuffing equationfor /3 = 0.1587, y = 0.728, ~ = 1.0.

FREQUENCY

Fig. 2.8b. The powerspectrumof thefunction shown in fig. 2.8a.

y = 0.728and~s= 1.0, andfig. 2.8b showsthe power spectrumof thistime seriesobtainedwith an FFT
algorithm.The spectrumclearly indicatesthe presenceof third, fifth, seventhand ninth harmonicsof
the driving frequency(~a/2ir 0.16). Note that the powerspectrumis plotted on a log scale,indicating
that the harmonic componentsare very weak comparedwith the fundamental.Of course this is
consistentwith the high accuracyof the RWA solution.

Figure2.9ashowsx(t) when ~izis reducedto 0.53, andfig. 2.9b its powerspectrum.Now we notice in
the spectrumnot only a zero-frequencycomponent,but alsoa ~u/2subharmonicandits harmonics;the
subharmonicand harmoniccomponentsare againweakcomparedwith the fundamental.In fig. 2.lOa
we havereduced~ to 0.515,and a strongperiod-2subharmonic(frequency

1a/2) is evidentboth in x(t)
and its powerspectrumshown in fig. 2.lOb. Figure 2.11, for 1a = 0.5143,showsa period-4component
(frequency~/4). Whatwe are seeingis a period-doublingsequenceas the “knob” ~ais reduced.

Indeeda period-doublingroute to chaos is found: If ia,, denotesthe value of ~aat which the nth
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TIME
Fig. 2.9a. x(t) obtainedby integratingtheDuffing equationfor /3 = 0.1587,y = 0.728, JL = 0.53.

~ _______________ ______
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Fig. 2.9b. The powerspectrumof thefunction shownin fig. 2.9a.
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Fig. 2.lOa. x(t) obtainedby integratingthe Dulling equationfor /3 = 0.1587,v = 0.728, JL = 0.515.
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Fig. 2.lOb. Thepower spectrumof thefunction shownin fig. 2.lOa.
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Fig. 2.11. Thepowerspectrumof thesolutionx(t) of the Duffing equationfor /3 = 0.1587,y = 0.728, j.e = 0.5143.

bifurcationoccurs,andA~= ~ it is found that

(A~— A~._1)I(A~÷1— A~)~8

as n increases,8 beingthe Feigenbaumnumber(2.2.9). For thesevaluesof /3 and y, avalue~ = 0.51,
for instance,putsus pastthe thresholdfor chaoswhere the period hasdoubledad infinitum. Figures
2.12a and 2.12b show x(t) and its power spectrum.Note the broad-bandcharacterof the power
spectrum,indicating nonperiodicmotion.The form of thisspectrumis typical of chaotictime evolution.

Sensitivedependenceon initial conditionsis verified by computingLyapunovexponents.A “quick
and dirty” way of verifying sensitivedependenceon initial conditions,however,is to considersome
measureof distancebetweentwo trajectoriesoriginating from two different but nearby initial con-
ditions. In fig. 2.13 we showx(t) computedas in fig. 2.12afor ~ = 0.51, but with slightly different initial
conditions.Figure2.14 is aplot of the “distance”



226 JR. Ackerha!tet a!., Chaosin quantumoptics
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Fig. 2.12a. x(t) obtainedby integratingthe Duffing equation for /3 = 0.1587, y = 0.728,~s= 0.51.

2.

FREQUENCY

Fig. 2.12b. The powerspectrumof thefunction shownin fig. 2.12a,showingthebroad-bandstructuretypical of chaotic time evolution.

II
0 80 160 240 320 400

TIME
Fig. 2.13. x(t) asin fig. 2.12abut with slightly different initial conditions(differing by less than a tenthof a percent).
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Fig. 2.14. The distance(2.5.8) betweenthefunctions x(t) shown in figs. 2.12aand2.13, illustrating verysensitivedependenceon initial conditions.

8(t) = [(x(t) — x’(t))2]112 (2.5.8)

wherex(t) and x’(t) are given in figs. 2.12a and2.13, respectively.Figure2.14 is a nice illustration of
what is meantby “very sensitivedependenceon initial conditions”. Such a degreeof sensitivity on
initial conditionsis neverexhibitedfor regular(bounded)motion.

In connectionwith the RWA, we havenoted that the RWA can be a good approximationeven
thoughit fails to accountfor the chaoticbehaviorof the Duffing oscillator.This is illustratedparticularly
well by consideringthe parameterregimeinvestigatedby HubermanandCrutchfield[26]: For the form
(2.5.2) of the Duffing equation,take y = 0.4 and/3 = 0.055.(It maybeworth notingthat Hubermanand
Crutchfield’s resultswere obtainedwith an analogcomputer,and are subject to small errors. For
instance,we find that the onsetof chaosoccursat a valueof ~adifferent from that in their paper.)Figure
2.15 comparesthe exactsolutionof the Duffing equationin this casewith the RWA solution,exactlyas
in fig. 2.7. We seefrom this figure that for thischoiceof parametersthe RWA is surprisinglyaccurate.

For the caseshown in fig. 2.15 the Duffing oscillatorhasa rangeof driving frequencies~afor which
threesolutionsof (2.5.6) exist.However, the middle branchis unstable,as indicatedby the patternof

2~~~>/

0.2 0.4 0.6 0.8 .0

Fig. 2.15. Comparisonof exact(0) andRWA solutions(—) of theDuffing equationfor /3 = 0.055 and y = 0.4, as in fig. 2.7.
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circles in fig. 2.15. In otherwords, wehavea bistable (ratherthan tristable)regime.Which branchthe
solution takesdependsupon the initial conditions, as implied by the arrows;that is, we havehysteresis
behavior.It is interestingto note that the RWAequation(2.5.4) also exhibitsbistability and hysteresis,
but not chaos. For theseparameters,therefore,the RWA is quite accurate,except that it doesnot
predict chaos.This is consistentwith fig. 2 of the Huberman—Crutchfieldpaper,which indicatesthatthe
broad-bandportionof the powerspectrumof x(t) is quiteweak.Thenumericalsolutionof the Duffing
equation in this case has relatively small deviations from periodicity. In this case “very sensitive
dependenceon initial conditions” is manifestedmainly by an eventualdephasingof the oscillations
correspondingto two slightly different initial conditions.

The Duffing equationhas no known closed-form solution. What we havecalled the RWA is a
well-known approximationin the theory of nonlinearoscillations [27]; it is sometimescalledDuffing’s
approximation.If insteadof the RWA we usestandardperturbationtheory,assumingthe nonlinearity
to be small, we find only the odd harmonicsof the driving frequencyin (2.5.2). Someprogresshasbeen
madein understandingthe period doubling,which is alwaysobservedto beprecededby the appearance
of even harmonics [14, 28—30]. Novak and Frehlich [28], for instance,have interpretedthe even
harmonicsand the period-doublingsequence,in the caseof increasingdriving amplitude, in terms of
parametricresonance.

We havealso observedsomestable n-cyclesin the chaotic regime, and in the order specifiedby
Sarkovskii’s theorem. In particular, we have found a 3-cycle (“Period Three Implies Chaos” [9])
followed by a period-doublingsequence(i.e., 3—6—12—24—...)[14,30].

2.6. TheLorenzmodel

In 1963 Lorenz [17] publisheda paper entitled “Deterministic NonperiodicFlow”, in which he

discussedthe remarkablepropertiesof the system
i~—o(x—y), u>0 (2.6.la)

~=—y—xz+rx, r>0 (2.6.lb)

±=xy—bz, b>0. (2.6.lc)

Using the presentterminologywe can say that this system,called the Lorenz model, hasa chaotic
regime, i.e., for certainparameterso, r and b it hasnonperiodictime evolution with very sensitive
dependenceon initial conditions.Lorenzobtained(2.6.1) as aratherdrastictruncationof aset of partial
differentialequationsfor fluid flow. The Lorenz model has becomea standardexample of chaosin a
low-dimensionalflow in phasespace(i.e., chaosin a systemof the form (2.4.1)with N a smallinteger).

As in the caseof the Duffing oscillator,the Lorenzmodel hasno known analyticalsolution,so let us
begin by simply making somegeneralobservations,and then integratingthe equationsnumerically.
First we note that the system (2.6.1) is invariant under the transformation(x, y, z)—~(—x, —y, z).
Furthermorethe z-axis is invariant in the sensethat any trajectory starting at (or passingthrough)a
point (0,0, z) on the z-axis remainson the z-axis, and moreover all such trajectoriesapproachthe
origin, (0,0,0).

An obviousfixed point of the Lorenz system is (0,0, 0). If r> 1 it is found that there are two
additional fixed pointsin the three-dimensionalphasespace:
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= = ±[b(r— 1)J1~’2, z* = r— 1. (2.6.2)

Thestability of thesefixed pointsmay be investigatedin the familiar way by linearizing (2.6.1)abouta
fixed point, and finding the eigenvaluesof the resulting 3 x 3 matrix. For the linearized flow nearthe
origin, theseeigenvaluesare

A = —b, —~(u+1)±~[(u-1)2+4o-r]112. (2.6.3)

One of theseeigenvaluesis positive wheneverr> 1, and so the origin is an unstablefixed point for
r>1.

(Actually the origin is “nonstable”for r> 1. The definition of stability — that startingnearthe set in
questionwe remainnearto it — refersto anypoint nearthe set.But we haveseen,for instance,that the
z-axis is invariant and that the origin attractsany trajectory startingon the z-axis. Since the origin is
unstablefor “most” pointssurroundingit, we will call it “unstable”,as is frequentlydonewheneverone
of the eigenvaluesof the linearizedflow hasa positivereal part.)

The othertwo fixed pointsarefound to beunstable(moreprecisely,nonstable)when

o->b+1 (2.6.4a)

and

r>o~(cr+b+3)/(o-—b—1). (2.6.4b)

For o = 3 and b = 1, (2.6.4) is satisfiedwheneverr> 21. Oneof the eigenvaluesaroundthe linearized
flow is real and negativefor all r. For r> 21 the other two eigenvalueshavepositive real parts. The
transitionat r = 21, wherethe complex eigenvaluescrossthe imaginaryaxis andtake on positivereal
parts,is an exampleof a Hopfbifurcation [31,32].

Supposewe integratethe Lorenz equationsnumerically for o = 3, b = 1, x(0) = y(O) = z(0)= 1.0,
letting r be our “knob”. Figure 2.16 showsthe resultingy(t) for r = ~ y(t) approachesy* = 0 in this
case,because(0,0, 0) is the only stable fixed point. For r = 4, (0,0, 0) is unstable,but the fixed point

II:

Time t

Fig. 2.16. y(t) of the Lorenzmodel for o~= 3, b = 1, r = 1/2, x(0) = y(O) = z(0)= 1.0.
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(V3, V3, 3) predictedby (2.6.2) is stable, and the solution convergesonto this simple attractor, as
shown in fig. 2.17. At r = 21 for theseinitial conditions,y(t) beginsas an orderlybut growing oscillation,
then apparentlybreaksinto chaos(fig. 2.18). Similar behavioris observedin fig. 2.19 for r = 22.

Considerthe divergenceof the flow velocity in phasespace:

Vv = a~/8x+a)~/0y+ 3~/t9z= —(u+b+ 1). (2.6.5)

Thus

or ~Ld3xV.v~dav.ñ=~-~=—Jd3x(u+b+1)=—(u+b+1)v

V(t) = V(0)e_~~±~~*l)t. (2.6.6)

2 I

~
TIME f TIME

Fig. 2.17. As in fig. 2.16, but with r = 4. Fig. 2.18. As in fig. 2.16, but with r = 21.

Timet
Fig. 2.19. As in fig. 2.16,but with r = 22.
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That is, if we let eachpoint on someclosedsurfacein phasespaceevolve in time accordingto (2.6.1),
the enclosedvolume contractsexponentiallyto zero. Lorenz [17] proved the existenceof a bounded
ellipsoid in phasespacethat attractsall trajectories.Equation(2.6.6) in turn implies that all trajectories
eventuallysettle onto a zero-volumeset within this ellipsoid. In other words, anyattractorof (2.6.1)
mustoccupyzero-volumein phasespace.This is interestingwhen r > 21, in which casethe fixed points
of the flow areall unstable.It is preciselyin this casethat the Lorenzsystemcan be chaotic,andthat its
attractorcan havethe propertyof hyperbolicity (strangeattractor). The situationhereis muchlike in
the caseof the area-contractingHénon map.

Figure 2.20 shows the power spectrumof y(t) for the case r = 22 (fig. 2.19), taken after initial
transientshavedecayedaway.We see the characteristicbroad-bandspectrumof chaos.In fig. 2.21 we
illustrate very sensitivedependenceon initial conditionsby plotting for r = 22

I—

~ I

0 J~5

FREQUENCY

Fig. 2.20. Powerspectrumof y(t) shownin fig. 2.19.

~: ________________

Time t
Fig. 2.21. Thedistance(2.6.7), illustratingvery sensitivedependenceon initial conditions.
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d = [(y(t) — y’(t))2]~2 (2.6.7)

where y(t) and y’(t) are obtainedfrom initial conditions (1.0, 1.0, 1.0) and (1.001, 1.001, 1.001). A
similar result is foundwhen the differencein initial conditionsis very much smaller. Whena systemis
chaotic, the slightestdifferencein initial conditions will lead (on average) to exponentialseparationof
initially closetrajectories.

Figure 2.22 showsz(t) correspondingto fig. 2.19. Following Lorenz,we plot in fig. 2.23 the nth
maximum of z vz. the (n — 1)st maximum for t ~ 20, i.e., after we havesettled onto the chaotic
attractor.This map looks somethinglike the parabolaof the logistic map, althoughthe maximum is

TIME t

Fig. 2.22. z() of the Lorenzmodel for theparametersof fig. 2.19.
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Fig. 2.23. The nth maximumof z(t) (fig. 2.22) vs. the (n - 1)st maximum,for t ~ 20.
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much sharperthan quadratic.Evidently this mappinghasno stablen-cycle, but insteadgeneratesa
chaoticsequencehavingthe propertyof very sensitivedependenceon initial conditions.

Thereis a vast literatureon the Lorenzmodel,andwe cannotpossiblyin the spaceallotted do more
than touch upon someof its interesting features.Sparrow’s monograph[18] is recommendedto the
readerwishing to undertakea detailedstudy of this system.We will end our casualintroductionby
summarizingsomeof the behaviorof the Lorenzmodel as r is varied.We will focuson the parameter
valuesstudiedby Lorenz: o- = 10 and b = ~. For thesevalues,(2.6.4a)is satisfiedand (2.6.4b)becomes
r> 470/19 24.71 r~.Lorenzconsideredin detail the caser = 28.

For r < 1 all trajectoriesapproachthe origin. Two of the eigenvalues(2.6.3) of the linearizedflow
about the origin are always negative,indicating that thereis a two-dimensionalstable manifoldof the
origin — the set of pointswherea startingtrajectoryapproachestheorigin as t —~~ the one-dimensional
unstablemanifoldof the origin existingfor r> 1, on the otherhand,consistsof pointsapproachingthe
origin as t-~ —~. This is indicatedin fig. 2.24a.At r = 1 the new fixed points (2.6.2) are born, and a
trajectorystartingon the unstablemanifold of the origin for r> 1 headsfor that fixed point lying in the
samehalf space.As indicatedin fig. 2.24b,the trajectoryspirals toward the fixed point (a stablespiral
point). This is consistentwith the oscillatoryapproachto fixed pointsfound numericallyin fig. 2.17, and
is simply a consequenceof having a complexeigenvalueassociatedwith the linearizedflow. As r is
increasedthe spiral loopsget larger.

Unstable manifold of Origin

Stable manifold of origin

Fig. 2.24a Stableandunstablemanifoldsof theorigin in theLorenzmodel.

Fig. 2.24b. For 1< r< r’ a trajectory starting on the unstable manifold of the origin approaches the stable fixed point in the same half space.
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An interestingthing happenswhen r is raised beyond 13.926... r’. In this casethe spiralshave
becomelargeenoughthat theybecomeattractedto the fixed point in the otherhalf space,asindicated
schematicallyin fig. 2.25. In fig. 2.26awe show a plot of y(t) vs. x(t) obtainedby numericallyintegrating
the Lorenz systemwith o = 10, b = ~ and r = 13.84<r’, assumingan initial condition on the unstable
manifold of theorigin. In fig. 2.26bwe showthe correspondingresult for r = 13.96>r’, indicating how
the trajectory crossesover to the fixed point in the otherhalf space.What happensat r = r’ is that a
trajectory startingout on the unstablemanifold of the origin is eventuallyattractedto the origin, or in
otherwordsthe unstablemanifold of the fixed point at the origin lies within its stablemanifold. In this
caseit is saidthat we havea homoclinic orbit — a trajectorytendingto a fixed pointx* for both t—~ ~ and
t—* —~o~This is illustratedin fig. 2.27.

Beyondr = r’ the two branchesof the unstablemanifold of the origin areattractedto the fixed point
in the oppositehalf space,as in fig. 2.25. By numericallyconstructingthe Poincarémapwith surfaceof
sectionz = r — 1, KaplanandYorke [33] haveshownthatthereexistsan infinite numberof both chaotic
andperiodic orbits. All of theseareunstable,however,as most trajectoriesareattractedto one of the

Fig. 2.25. For r <r < r
1 a trajectory starting on the unstable manifold of the origin approachesthestable fixed point in theoppositehalf space.

12.0 — I I I

-120 -

-14.0 -10.0 -6.0 -20 2.0 6,0 10.0 14.0
x

Fig. 2.26a. y(t) vs. x(t) for r = 13.84, illustrating the behavior shown in fig. 2.24b.
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Fig. 2.26b. y(t) vs. x(t) for r = 13.96, illustrating the behavior shown in fig. 2.25.

Fig. 2.27. Homoclinicorbits at r = r’.
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Fig.2.28. An exampleof “preturbulent”behaviorfor r = 22.2.
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Fig. 2.29. y(t)vs. x(t) for r = 26.

two stablefixed points for r < r~.Thus we havethe possibility of “preturbulence” [34]or “metastable
chaos”.An exampleis shownin fig. 2.28for r = 22.2.

At r = r’, the homoclinic orbit gaveway to an unstablelimit cycle. At r 24.06 r” the unstable
manifold of the origin now spiralsonto the unstablelimit cycle ratherthan the stablefixed point.
Between r = r” and r = r~trajectoriessettle on a chaotic attractoror one of the stable fixed points,
dependingon initial conditions.At r r~the unstablelimit cycles collapseonto the fixed points (a
so-calledsubcriticalHopf bifurcation), and beyond r r~all threefixed points areunstable.Only the
stablechaotic attractor(the “standard” Lorenz attractor)remains. Results like thoseshown in figs.
2.18—2.22are typical of this chaotic regime. Figure 2.29 showsx(t) vs. y(t) for r = 26. As this picture
evolvesthe trajectoryappearsto switch from the neighborhoodof one of the (unstable)fixed pointsto
the otherin an apparentlyrandomfashion.

For very larger nearlyall trajectoriesareattractedto a stablelimit cycle [35].Figure2.30 showsx(t)
vs. y(t) for r = 230,220 and216; we areseeingtherethe earlystagesof a period-doublingrouteto chaos
as r is decreasedfrom theselarge values.As in the logistic map, periodic windows occur within the
chaoticregimewherestablelimit cyclesarefound.

As thereaderhasby now surmised,the Lorenzmodelhasbeenstudiedin greatdetail. It exemplifies
the remarkablyrich variety of behaviorto be foundevenin “simple-looking” nonlinearsystems.To our
knowledge,however,the Lorenzmodelas yet hasno experimentalrealization.We will later discussan
examplein quantumopticswheremodel equationshaveexactlythe sameform as the Lorenzsystem.

In closingour introductionto theLorenzmodel,we mentionthat ShimadaandNagashima[36] have
computedthe threeLyapunovexponentsof the Lorenzsystemfor r = 16, b = 4, r = 40. Theyobtain a
maximal LCE 1.37. Conjecturedformulasrelatingthe dimensionof an attractorto the LCE [37,381
give a fractal dimensiond 2.06for the Lorenz attractorin this case.

2.7. Routesto chaos

As we havementioned,part of the interestin chaoticdynamicslies in the fact that certainroutesto
chaosseemto be characteristicof a large number of chaoticsystems.We haveseenthe periodic-
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Fig. 2.30. A period-doublingsequencein theLorenzmodel. (a)r = 230, (b) r = 220,(c)r = 216.
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doublingroute to chaos,for instance,in the logistic andHénonmaps,the Duffing oscillator,andin the
Lorenz model for large r. There are many routesto chaos,but the period-doublingroute, and two
others,have been ratherwell defined both theoreticallyand in experimental (actual or numerical)
studies.Eckmann[39]hasreviewedtheseparticular “roadsto turbulence”in dissipativesystems.Here
we will briefly describethe different “scenarios”.We will see later that all thesescenarioshavenow
beenexperimentallyrealizedin experimentswith lasers.

First we mention one of the oldest formulatedroutes to turbulence,that of Landau[40]. In this
scenarioa fluid becomesturbulentby an unlimited sequenceof instabilities:As the Reynoldsnumber
increases,the flow becomesdoubly, then triply, thenquadruply,...periodic. That is, the numberof
incommensuratefrequenciesin the spectrum keeps growing, and the flow pattern becomesvery
complicatedor “turbulent”. However,we now recognizethat this is not really chaoticmotion,because
the spectrumis alwaysdiscrete,becomingeffectively broad-bandonly in the limit of an infinite number
of incommensuratefrequencies.

Furthermorethe Landauscenarioappearsevento be “unlikely”. Ruelle andTakens[41]suggested
that nonlinearitiesmakethe transitionfrom a doubly periodicstateto atriply periodiconeunlikely, and
that, after the doublyperiodic state,a strangeattractor is morelikely. (This was the first paperto refer
to a “strange” attractor.)Implicit in their paperis the assumptionthat chaos(turbulence)in a realfluid
maybeassociatedwith the appearanceofa low-dimensionalstrangeattractor in thephasespaceofafully
deterministicsystem.

In the Ruelle—Takensrouteto chaos,a steadystate (stable fixed point) gives way to an oscillatory
state(limit cycle) by meansof a Hopf bifurcation as a “knob” is turned. Then anotherbifurcation
occursandthe motionbecomesdoubly periodic,correspondingto a toroidal surfacein phasespace(two
incommensuratefrequenciesin the spectrum).Finally a third bifurcation occursin which the doubly
periodic,toroidal motion givesway to a chaoticattractor.

Curry and Yorke [42] havedescribeda two-dimensionalmap in which doubly-periodic motion is
followed by a chaotic (strange)attractor. In the caseof a continuousflow, Curry [43] hasstudied a
system of ordinary differential equationswith N = 14, andinfers from a Poincarémap that chaosis
precededby a two-dimensionaltorus in the 14-dimensionalphasespace.It is interestingto note that
Curry’s system arose from an extensionof the Lorenz model to include more terms in a modal
expansion.

In addition to the period-doublingand Ruelle—Takensscenariosis the Pomeau—Mannevilleor
“intermittency” routeto chaos[44].This is associatedwith a “collision” of a stablefixed point with an
unstablefixed point, as Eckmann[39] hasillustratedwith an exampleof a one-dimensionalmap. Unlike
the period-doublingor Ruelle—Takensscenarios,this scenariodoesnot tell us “when” the transition
occurs. It describesa situation in which the motion alternatesbetweenperiodic behavior and (inter-
mittent) “bursts” of chaos.Very loosely, we can imagine a limit cycle that becomesunstablewhen a
parameteris swept through some critical value, giving rise to “chaotic” motion. In its chaotic
meanderinga trajectory entersthe basin of attractionof the limit cycle, andthereforegets “trapped”
again— temporarily— into periodicity.

We will seeexperimentalevidenceof thesethreescenariosin the following sections.For amuchless
“hand-waving” discussion the reader is referred to Eckmann’s review [39], where referencesto
experimentalstudiesof routesto chaosin fluid flows may be found. Experimentalreportsof chaosby
various routesnow abound. We mention, for instance,experimentson semiconductornonlinear
oscillators,which accuratelyconfirm predictionsof the theory [45—47].
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3. Chaos in a many-atom Jaynes—Cuminlngsmodel

3.1. Introduction

Any doubts about the relevanceof chaotic dynamics to quantumoptics may be dispelled by
consideringone of thesimplestmodelsin the field: The interactionof a collection of two-level atoms
with a singlemodeof the electromagneticfield. This modelhaschaotictime evolution,as first discussed
by Belobrovet al. [48].Similar conclusionswere laterreportedindependentlyin ref. [49],the notation
of which we will follow here.In particular,it was found that the rotating-waveapproximation(RWA)
fails completelyto accountfor chaoticbehavior,just asin the caseof the Duffing oscillatordiscussedin
the precedingsection.This failure of the RWA maybeonereasonwhy this exampleof chaoswas not
discoveredmuch earlier. According to Belobrov et al., “The neglectof the [non-RWA] terms is so
weakly basedbecauseof the formal difficulties which occur, that the generallyaccepteduse of the
[RWA] Hamiltonianof the systemhaschangedinto a sort of symbolof faith” [48].

Our treatmentwill besemiclassical,i.e., the field is treatedclassicallywhereasthe two-level atoms,of
course,arequantummechanicalandaredescribedby thetime-dependentSchrödingerequation.All the
atomswill be assumedto lie within a region small comparedwith the wavelengthof the (single-mode)
field. The model is basically an extensionof the Jaynes—Cummingsand Tavis—Cummingsmodels
[50,51]. The former considersa single two-level atom (TLA) interacting with a single field mode,
whereas the latter extends the treatment to N> 1 TLAs. Our treatment differs in that (1) the
semiclassicalapproximationis madebut (2) the RWA is not made.

3.2. Equationsofmotion

For a single TLA the statevectorat any time t maybe written as a superpositionof the upper-and

lower-energyeigenstates,2) and 1), respectively:
I~(t))= c1(t) 1) + c2(t) 2) . (3.2.1)

Fromthe Schrödingerequation,with

x(t) = c~(t)c2(t)+ c1(t)c~(t) (3.2.2a)

y(t) = i[c~(t) c2(t)— c1(t) c~(t)] (3.2.2b)

z(t) = Jc2(t)~
2— Jci(t)J2 (3.2.2c)

it follows that [52]

= —w
0y (3.2.3a)

= wox+ Ez (3.2.3b)

z=—~Ey (3.2.3c)
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where hw0= E2— E1 and d is the transitionelectric dipole moment in the direction of the (linearly
polarized)field. Equations(3.2.3) arethe well-known opticalBloch equations,assumingan interaction
—d~E betweenthe atom and the field. They havethe first integral x

2 + y2 + z2 = 1, which meansthat
any trajectoryof (3.2.3) lies on the “Bloch sphere”of phasespace.

Equations(3.2.3), with E a prescribedexternalfield, do not admit chaoticbehaviorbecauseof the
restriction to motion on the Bloch sphere.Suppose,however,that E(t) is the field generatedby N
TLAs per unit volume.For E(t) we thenwrite the Maxwell equation

E(t) + w2 E(t) = —4irNdi(t) (3.2.4)

for asingle-modefield of angularfrequencyw. Thesystem(3.2.3)plus(3.2.4)couplestheSchrodingerand
Maxwell equationsself-consistently.That is, E determinesthe motion on the Bloch spherevia (3.2.3),
while the TLAs in turn act as a sourcefor E via (3.2.4). Let r w

0t ande(t) = (2d/hwo)E(t). Thenour
dynamicalsystem(3.2.3)plus (3.2.4) is

x = —y (3.2.5a)

~=x+ez (3.2.5b)

±= —ey (3.2.5c)

ë+u
2e=f3y (3.2.5d)

which may be written trivially in the form (2.4.1). We have defined the dimensionlessparameters
= w/wo and

f3 = 8’rrNd2/hwo (3.2.6)

andthe derivativesin (3.2.5)arewith respectto r.
The divergenceof the flow in phasespaceof the system(3.2.5) is zero,so that ourdynamicalsystem

is not dissipative. As such it has no attracting sets (attractors). This is becauseour semiclassical
approachdoes not account for spontaneousemission, and indeed there are no damping terms,
phenomenologicalor otherwise,in (3.2.5). Although the system thereforewill not have a strange
attractor,it can neverthelessbe chaotic,as we will see.

3.3. Chaoticbehavior

We will restrictourselvesto the caseof exactresonance(~ = 1) betweenthe TLAs andthefield, and
alsoto the caseof initially excitedatoms (z(0) = 1). Figure 3.1 showsthe result for z(r) of a numerical
integrationof (3.2.5), assuminge(0)= 10_6, é(0)= 0 andj3 = 1 (z(0)= 1 implies that x(0) = y(0) = 0). In
fig. 3.2 we show the power spectrumof z(r), obtainedby applying a cosine bell window to the time
series and then taking a 4096-point FFT. The power spectrum is broad-bandwith no evident
periodicities.To confirm morerigorously thatwe havechaotic time evolution, we havecomputedthe
maximal LCE; our result, x 0.087, confirms that the systemis indeedchaotic in the senseof “very
sensitivedependenceon initial conditions”.
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Fig. 3.2. Powerspectrumof thetime seriesof fig. 3.1.

In fig. 3.3 we showx(r) vs. y(r) for thecase/9 = 1. This plot showsclearlythe irregularity of the time
evolutionof thesystem.comparefig. 3.3 with fig. 3.4, which is for themanifestly.nonchaoticcase/9 = 0,
wheretheatomsand field areuncoupledandwe arelooking at just thesolutionof theBloch equations.

In our numericalcomputationswe foundthat thechaosbecomesmorepronouncedas/3 increases.
Forsmall valuesof /3 thecomputationof themaximalLCE showedthat x wascloseto zero,but it was
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Fig. 3.3. x(r) vs. y(r) for /3 = 1.0.
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Fig. 3.4. x(r) vs. y(r) for theorderlycase/3 = 0.

generallydifficult to obtain convergence(in which casex should be definedas a Jim sup). The power
spectrafor small valuesof /9 showedmarkedperiodicitieswith some“noise”. Figures 3.5 and3.6 show
powerspectraof z(’r) for /3 = 0.01 and /9 = 0.1, respectively.Note that the level of broad-bandnoise
riseswith increasing/9. We havenot founda sharpboundarybetweenorderandchaosas the/3 knob is
varied.
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Fig.3.5. Powerspectrumof z for /3 = 0.01. Fig. 3.6. Powerspectrumof z for /3 = 0.1.

3.4. Chaosand the rotating-waveapproximation

In (3.2.3)and (3.2.4) let

x(t) = u(t) cos[cut + qS(t)] — v(t) sin[wt + ~(t)] (3.4.la)

y(t) = u(t)sin[wt + 41(t)] + v(t) cos[wt + q5(t)] (3.4.lb)

E(t) = ~‘(t) cos[wt + /(t)] (3.4.lc)

and assumethat z~v, z, ~Sand 4 are slowly varying comparedwith sin wt and coswt. In this
rotating-waveapproximation(RWA) to (3.2.3)and (3.2.4)we obtain

= —(zi — 4)v (3.4.2a)

(3.4.2b)

w=—~~v (3.4.2c)

= (2irNdw)v (3.4.2d)

= —(2irNdw)u/~’ (3.4.3)

where~i = — cv and w(t) = z(t). Now (3.4.3)maybe regardedas merelyadefinition of ~ in (3.4.2a)
and (3.4.2b), since ~ itself no longer appearsin the equations.The four-dimensionalautonomous
system(3.4.2) hastwo integrals:
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u2+ v2+ w2= 1 (3.4.4)

andthe energyintegral

(Nhw)w+ ~2 = const. (3.4.5)

This means that trajectoriesin the four-dimensionalphasespace (u, v, w, ~) are confined to a
two-dimensionalsurface: (3.4.2) is equivalent to an autonomoussystem of dimension two. The
Poincaré—Bendixson theoremthereforeprecludeschaoticbehaviorof theRWAsystem.

We thushavea situationanalogousto thatwith the Duffing oscillator: When the RWA is madethere
is no chaos,whereasthe original dynamical systemwithout any approximationscan be chaotic. The
consequencesof the RWA are thereforequite drastic,for it doesnot reveal the practicalimpossibility
of detailedlong-termprediction,i.e., verysensitivedependenceon initial conditions.

3.5. Physicalimplications

Supposed = 10-18 esuandA = 10~m. Then/3 = 1.3x 1022N, whereN is the numberof atomsper
cm3. This shows that relatively large number densitiesare typically required to reach the strongly
chaotic regime /3 ~ 1: For /3 = 1 we requireN — 8 x 1021cm3. For A -~250 p.m and d = 3 x 10~esu,
correspondingto a rotationaltransitionof theHF molecule[48],/3 = 1 requiresN -~4 X 10’~cm3,or a
pressureof about 1.6atm at T = 300K. Thus the required number density for the strongly chaotic
regime is considerably greater than that of a typical experiment in quantum optics, where the
Maxwell—Bloch equationsalonemight provide a good model. However, much smaller densitiesare
requiredfor Rydbergatoms (d large). In any caseour interestin this problemis at the fundamental
level, for the possibility of chaosin so simple a systemsuggeststhat chaoticdynamics may be quite
important in laserphysicsand quantumoptics.

Results like that shown in fig. 3.3 indicate an effectively statisticalcharacterin the atomic dipole
oscillations.The broad-bandspectrumof x(r), for instance,implies that the atomictransitionis in effect
broadened;the dipole correlation function will decay, indicating a loss of coherence.Belobrov,
ZaslavskiiandTartakovskii[48]remarkedat the endof their paperthat theappearanceof chaosin this
system“showsthat the analysisof the interactionof radiationwith matterunderconditionswherethere
is a strongcouplingmust asa matterof principle takeinto accountthe unremovablestatisticalnatureof
the motion which in quantumoptics so far hasnot beenconsidered”.

Onething that might be noted in connectionwith the RWA is that the parameter/3 is on the order
of the Rabi frequencyfor the field dueto all the atoms,divided by the naturaltransitionfrequencyto

0.
Unless/3 is quite small, therefore,the RWA is not agoodapproximation.Soit is not terribly surprising
that the RWA fails to describethe (chaotic)dynamicswhen /3 -= 1.

3.6. Remarkson the equationsof motion

The analysisof Belobrovet al. [48] is basedon the equations

E + w
2E = 4irw2ppm (3.6.1)

tii + w2m = —(2
1ucv/h)En (3.6.2a)
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= (21a//io4E,ñ. (3.6.2b)

Equations(3.6.2)areequivalentto the Bloch equations(3.2.3)with m = x, cv = con, ,a = d, n = z. With
p = N in our notation,however,(3.6.1) is equivalentto

E+w2Ez~4irNdw2x_4irw2P (3.6.3)

whereP = Ndx is the polarizationdensity.Note that the right-handsideof (3.6.3) differs from that of
(3.2.4). If we write (3.2.4)in termsof the electricdisplacementD = E + 4irP, however,it becomes

15+w
2D= 4irNdw2x (3.6.4)

which is the sameas (3.6.3) if we identify E in the latter as D.
Equation(3.2.4) is a single-modevariantof the Maxwell waveequation

~ (3.6.5)

for the (transverse)electric field. Equations(3.2.3)and (3.6.5) arewidely usedas the “Maxwell—Bloch
equations”,althoughin generalthey are replacedby RWA equationsfor slowly varying amplitudes.
The electricdisplacementD, on the otherhand, satisfies

V2D — -~ 15= 4irV2P (3.6.6)

of which (3.6.4) is a specialcase.
Which is the correctset of equationsfor our problem,(3.2.3) and (3.2.4) or (3.6.1) and (3.6.2)?In

spite of the wide-spreaduseof the Maxwell—Bloch equationsin the form of (3.2.3) and (3.6.5), the
system (3.6.1) plus (3.6.2) provides a somewhatmore satisfactorydescription of the many-atom
Jaynes—Cummingsproblem.Thereasonsfor this havebeendiscussedrecently [53],andarebasedon an
examinationof the unitary transformationtaking us from the minimal coupling Hamiltonian to the
—d ‘ E form [54].However,sincefor practicalpurposesthe different setsof equationsusedin refs. [48]
and [49] lead to physically equivalentpredictions,we will not dwell on this questionhere.

3.7. Quantumchaos?

A basicfeatureof our treatmentis that the field is treatedclassically.Thisraisesthevery interesting
questionof what changesmight be expectedwhenthe field is quantized.At the presenttime we do not
havea fully quantum-mechanicaltreatmentof the problem, although somepreliminary work in this
direction hasbeenreportedby GrahamandHöhnerbach[55].

More generally,one can ask what is the effect of quantummechanicson a systemwhich, treated
classically,exhibits chaoticbehavior. This is the questionof “quantum chaos”, andit is not a trivial
matter.For instance,a closedsystemwill have a discreteenergyspectrum,and expectationvalues of
observableswill thereforenot havethe broad-bandspectraassociatedwith classicalchaos.Thereis also
the questionof howseparationof initially close “trajectories”extendsto a quantumsystem.



246 JR.Ackerha!teta!., Chaosin quantum optics

Various examplessuggestthat classicalchaosdoeshavequantummanifestations,but not alwaysin
unambiguousways[56—58].Among the different ideasthat havebeenput forth to characterizequantum
chaos,we mentionPercival’ssuggestion[59,60] that the distributionof energyeigenvalueshassensitive
dependenceon a control parameter,and Peres’ definition of quantum chaos, according to which
dynamicalvariablesarerepresentedby pseudo-randommatriceswhenthe Hamiltonianis diagonal[61].
The interestedreaderis alsoreferredto the discussionandreferencesgiven recently by Berry [62].

The model consideredin this section is much more amenableto a fully quantum-mechanical
treatmentwhen the RWA is made. Eventhe single-atomcasedisplaysa rich “collapse and revival”
behavior [63,64], which can be interpretedin terms of the generationof incommensurateeigen-
frequencies[65]. The caseN> 1 hasbeenconsideredby Barnett and Knight [66], who find that the
semiclassicalapproximationpredictsa periodic evolution of the atomic inversion,whereasthe fully
quantizedtreatmentdoesnot.

4. Chaoticlasers

4.1. Introduction

It is not unusualfor lasersto havenoisyandevenunstableoutput.Ruby laserswith continuous-wave
excitation, for instance,exhibit “undampedspiking” behavior,and GaAs laserstendafter a certain
agingperiod to haveapulsatingoutput.Suchbehavioris usuallyattributedto certain“random” factors
that arenot includedin standardlasertheory.Theseincludesuchthingsasimpuritiesanddefects,pump
variations,self-focusing,etc. Partof the artof designinga lasersystemis to minimize suchinstabilities
asmuch as possible.

Recently,however,it hasbeenpossibleto producetruly chaotic (in the senseof this article) laser
output.Only a few yearsagothis typeof laseroperationwould havebeenclassifiedas “noisy” andnot
of intrinsic interest, and in any caseit would havebeen avoided. The recentupsurgeof interestin
chaoticdynamicshasalteredthis situationconsiderably:Experimentalistsarereportinglaseroperation
with well-definedroutesto chaos.In particular,the period-doubling,Ruelle—Takens,andintermittency
routesto chaoshaveall beenobservedwith lasers.In this sectionwe will review someof this recent
work on chaotic lasing. Furtherexperimentalprogresswill no doubt occur, but it hasalready been
establishedthat chaoticlasing is achievable,andthat the “chaos” is classifiableandin accord,at leastin
somecases,with theoreticalexpectations.

4.2. TheLorenzmodeland the single-modelaser

An early indication that laserscould be chaoticwas providedby Hakenin 1975 [67]. Considerthe
RWA equations(3.4.2)and (3.4.3)with zt = 0, i.e., the caseof exactresonancebetweenthe atomsand
the field. Adding phenomenologicaldampingtermsin the usualway [52],we obtainthe system

= —/3u — (2rrNdw)uv/~’ (4.2.la)

= —/3v+ (2irNdco)u2/~S+ (d/h)~’w (4.2.lb)

= —y(w— w
0)— (d/h)~’v (4.2.lc)
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= (2irNdw)v — ~ (4.2.ld)

Here /312IT is the homogeneouslinewidth (HWHM) of the transition, y is the rate at which the
population inversionrelaxesto its equilibrium value w0 in the absenceof an applied field, andy~is the
field loss rate. Assuming w(0)= ±1implies that u(0) = v(0) 0, which from (4.2.la) meansthat u is
identically zero.Thus (4.2.1) reducesto

= —f3v+ (d/h)~Sw (4.2.2a)

= —y(w — we)—(d/h)~v (4.2.2b)

~z(2ITNdw)v_y~~’. (4.2.2c)

Equations(4.2.2) maybe used to model a single-mode,homogeneouslybroadenedlaser(SMHBL),
assumingline-center(4 = 0) operation.In thiscasey~is the cavity loss ratefor thefield, andis inversely
proportionalto the cavity Q:

yc~[a~bogRiR2] (4.2.3)

wherea is the averagedistributed loss coefficient, R1 andR2 arethe mirror reflectivities, andL is the
mirror separation.

The fixed pointsof the dynamicalsystem(4.2.2), i.e., thesteady-statesolutions,satisfy the relations

V5 = (d/hf3) g’,~, (4.2.4a)

w~= w0 — (dilly) ~S,v, (4.2.4b)

= (2i~Ndw/y~)v, (4.2.4c)

whosesolutionsarewell known [52].We introducethe new variables5, ~, ~ as follows:

5=v/v~, i~=w/w,, ~ (4.2.5)

In termsof thesevariables(4.2.2)becomes

5 = — (35 + f3~Si~ (4.2.6a)

= —y~i+ y(A + 1)— yA~SS (4.2.6b)

= Yc(V— ~) (4.2.6c)

where

A = w0/w~—1. (4.2.7)
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Finally let

r=A+1= w0/w. (4.2.8a)

U = yj13 (4.2.8b)

b = -y//3 (4.2.8c)

= f3t (4.2.8d)

anddefinethe newdependentvariables

x = (bA)”
2 ~ (4.2.9a)

y = (bA)v2S (4.2.9b)

z = r— = (w
0— w)/w,. (4.2.9c)

In termsof thesenew variables(4.2.6)maybe written

~=—o(x—y) (4.2.lOa)

= —y— xz+ rx (4.2.lOb)

z=xy—bz (4.2.lOc)

wherethe derivativesaretakenwith respectto r.
The system(4.2.10) is identicalto (2.6.1). In otherwords,the system(4.2.2) that is sometimesusedto

describea SMHBLis equivalentto theLorenzmodel[671.Obviouslythis suggeststhat a SMHBL might
havechaoticoutput if the parametersare chosenwithin the chaoticregimeof the Lorenz model.

Althoughthis Lorenz-typechaosin a SMHBL seemspossible,therequiredparameterrangeis highly
atypical. In particular,the condition(2.6.4a)translatesin a SMHBL to Ye> /9 + y, or

(4.2.11)

where &i~ is the HWHM Lorentzian linewidth of the laser transition. Now from (4.2.3) we have
= ~cgt,whereg~is the thresholdgaincoefficientfor laseroscillation, andso (4.2.11)maybe written

~cg5>2ir&v0+y (4.2.12)

which is a necessaryconditionfor chaoticlaseroscillation.However,it is exactlythe oppositeinequality
that is satisfiedin a typical SMHBL. That is, the Lorentzianwidth of the bare-cavitymode is usually
muchsmaller thanthe lasertransitionlinewidth. (In therate-equationapproximation,/3 is assumedto
be muchlargerthaneither y or Ye, so that the off-diagonal elementsof the TLA densitymatrix follow
the population inversion adiabatically,and one writes coupled equationsonly for the population
inversionand thecavity intensity[52].)
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The instability conditions (2 6 4) for a SMHBL were also derived sometime ago by Shirley [68],
amongothers, who noted that the rate-equationapproximationto (4.2.2) predictsonly stablefixed
points(steady-statesolutions).It is alsointerestingthat Buley andCummings[69],in a numericalstudy
of the SMHBL equations,remarked that “A case has also been run... in which the output
[intensity].., appearsas a series of almost randomspikes”. Evidently they were seeingthe chaotic
behaviorthat Lorenz,at aboutthesametime, wasstudyingin acompletelydifferent context!

We arenotawareof any SMBHL for which both conditions(4.2.2)aresatisfied.Since theLorenz
systemhasyet to be studiedin an actualexperimentalrealization,such a laserwould be of considerable
interest.

4.3. TheLorenzmodeland self-pulsingin a unidirectional ring laser

In the travelling-wavecaseequations(4.2.6)are

813/8t= — /35 + (3~ii’ (4.3.la)

5i~/9t= —yip+ y(A + 1)— yA~5 (4.3.lb)

c3~Iôz+ a~/3t = Yc(S— ~). (4.3.lc)

These equationshave the steady-statesolution S = = = 1. The stability of this solution was
investigated by Risken and Nummedal [70], who found that there can be an instability in the
unidirectionalring laserwithout necessarilyhaving Ye > /9 + y, a conditionrequiredfor the Lorenz-type
SMHBL instability. This instability correspondsto the onsetof multimode, phase-lockedpulsing, and
requires[70]

r >5 + 3b + [8(b+ 1)(b + 2)11/2 (4.3.2)

in the notation of (4.2.8). This representsa “secondlaser threshold”. If b = y/f3 is small, (4.3.2) is
equivalentto r = w

0/w.~ 9, i.e., the lasermustbe pumpedabout9 times abovethreshold.
Risken and Nummedalfound pulse-trainsolutionsof (4.3.1) in which 5, i~and ~‘ arefunctionsof

t — z/v,, wherev~,is a phasevelocity determinedby cavity boundaryconditions.Thesesolutionssatisfy
the ordinarydifferentialequations

ü = —(35+ (3~’ii~ (4.3.3a)

= —y~+ y(A + 1)— yA~5 (4.3.3b)

(4.3.3c)

with e = (1 — c/vp)/ycand the derivativesarewith respectto t — zIv~,.Equations(4.3.3)areof the same
form as (4.2.6), and thereforeare isomorphicto the Lorenzsystemwith r = A + 1 = wo/w,, S~= 1//3e =

(y~/f
3)I(l— c/vu), and b = y/f3. It is interestingthat the numericalstudiesof Risken and Nummedalin

caseswherer < r~revealedapparentlystableperiodicsolutions,for in the correspondingLorenzmodel
thereareno stablelimit cyclesfor r below the critical valuer~.This differenceevidentlyarisesfrom the
periodic boundaryconditionsimposedon solutionsof (4.3.3) in the caseof a lasercavity [71].
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Graham[71] hasderived(4.3.2) in a way that connectsit to the Lorenz instability condition(2.6.4).
Since v~and thereforeó~in the presentexampleare not specifiedin the equations,it is interestingto
find the value ~mjfl of o~that minimizesr~.From (2.6.4b)with ci = ô~we find

S~rnin= (b + 1) + [4(b + 1)(b + 2)]h/2 (4.3.4)

for which

r~= rmin = 5 + 3b + [8(b+ 1)(b + 2)]h/2 (4.3.5)

whichimplies the “secondlaserthreshold”(4.3.2).
Of course the instability representedby the transition from single-modeto stable mode-locked

operationin the absenceof an externalmodulation(“self-pulsing”) is not a transitionto chaos.In some
experiments,however,it is found that the successivepulsesin a mode-lockedtrain are different, and
this could be a form of chaotic lasing. In this connectionwe mentionan experimentof Kaufmannand
Marowsky [72],on the “order transition” of a passivelymode-lockeddyelaser,wherethey investigated
themode-lockingpropertiesof the laseras theconcentrationof themode-lockingdyewas varied.These
authorsdescribeda model in which the field—matter interaction involved primarily the passivedye,
while the active dye medium was characterizedin first approximation by a constant linear gain
coefficient. In such a model r = w0/w.>0 is satisfiedbecausew0, w. <0, and the authorsarguedthat
self-pulsingin their ring lasermight occur if the concentrationof the passivedye were large enough.
They did observethe onset of mode locking as they increasedthe concentrationof the passivedye,
althoughfor largeconcentrationsthe modelocking was no longer observed;the latter effect could not
be explainedwith their crudemodel. For an intermediaterange of passivedye concentrationsthey
observed“irreproducible,incoherentlysuperimposedtransientpulse trainsof smallmodulationdepth
[72]”, which possiblywas chaoticlasing.

Chaoticsolutionsof systemslike (4.3.1)areknown to exist,but do not seemto correspondverywell
to actual laserdevices[73].However,variousinstabilitiesin ahomogeneouslybroadenedring dye laser
are reportedby Hillman et al. [74]. Such “intrinsic” instabilitiesof the Haken—Lorenzor Risken—
Nummedaltypearemorereadily observedin inhomogeneouslybroadenedsystems,as we shall see.

4.4. Chaos in a Q-switchedCO2 laser

The first observationand characterizationof chaos in a quantum-opticalmolecularsystemwas
reportedby Arecchi et al. in 1982 [75]. The CO2 laserthey employedwas such that the rate-equation
approximationfor a SMHBL is applicable.Herewedescribetheir modelandexperimentalresults.

If /9 ~ y it maybe assumedin (4.2.2) that v(t) follows w(t) adiabatically:

v(t) (d/h/3) ~‘(t) w(t) . (4.4.1)

Therefore(4.2.2b)and (4.2.2c)become

w(t)= —y[w(t)— w0]—(8ird
2w/hf3V)1”2 n(t) w(t) (4.4.2a)

= (4ird2cvJh/3)Nn(t) w(t) — 2Yc n(t) (4.4.2b)
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wheren(t) is the cavity photonnumber,i.e.,

1(t) = ~-~- ~‘(t)~ n(t) (4.4.3)
8ir V

andV is the “mode volume” of the intracavity field. Following Arecchiet al., we definethe quantities

zl=NVw(t), G=4ird2w/h/3V

R = NVywo, K = 2Yc (4.4.4)

in termsof which (4.4.2)hasthe form

4=R—2Gn4—yzl (4.4.5a)

ñ=Gnil—Kn. (4.4.5b)

As notedearlier, theseapproximaterate equationshaveno unstablefixed points. In any casethey
cannot,accordingto the Poincaré—Bendixsontheorem,havechaotictime evolution,becausethey form
an autonomoussystemof order2. The situation is changedcompletely,however, if the cavity loss is
time-dependent,for then the order of the equivalent autonomoussystem is >2. Arecchi et al.
modulatedthe cavity lossof a CO

2 laserin such a way that

K-+K1(1+m cosQt). (4.4.6)

In their device /
3/y 10~,and so eqs. (4.4.5) are applicable,with K given by (4.4.6). Numerical

simulationof this systempredictsa period-doublingsequenceanda chaoticregimefor a certainrange
of modulationfrequencies11, and suchbehaviorwas in factobservedexperimentally.

Obviously thecavity lossmodulationin this exampleis crucial to theobservationof chaos.As noted
earlier, intrinsic instabilities and chaos are more readily observedin inhomogeneouslybroadened
systems.For instance,chaoticemissionhasbeenobservedin He—Xe andHe—Ne lasers.We now turn
ourattentionto someexperimentalandtheoreticalwork on instabilitiesandchaosin inhomogeneously
broadenedlasers.

4.5. Self-pulsingin the caseofinhomogeneousbroadening

Low-pressureelectric-dischargeXe and He—Xe lasershavelarge small-signalgains and are highly
inhomogeneously(Doppler) broadened.The strong 3.508p.m line may havea gain —1 cm’ with a
Doppler width 6PD ‘— 100MHz [76]. This combination of high gain and narrow linewidth leads to
particularlystrongresonantdispersioneffectssuchas frequencypulling [76].

The coupled Maxwell—Bloch equations for a Doppler-broadened,single-mode, two-level laser
medium,generalizedto allow upper-andlower-level decay,havebeensolvednumericallyby Casperson
[77]. He finds a self-pulsinginstability for a rangeof reasonableparametervalues.Figure 4.1 shows
numericalresultsfor the field andintensity, assumingparametervaluesappropriateto a 3.51p.m Xe
laserat a pressureof 5 x i0~Torr [77]; in particular,the collisional de-phasingtime T

2— 0.9 p.s. The
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Fig.4.1. Theoreticalplotsof theself-pulsingin a 3.51 ~mxenonlaser. Fig. 4.2. Experimentalplots of theself-pulsingfor dischargecurrents
(Courtesyof LW. Casperson,copyright IEEE 1978.) of (a) 40 mA and(b) 50 mA. (Courtesyof LW. Casperson,copyright

IEEE 1978.)

pulse variationsshown in fig. 4.1 are fast comparedwith this dipole coherencetime, and Casperson
emphasizedthat thisinstability cannotbederivedfrom rate-equationanalyses.Furthermorethe pulsing
is slow comparedwith a cavity transit time 2L/c, and the analysis is single-mode,so there is no
connectionwith mode-lockedpulsing.This self-pulsinginstability was found to applyonly to the caseof
inhomogeneousbroadening,anddid not appearfar abovethreshold[77].

What is especially interestingis that Caspersonobservedthe kind of behaviorshown in fig. 4.1
experimentally.Figure 4.2showsexperimentalplotsof intensityfor two differentdischargecurrents.We
notethat as thecurrentwasincreasedfrom 40 to 50 mA a period-doublingseemsto haveoccurred.At a
currentof 70 mA a chaoticoutput,with a broadspectrum,was observed[78].

For the numericalresultsshownin fig. 4.1 Ye — 1 X 10~s~’,/3 — 2.5 x 10~c’ and y — 2 x 10~s~(y is
actuallythe lower-level decayratein this case).Thusthe “bad-cavity” conditionYe> /3 + ~‘, eq. (4.2.11),
is satisfied. Since Ye= cg and /3 = 2ir8p

0, ~vobeing the homogeneouslinewidth, we can write this
condition in the usefulform [78]

cgI2ir~i.’o>1 (4.5.1)

if y 4/3. This putsa necessarycondition on the (threshold)gain coefficient g of the medium for the
self-pulsing instability to be realized.

Casperson[79] haspresenteda stability analysisof the semiclassicallaserequationsthat weresolved
numerically earlier [77],and hasderived(4.5.1)undersomereasonableapproximations.He interprets
the self-pulsinginstability in a bad-cavityinhomogeneouslybroadenedlaserin termsof modesplitting. :1

Mode splitting arisesfrom the strongresonant(or “anomalous”)dispersionin a high-gainlasermedium,
and leadsto the possibility that morethanonefrequencymaybe associatedwith the samelongitudinal
mode(wavelength)[76].It may be understoodasfollows, if L and 1 arethe lengthsof thecavity and
gain tube,respectively,and n(w) is the refractiveindex, the modecondition is

mA/2= (L — 1) + 1 n(cv), m = positiveinteger (4 5 2)
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or

(4.5.3)

where torn = mc/L is a bare-cavitymodefrequencyand cv is the laseroscillation frequency.Equation
(4.5.2) predicts that there may be several frequenciescv associatedwith the samemode index m,
dependingon n(w), and thesefrequenciescan lase simultaneouslyif they havegain> loss. For a
Doppler-broadenedline the resonantrefractiveindexis given by

n(w) -1= ~ F(x) (4.5.4a)

with

~= (4.5.4b)
IT ~PD

where g(wo) is the line-centergain coefficient, ~ is the Doppler linewidth (FWHM), and F(x) is
Dawson’sintegral [80]. The solution of eq. (4.5.3) for the oscillation frequencycv is obtainedfrom the
intersectionof the line y=Wm — cv with the dispersioncurve y= (1IL)[n(w) — 1], as indicatedin fig. 4.3
[76]. It can be seenthat this “spontaneousmodesplitting” effect [81], whereinseveralfrequenciescan
laseon a singlelongitudinal mode,occursonly whenthe frequenciesareappreciablydisplacedfrom line
center.

Thus far we have ignored the possibility that spectral holes can be burned into the resonant

N.

Fig. 4.3. Solutionsof eq. (4.5.3). (Seetext.)
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Fig. 4.4. Effect of hole burning on solutionsshown in fig. 4.3.

dispersioncurve.Figure 4.4 showswhat can happenwhenthis holeburningdueto a line-centermodeis
taken into account [79]. Now a mode splitting close to line center can occur, and the allowed
frequenciescan be expectedto lase.(Note that theyareaway from the dip burnedinto the centerof the
gaincurve, andsohavesmall-signalgainsgreaterthanthe gain of thesaturatingline-centermode.)This
“induced modesplitting” [81]is strongestat line center.It is plausiblethat pulseformationresultsfrom
the phaselocking of the allowedoscillatingfrequencies.

The CaspersonandRisken—Nummedalself-pulsinginstabilitiesare similar in the sensethat they are
both “intrinsic” instabilitiesunderstandablefrom the sameMaxwell—Bloch equations.However, the
Caspersoninstability associatedwith mode splitting arises out of the dispersivepart of the atomic
susceptibility,andso in anothersenseis of a differentphysicalorigin. The most importantdifferenceis
that the Caspersoninstability doesnot require the laserto be typically nine times abovethreshold,as
for the Risken—Nummedalinstability. Thus the Caspersoninstability is moreeasilyobserved,although
it doesrequire the atypicalparameterrelation (4.5.1) (“bad cavity”), which is not necessarilyrequired
for the Riskeri—Nummedalinstability in a homogeneouslybroadenedring laser [71]. The fact that
inhomogeneousbroadeningleadsto a morereadily observableinstability hasbeendiscussedby Minden
and Casperson[82] and Mandel [83]. Casperson[84] hasalso investigatedthe caseof non-Doppler
inhomogeneousbroadening.

Abrahamet al. [81,85] haveobservedself-pulsingin a single-modeHe—Xe laser, and gavestrong
evidencethat this was due to eitherspontaneousor inducedmodesplitting, dependingon the detuning
of their cavity from line center.They also found a (single)period-doublingin the output pulsations.
Period-doubledandtwo-frequencyself-pulsingwerealsoobservedin a bad-cavity3.39 p.mHe—Ne laser,
and for a small rangeof cavitydetuningsthe pulsationsappearedto be chaotic[86].

4.6. Chaosin inhomogeneouslybroadenedlasers

A simplified analysisof the single-modeself-pulsinginstability suggeststhat, for either homogeneous
or inhomogeneousbroadening, it is associatedwith a Hopf bifurcation [83]. The experimental
observationsmentionedaboveclearly indicatedthat this transition from a cw steadystateto a periodic
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Fig. 4.5. Threeperiod-doublings(a—d) and chaos (e), followed by orderly oscillation (f and g), as one of the mirrors of a 3.39p.m He—Ne laser is
tilted. The spectrashowncorrespondto sidebandsof intermodebeats.(Courtesyof CO. Weiss.)
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outputmight be followed by morecomplicatedandevenchaoticbehavior.Althoughmoreexperimental
progresswill certainlybemade,it hasalreadybeenestablishedthat lasersundercertainconditionsmay
be intrinsically chaotic. Furthermorethe period-doubling, Ruelle—Takens(or two-frequency), and
intermittency “scenarios” have been realized with lasers. We have already mentionedthe period-
doubling routeto chaosobservedin a loss-modulatedCO2 laserby Arecchi et al. [75],and now focus
our attention on the “intrinsically” chaotic behavior that has been found in inhomogeneously
broadenedlasers.The observationof different routesto chaosin an inhomogeneouslybroadenedlaser
was recentlyreportedby Weisset a). [87,88] andby Gioggia andAbraham[89].

Weissand King [87] useda high-gain 3.39p.m He—Ne laserhaving a resonatorfree spectralrange
(c/2L)of 60 MHz. By tilting oneof theresonatormirrors theyobservedthreeperiod doublingsandthen
chaos,as shownin fig. 4.5, and then an orderlyoscillation again.The total tilt angle in going from fig.
4.5ato fig. 4.5g wasonly about2 x 10~radian.The spectrashownin fig. 4.5 correspondto sidebands of
the intermodebeats(“beat-beatfrequencies”).

Weiss, Godoneand Olafsson [88] modified the experimentby introducing a second, Lamb-dip
stabilizedlaser.By heterodyningthis secondlaserwith the test laser, theycould control the frequency
(resonatorlength)of the latter.They found threeroutesto T period-doubling,two-frequency,and
intermittency— as the mirror was tilted. The particularroutetakento chaosdependedupon the degree
of detuning from the centerof the gain curve of the single-mode laserwith no mirror tilt. Their
experimentalresults for period-doublingand two-frequency(Ruelle—Takens)routesto chaosareshown
in figs. 4.6 and 4.7, respectively.Figure 4.8 showstheir experimentalevidencefor the intermittency
routeto chaos.

Although a theoreticalanalysisof this chaoticbehavioris not at presentavailable,it seemsclear that
the chaosis closely associatedwith the presenceof three longitudinal modes.With no mirror tilt the
laseroperatedon a single longitudinal mode,whereaswhenthe mirror was tilted two additionalmodes,
separatedfrom theoriginal oneby c/2L, beganto laseandincreasein intensitywith thetilt angle.Phase
locking of the modesis alsoa closely relatedconsideration[88].

GioggiaandAbraham[89]alsoreportedperiod-doubling,two-frequency,andintermittencyroutesto
chaos in an inhomogeneouslybroadenedlaser, this time a bad-cavity 3.51 p.m Xe laser. The free
spectralrangeof their resonator,however,was quite large (—900MHz), so this was certainly single-
modechaoticemission.The different routesto chaoswereobservedin different rangesof detuningfrom
line center,and eachroutecould be followed as the detuningwas varied. Some of their datashowing
period-doublingand two-frequencyroutesto chaos are shown in fig. 4.9. Here againno theoretical
analysisis yet available,althoughit seemslikely that modesplitting plays an importantrole. In any case
the instability hereis certainlydistinct from that in the experimentsof Weisset al. [87,88] as it involves
only onelongitudinal mode.

Chaosin a three-mode3.39p.m He—Ne laser was also observedby Halas et al. [90]. As in the
experimentsof Weisset al, [87,88] the chaoticbehaviorappearsin the low-frequencysecondarybeats
whenthe laseris not mode-locked.In this case,however,thechaosis observedas thedischargecurrent
is varied, not by misaligninga resonatormirror. The origin of the instabilities may neverthelessbe
similar. Chaotic emission has also been observedin a Xe ring laser [91]. For details of all these
observationsthe readeris referredto the cited literature.

4.7. Numericalexperimentswith Maxwell—Blochequations

When dampingtermsand Dopplerbroadeningaretaken into account,and each level has its own
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Fig.4.8. Intermittency routeto chaosin a 3.39p.m He—Ne laseras one mirror is tilted. (Courtesyof CO. Weiss.)

pumping andrelaxationrates,the system(3.4.2)plus (3.4.3) is replacedby

(4.7.la)

z)=(zi—4—ks)u—/3v+f1l(z
2—zi) (4.7.lb)

Z2 R2— Y2Z2flV (4.7.lc)

ii’R1y1zi+~f2v (4.7.ld)

f1 YM + A J dsW(s)v(s, t) (4.7.le)
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= —A J dsW(s)u(s, t). (4.7.lf)

Theseequationshavebeenwritten in termsof the Rabi frequency11 = dEIh. z2 and z1 are the upper-
andlower-level occupationprobabilities,respectively,with pumpingratesR2,R1 anddampingrates72,

yi. W(s) is the (one-dimensional)Maxwell—Boltzmann velocity distribution function: W(s)=
(sIT”

2)1 exp(—s2/x2),wherex= (2RT/M)112is themostprobablespeedat temperatureT andmolecular
weightM ks is the (angular-frequency)Doppler shift for an atomwith velocity s alongthe opticalaxis,
andwe havedefinedA = 2irNd2cv/h. Finally Ye is the field dampingrate,as in (4.2.3).

Equations(4.7.1)describea unidirectional,Doppler-broadenedring laser.A numericalstudy of this
systemhasbeenmadeby Shih et al. [92], who find period-doubling,two-frequency,andintermittency
routesto chaosas a parameter(e.g., Ye or R

2) is varied,provided the bad-cavitycondition(~> 13) ~S
satisfied.Thesenumericalresults,basedon realisticvaluesof the variouspumpingandrelaxationrates,
demonstrateonce again the importanceand relevanceof chaotic dynamicsto quantumoptics and
electronics.

Figure4.lOashowsthe intensitycomputedfrom (4.7.1)for thefollowing parameters:/3 = 61 X 106 s
1,

R
1 0, R~= 8.5X 10~/3,Ye = 5.4/3, Yt = 0.8/3, Y2 = 0.012/3, A = 6.4x 1023s

2, ~l= 0, and a Doppler
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Fig. 4.10. Period-doublingroute to chaosas the pump rate R2 is increased.(Seetext.)
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Fig. 4.11. Powerspectrumof the electric field after theperiod-doublingsequencehas proceededad infinitum, showingthebroad-bandcomponent
typicalof chaoticdynamics.
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width (FWHM) ~ = kxVlog2/rr = 110MHz. Thesechoicesarediscussedin ref. [92].In fig. 4.lOa and
throughoutthis section we plot results only after initial transientsdie out. In each casewe assume
U = v = = = 0 initially, with 11 havingsomesmall initial valuein order to startthe laser.In a fully
quantizedapproachthe initial “noise” arisesfrom spontaneousemission.

Figure4.lOb showsthe computedintensitywhen R2 is raisedto 9.0X 10~/3.In going from fig. 4.lOa
to fig. 4.lObwe seethat a period-doublingbifurcationhas occurred.Figures4.lOc and4,lOd show the
intensity for R2= 9.3x 10~/3and 9.4x 10~/3,respectively,revealingfurther period doublings.Slight
further increasesin R2 result in moreperiod doublings and chaosas the period doublesad infinitum
accordingto theFeigenbaumsequence.Figure4.11, for instance,showsthe powerspectrumof 12(t) for
R2 = 9.6x 10~/3.

In figs. 4.12a—4.12dwe show the power spectrumof the electric field for the sameparametersas
above, but with R2 fixed at 5.6X 10~/3and the detuning~1increasingfrom 3.725/3 to 3.75/3. Whatwe
areseeingnow is a two-frequencyrouteto chaos,in which the dynamicsbecomeschaoticfollowing the
appearanceof two incommensuratefrequencies(i.e., motion on a two-torusin phasespace).

In somenumericalexperimentswe havealsofoundchaosdevelopingvia intermittency.Figure 4.13

~a) (b~

Time(microsec) Time(microsec)

(c) (d)180L II ~I ~
200L I I~ .j

120— II I I~ I I

Time(microsec) Time(microsec)

Fig. 4.13. Developmentof chaosvia increasingly frequentirregularbursts. (Seetext.)
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shows an example of such a route to chaosas R2 is increased,for a somewhatdifferent rangeof
parametersthan in figs. 4.10—4.12[93].

The system(4.7.1) assumesa unidirectional ring, not a standing-waveor bidirectional ring device.
Although the traveling-waveassumptionmaybe agood approximation[78],the mostdirect comparison
of our computationswith experimentwould be for a truly unidirectionaldevice.Chaosin a bad-cavity
unidirectionalring laserhasnow beenobservedby Urbach et al. [94],but we do not at presenthaveany
correspondingnumerical results, as our computationsassumedparametersmore appropriateto the
Gioggia—Abrahamexperiments[89]. In any casewe believefrom numericalexperimentsdonethusfar
that a one-to-onecomparisonof theory andexperimentwill be very difficult without highly accurate
valuesfor thevariousratesandcrosssections;small changesin theseparameterscan dramaticallyalter
the solutionsof (4.7.1).

From numericalresultslike those shownin figs. 4.10—4.13we can neverthelessdraw an important
conclusion:Standardsemiclassicallasertheory,with its traditionalsimplifying assumptionslike plane-
wave fields and constantpump rates,predictsthe same“universal” routesto single-modechaosthat
havebeen observedexperimentally. It is also quite interesting that the fundamentalsystem(4.7.1),
which hasbeenknown andstudiedfor a long time in quantumelectronics,displaysall thisrich chaotic
behaviorof so much currentinterest.

4.8. Remarks

Theubiquity of a few “universal” routesto chaosis onereasonwhy the subjectis attractingso much
interest.Deterministicchaosseemsto explain the transition from laminarto turbulent fluid flow [95],
and lasershavenow beenadded to the wide variety of nonlinearsystemsin which chaos hasbeen
observedand characterized.This possibility of understandingat least someaspectsof “turbulence”,
with relatively simplemodels,certainlymustcountas a fundamentalbreakthrough.

Now that somepioneeringexperimentshavebeenreported, it is expectedthat laserphysicistswill
takean increasedinterestin chaoticlasing, andthat observationswill be madeon manymoresystems.
It would be especiallyinterestingnow to investigatethe possibility of chaoticbehaviorin somewhat
moretypical lasers.Furthermorethereis clearlyroom for moretheoreticalanalysesof thechaoticlasers
already studied experimentally.One might also ask whetherthere are interestingphoton-statistical
aspectsof chaotic laserradiation [92]. In closingthis sectionwe will briefly mention someotherwork
that hascome to our attention. The list is by no meansexhaustive,and it is expectedthat more
developmentswill occurby the timethis introductory reviewis published.

YamadaandGraham[96] andScholtzet al. [97] haveconsidereda SMHBL with modulatedexternal
field andpopulationinversion,respectively,both leadingto chaos.In the latter casethe chaosdevelops
via intermittency.Mayr et al. [73]find chaoticbehaviorin the self-pulsingdescribedby equationsfor a
ring SMHBL. Arecchi et al. haveobservedchaosin a laserwith an injectedsignal [98]. Grahamand
Cho [99] have describedtwo simplified models of self-pulsing and chaos in a single-mode in-
homogeneouslybroadenedlaser,andcomparethe chaoticbehaviorwith that for the Lorenzmodel.

The multimodecase,of course,haswell-known theoreticalcomplexities.The strong-signaltheory in
the caseof Dopplerbroadeninghasbeenaptly describedas “horrendous,to say the least” [100].With
regardto chaos,someinterestingprogressalongthe lines of the original Lamb third-ordertheory has
been made by Brunner and Paul [101] for the Doppler limit. They find that the assumptionof
free-runningoperation[102], which allows one to write equationsfor intensitiesonly, becomesinvalid
when the homogeneouslinewidth ~ twice the modespacing.In thiscasethe numericalanalysissuggests
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that the multimodeoscillation is chaotic.Brunnerand Paul note that this predictionseemsconsistent
with the irregularspiking behaviorof argon-ionlasersat high excitation [103].

It is alsopossiblethat spatialinhomogeneitiesin the pumping of a lasercan lead to chaoticemission
as a result of coupling of different transversemodes[104].A relatedconclusionhasbeenreachedby
Hauck et al. [105], and they provide someexperimentalevidenceusing a solid-statedevice. In the
modeldescribedin ref. [104]thereis a period-doublingrouteto chaos[92,93].

5. Chaosin nonlinear optics

5.1. Introduction

It should by now comeasno surpriseto thereaderthat chaoticbehaviorcanoccur in varioussortsof
nonlinearoptical processes.Thus far most of the attention in this area of “optical turbulence”has
focusedon optical bistability. However, it seemslikely that other examplesof chaoswill be found in
nonlinearoptics as interestin chaosandnonlineardynamicscontinuesto grow. In the following section
we describehow chaoscan arisein optically bistabledevices,andpoint to someof the experimental
work on this aspectof opticalbistability. We also considerexamplesinvolving coupledwaveequations
for RamanandBrillouin scattering,which suggestotherexampleswherechaosmayappearin nonlinear
optics.

5.2. Chaosin optical bistability

A systemmaybe saidto be bistableif it hastwo possibleoutputstatesfor the sameinput state.An
optical bistable device is generally defined to have two possible output statesfor the same input
intensity.A comprehensivereview of opticalbistability hasbeengiven by Abrahamand Smith [106].
The conceptgoesbackto earlypapersby Szökeet al. [107]and McCall [108].Here we considerthe
possibility, first discussedby Ikeda [1091,of chaoticbehavior,or “optical turbulence”, in an optically
bistabledevice.

The systemof interestis illustrated in fig. 5.1. Mirrors 1 and 2 have reflectivity R = 1 — T < 1,
whereasmirrors 3 and 4 are assumedto be perfect reflectors.The cell inside this cavity containsN
two-level atomsperunit volume.E1 denotesthe field strengthof themonochromaticinput field, andthe
transmittedandintracavity fields aredenotedby ET andB, respectively.The cell length is L, the total
ring circuit length is ~, andwedenotethe differenceby 1 = — L.

The system of fig. 5.1 is describedby the Maxwell—Bloch equations,together with the cavity
boundaryconditions. The major differencesbetweenthis deviceand a laseris that the mediumis an
absorberratherthan an amplifier (wo = —1), and thereis an injectedfield E1. Generalizingequations
(3.4.2) and(3.4.3) to allow a z-dependentfield amplitudeand phase,we write

öU/ÔT=—/.lV—f3U (5.2.la)

= ziu— /3v + (d/h)~’w (5.2.ib)

ôw/3r = —Y(w + 1)— (d/h)~Zv (5.2.lc)
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Fig. 5.1. Ringcavity configurationfor anoptically bistabledevice.

= (211-Ndk)v (5.2.ld)

= —(2rrNdk)u (5.2.le)

where ‘r = t — z/c andk = w/c. Loss is assumedto occur only at the mirrors, so that Ye = 0, and the
absorberis assumedto be homogeneouslybroadened.

Let usassumethat /3 is largeenoughthat

(5.2.2a)
/3

vu+~(f’-~’w”) (5.2.2b)
/3 /3h I

in (5.2.1).In this rate-equationapproximationto the TLA Bloch equationswe replace(5.2.1) by

—y(w+1~~~2)lE~2w (5.2.3a)

ÔE 2rrNd
2k//l

~2~2 )Cs+i~)Ew (5.2.3b)

whereB ~ e”~.From(5.2.3) it follows by simplemanipulationsthat
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E(r + ~, z) = E(r, 0) exp[2~d~ (/3 + i~)W(r, z)] (5.2.4a)

a 1 4lTNd
2k/3/h

— W(T,z)= -y[W(T, z)+ Z] - 4Nhk E(r, 0)!2{exp[ j2~ f32 W(T,z)] - i} (5.2.4b)

where

W(r, z)= J dz’ w(~+ £, i’). (5.2.4c)

We must alsospecifythe cavity boundaryconditions,which may be convenientlywritten in termsof
the fields at the endsof the absorptioncell [109]:

E(t, 0) = VTE
1(t)+ R exp(ik~)E(t - -~, L) (5.2.Sa)

ET(t) = VT E(t, L) exp(ikL). (5.2.5b)

Equations(5.2.4) and(5.2.5)arethe basesof Ikeda’sanalysis.He definesthe populationdifferencein
such a way that w = ~(—~)for an atom in the upper(lower) energystate.The connectionwith Ikeda’s
work is thereforemadeeasierby replacing W in (5.2.4) by 2W, so that W below will actually be the
sameas Ikeda’s.Defining 0 = 2irNd

2k/h,~ = i, YT = /3, YII = y, and
1a = d/h,we canwrite eqs. (5.2.4a)

and(5.2.4b) as eqs. (4) and(5) of Ikeda’spaper[109]:

E(r+~-,z) = E(~0)exp{29W(1-,z)’~’°~Y~] (5.2.6a)
C

z 4Oy~W
— W(r, z) _yji(w+~)_~lE(r,o)J2{exp[~2~2]~ i}. (5.2.6b)

We now definethe dimensionlessvariables[109]

X = y11t, K = y11~’/C, i =

e(t, z)= ~E(t, z) [Y±Yii(i + i
2)]112 (5.2.7)

ET(t) = ~ET(t— ~) [~y(l + i2)]-tt2

= ~E
1(t) [y~y(l + i

2)]112
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in termsof which (5.2.5)and (5.2.6)maybe combinedin the form of time-delayequations[109]:

E(x, 0) VT e1(x)+ Re(x— k, 0)exp{aL~(x)} exp{i[aLzl (~(x)+ ~) — 6~]} (5.2.8a)

= -(~(x)+ ~) -2 E(x - K, 0)l2~~~[exp{2aL qS(x)}-1] (5.2.8b)

ET(X)= VT E(x — K, 0)exp{aL~(x)} exp{i [aLi (41(x)+ ~) — (8~+ kl)]} (5.2.8c)

where

a = 20yj(z~w
2+ y~) (5.2.9a)

21TN
5a

2z~w

ô~=—k[(1— ~
22)L+1]+2~M (5.2.9b)

and 2n-M is introducedas the integralmultiple of 2ii- closestto the first term on the right-handsideof
(5.2.9b).

The steady-statelimit of (5.2.8) is obtainedby settingdçb/dx= 0 andE(x, 0) = constant.If 8~= i = 0,
we obtainafter simplealgebrathe steady-staterelation

~ T(~—1)]—1}=~aL (5.2.10)
2T

where ~T denotesthe steady-statevalue of ST. This is the relation for “absorptive” optical bistability
obtained by Bonifacio and Lugiato [1101.They show that, for R greater than some critical value
dependingon L, thereare two allowed values of

5T for the samevalue of e~,i.e., there is optical
bistability. (This is called “absorptive”bistability becausei = 0 implies thereis no resonantdispersion.)
If aL, aziL, 1öo1 and ~TI2/Tare all small comparedwith unity, we have the caseof “dispersive”
bistability observedin experimentsof Gibbset al. [111].

Fora detailedreviewof opticalbistability, andan extensivebibliography,the readeris againreferred
to Abrahamand Smith [106].Henceforthwe will focus our attentionprimarily on chaos in optical
bistability.

If the populationdifferencehasa relaxationtime muchshorterthanthe ring transit time ..~‘/c,so that
K ~ 1, wemay set dçb/dx 0 in (5.2.8b),andthe time-delayequationsin this limit reduceto a discrete
mapping:

= V~e~+ R~o, n—i exp(aL41~)exp{i[aLi (4~+ ~) — 5o]} (5.2.lla)

= VT So,n-i exp(aL4~)exp{i[aLi (41,, + ~) — (&~+ k!)]} (5.2.llb)

41,, + ~= ISo, ,,~iI2(1— exp(aL41,,)) (5.2.llc)
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where

So,,, e(x0+ flK, 0) (5.2.12a)

5T,n ET(X + flK). (5.2.12b)

Ikeda [1091iteratedthe mapping (5.2.11) for the exampleaiiL = 6, aL = 4, S~= 0 andR = 0.95.
Within a rangeof valuesof ~tI, the sequence{ET, ,,} of transmittedfield strengthsis chaotic,andfollows
aperiod-doublingrouteto chaos.This possibilityof chaosin opticalbistability sparkeda lively interest
in “optical turbulence”.

Considernow a mediumof TLAs far removedfrom resonancewith the input field. If the absorption
coefficient of the mediumis nonsaturableand theTLAs, beingfar from resonance,makeno significant
contributionto it, thenin (5.2.8)we may replaceaix/i by aL(—~).Defining e and0 by

s(x,0) = [2i(1 — enL)]~2e(x) (5.2.13a)

41(x)+~=(1/aziL)0(x) (5.2.13b)

we thenobtainfrom (5.2.8) the time-delaysystem

e(t) A + Be(t— tR)exp{i[O(t)— 5o]} (5.2.14a)

-O(t)+ je(t- tR)J (5.2.14b)

YiI

where

A [2Tzl(1 — e~’)]’~’2e
7 (5 2 15a)

B ~R e~~L~
2 (5.2.15b)

(5.2.15c)

Equations(5.2.14)for the caseof “dispersive”opticalbistability areidentical to thoseof Ikedaet al.
[112]for the casein which the cell containsamediumwith a nonlinearrefractiveindex. In their casethe
longitudinal relaxationrateYll of the opticalBloch equationsis replacedby the relaxationrateused in
the Debyetheory of dielectric relaxation,and A is defineddifferently. They show that the equations
(5.2.14) admit chaotic behavior, and Nakatsukaet al. [113] have observedthis optical turbulence
experimentally,as discussedbelow.

When the cavity circuit timeis muchlargerthan the materialrelaxationtime (i.e., yIjtR ~ 1), we may
use an adiabatic approximation to 0(t), setting the left-hand side of (5.2.14b) to zero so that
0(t) Ie(t— tR)12 Thenfrom (5 2 14a) we obtain

e(t) = A + Be(t— tR) exp{i[Ie(t — tR)I — o~]} (5 2 16)
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In this approximation,therefore,the differential-differencesystem(5.2.14) is replacedby the discrete
mapping

= A+ Be,,1exp{i[~e,,_5l
2— &.~]} (5.2.17)

studied by Ikeda et a!. [112].This takes the form of a real two-dimensionalmappingthat has a
period-doublingroute to chaos.The resultsof a detailedstudy of this map havebeen reportedby
Carmichaelet al. [114].

The fixed points e of the map (5.2.17)may be found numerically. In particular,the amplitudes el
aredeterminedby the equation

A = el [1+ B2 — 2B cos(lel2— fl]1/2 (5.2.18)

assumingfor simplicity thatA is real. Figure5.2shows el asa functionof A for &~= 0 andB = 0.5, and
also indicateswhich branchesof the solutionarestable.Proceedingalongthe lower stablebranchfrom
A = 0, stability is lost at A 1.24775, and a period-doublingbifurcation occurs. At A = 1.5, for
instance,the iteration of (5.2.17) starting from e

0=0 yields le,,j = 1.807953, 0.6226517, 1.807953,
0.6226517,...after initial transientsdie out. At A 1.511525 a 4-cycle is found, and very small
increasesin A lead to moreperioddoublingsandchaos.Carmichaelet al. [114]haveverified thatthe
rateof period doubling to chaosis governedby the Feigenbaumnumberô.

Figure 5.3 showsthe chaoticattractorin the complexe planeas computedby Ikedaet al. [112]for
the caseB = 0.4, A = 4.39.The enlargementshownin fig. 5.3b showsa structurewithin structure,asin
the caseof the chaoticHénon attractor(fig. 2.3). In fig. 5.4 we showthe Ikeda attractorfor the case
B = 0.5, A = 1.565.The attractorin thiscasealsoshowsthecharacteristicribbonlike aspectof astrange
attractorunderenlargement.
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Fig. 5.2. Iii asa function of A for öo = 0 andB= 0.5, indicating which branchesof the solutionarestable.(Courtesyof HJ.Carmichael.)
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It is interestingto considerthe influenceof noiseon a chaoticdynamicalsystem.Zardecki [115]has
consideredthe effect on the Ikeda attractorof Gaussiannoise superimposedon the incident driving
field. The addednoiseterm is q[~~+ iij,,], whereq is a small real numberandi,,, ,~,,areindependent
Gaussianrandomvariablesof zero meanand unit variance.Figure 5.5a showsa section of the Ikeda
attractorfor B = 0.8, A = 3.0 without noise (q = 0), andfig. 5.5b showsthe samesection for q = 0.001.
It is evident that one effect of noiseis to changethe fractal dimensiond (eq. (2.3.13))of the attractor.
Figure 5.6 showsd(r) = log N(r)Ilog(s~)computedby Zardecki for both the Ikedaand Hénonmaps,
with andwithout noise.On a very fine scaleof resolution(e small), below the magnitudeof the noise,
d(e) is closeto 2.0, which is in fact the fractal dimensionof two-dimensionalGaussiannoise.That is, at
high resolutiond(e) is a measureof the noiseand not the dynamicalsystem.For coarseresolutiond(e)
approximatesthe fractal dimensionof the attractor in the absenceof noise, i.e., 1.26 and 1.41,
respectively,for the HénonandIkedamaps.

Ikedaet al. [112]arguethat, with increasing t, eq. (5.2.17)eventuallybecomesinapplicable,evenif
the condition yIItg ~‘ 1 is satisfied. This is a consequenceof very sensitivedependenceon initial
conditions. For if e(t) has any variations, small differencesbetweene(11) and e(t2) (0 s t1 � t2 < tR)

becomemagnified, and their images under the mapping (5.2.17) eventuallyhavea very short “cor-
relationtime”. Whenthis time becomesas small as the materialrelaxationtime,we can no longer make
an adiabaticelimination of 0(t).

If B ‘~1 but A
2B ‘— 1, we can write the following approximateversionof (5.2.14):

-~-O(t) = -0(t)+ A2{1+ 2B cos[0(t— tR)—~]}. (5.2.19)

(Note that this time-delay differential equationis effectively equivalentto an autonomoussystem of
infinite order.The Poincaré—Bendixsontheoremdoesnot apply.)By numerically integrating(5.2.19),
andFourier transformingthe time seriessoobtained,Ikedaet al. [112]find a transitionto chaosas A is
varied: Thepowerspectrumof 0(t) changesfrom a seriesof sharpspikesto a broad-bandspectrum.
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Fig. 5.6. Approximate fractal dimensiond(e) vs. [Iog(e1)l’ computedby Zardecki for the Ikedaand I-tenon maps,with andwithout noise.
(Courtesyof A. Zardecki.)

The experimentsof Nakatsukaet al. [113]on chaosin an “all-optical” bistablesystemsupport this
prediction.Theirexperimentalarrangementis indicatedin fig. 5.7. A single-modeoptical fiber, havinga
quadratic nonlinearindex, is usedas the nonlinear“cell” in the ring cavity. The high power level
necessaryfor the observationof chaoswith this systemwas obtainedfrom the secondharmonicof a

SINGLE—MODE
OPTICAL FIBER

OUTPUT

/ R*20%

.IlIII~Ilit,.INPUT ~ R*60%

Fig. 5.7. Schematicof experimentalarrangementof Nakatsukaci al. [1131.(Courtesyof H. Nakatsuka.)
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mode-lockedYAG laser (pulse separation—7.6ns). As the bifurcations to chaos stem from the
interferenceof the input andcavity fields, it was necessaryto matchthe ring transit time to the period
of the mode-lockedpulses. The cavity was such that B 0.4—0.5, and the parameterA could be
increasedsufficiently, by raisingthe input power level, to realizea chaoticregimeof the system.When
the peakpowerof the input pulsetrain was raisedfrom 50 to 160 W, a period doubling of the output
train was observed.At a power level of 300W the output was chaotic.The resultswereconsistentwith
the theoreticalmodel.

Chaosin a“hybrid” optically bistabledevice,in which a delaytime is introducedelectronicallyusing
a delayed feedbackline, was observedin 1980 by Gibbs et al. [116].Their hybrid device is well
describedby eq. (5.2.19) of Ikeda et a!. [112], althoughof coursethe origin of the delay time TR is
different.

Chaos in an all-optical ring-resonatorsystem employing an ammoniacell and injectedCO2 laser
pulseshasbeenreportedby Harrison et a!. [117].As in the experimentsof Gibbset a!. thereis evidence
of a period-doublingrouteto chaos.Their approachoffers considerableflexibility for the variation of
parameters,and furthermore enjoys the theoretical neatnessassociatedwith a homogeneously
broadenedtwo-level system.

The developmentof chaosin a ring resonatorpumpedby a sequenceof sechpulseshas beenstudied
numericallyby Blow and Doran [118].Their analysisis basedon a nonlinear,Schrodinger-likewave
equation,in which the dispersivenonlinearityis dueto the Kerr effect. Chaosvia period doubling was
observedwith increasingpump intensity, followed by an inverseFeigenbaumsequence.In contrastto
the dispersionlesscase[113],all pointsof the pulse circulating in the cavity seemto havethe same
dynamicsfor their choiceof parameters.

5.3. Chaosin optical mixing

It is also possible for chaosto appearin the propagationof intenselaserradiation in a nonlinear
optical medium.We will consideran exampleinvolving coupledwaveequationsfor the pump,Stokes
and anti-Stokesmodesin Ramanscattering[119].

Let A1, A2 and A3 be the electric field amplitudesfor the anti-Stokes,pump and Stokesmodes,
respectively,andassumeperfectphasematching.We write [120,121]

A1= —y1A1— $1[1A21
2A

1 + A~A~] (5.3.la)

A —— A LnF,N 2 A 21n

J12 Y2~~2mp2[I-I1— ~3 J’~2 .

A3= — y3A3+ )33[1A21
2A

3 + A1~A~]. (5.3.lc)

The ~ are loss or gain coefficients,and the /3, are mode-couplingcoefficientsinvolving Ramancross
sections[120].Introducereal variablesa and0, by writing

A = a(z)exp{i 0,(z)} (5.3.2)

andassumefor simplicity that 202—03—0~= 0 at the inputplanez = 0. Then(5.3.1) takestheform of a
third-orderautonomoussystem:
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— f31(a1+ a3)a~ (5.3.3a)

a2 = — y2a2+ f32(a~— a~)a2 (5.3.3b)

a3 = —y3a3+ /33(a1+ a3)a~. (5.3.3c)

We will focusour attentionon the parametervalues Yi = —1, Y2= Y3— —y, J3~= 9,132=5,133=1.
Considerfirst the casey = —1. Thereare five fixed points of (5.3.3), and in this casethey are all

unstable.Figure5.8 showsa2(z) for the initial condition a1(0) = a2(0)= a3(0)= 1. The evolutionof a2
lookschaotic,and this is confirmedby taking the Fourier transformof a2, for instance,as shownin fig.
5.9. In fig. 5.10 we plot a2(z) vs. a1(z). The orbit winds aroundonefixed point and then another,and

.0.

0.8

0,8

::~ ~1~I ~

Fig. 5.8. Variation of pump amplitude a2 with z for yI = ~1,y~= = 1, /

3i = 9, $s = 5, $s= 1.

Frequency
Fig. 5.9. Power spectrumof a2 of fig. 5.8.
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Fig. 5.10. a1 vs. a~for the parametersof fig. 5.8, 40�z~100.

when one looks at its developmentin time (or actually z) it appearsto switch erratically betweenthe
two. A similar result is foundwhen a3(z) is plottedvs. a2(z) (fig. 5.11).Theseresultsare reminiscentof
the Lorenzmodel, andin fact (5.3.3)hasan importantpropertyin commonwith the Lorenzmodel:It is
invariant underthe transformation(a1, a2, a3)—* (—a1, a2, —a3),the a2axisis invariant,andany pointon
the a2 axis approachesthe origin.

Let us now considera Poincarémapusingthe surfaceof section a1 = 0 (seefig. 2.5). The points on
the Poincarémapshownin fig. 5.12for v = 1 appearin the a2a3planein an apparentlyrandomfashion.
We alsoshow in fig. 5.13 a magnifiedsectionof fig. 5.12. When this sectionis furtherenlargedwecan
begin to see structurewithin structure, or self-similarity, suggestingthat the Poincarémap has a
Cantor-likestructureassociatedwith strangeattractors.

202’

Fig. 5.11. a2 vs. a3 for theparametervalues of fig. 5.8, 40~z � 100.
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Fig. 5.12. Poincarémapobtainedby plotting al(z) vs. a2(z) for pointsz at which a1 = 0 anda1 <0.

Sensitivity to initial conditionsfor this chaoticRaman attractormay be verified by computing the
Lyapunov characteristicexponentsof the system. We have “very sensitive dependenceon initial
conditions” (chaos)if any of the Lyapunov exponentsis positive, and so it suffices,in ordersimply to
verify that the systemis chaotic, to computethe largestexponent.This maybe doneas describedin
section 2.4. The result of the computationfor the chaoticRamanattractorwith y = 1 is shown in fig.
5.14.x convergesto about0.1, verifying that the attractoris chaotic.

If we reducey to 0.05,we obtainfor a2(z)the resultshownin fig. 5.15. The systemreachesa stable
limit cycle, as confirmed both by spectralanalysisand Poincarémaps. In fig. 5.16 we show ai(z) vs.

a2(z) for this caseof orderlybehavior.The orbit in the a1a2planesimply keepsretracingits path over
the figure eight.

This exampleof orderandchaosin a nonlinearopticalproblemwill bedifficult to studyexperiment- :
ally, as it assumesgain at the anti-Stokesfrequencybut loss at the Stokesand pump frequencies.
Neverthelessit suggeststhat chaosmay be foundin other nonlinearopticalphenomenaof this type.For
instance,Ray [122]hassuggestedthat chaoticbehaviordescribedby the Lorenzmodelmaybe found in
three-waveopticalmixing. It shouldalso be mentionedthat Randall and Albritton [123]havestudied
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(a)

Fig. 5.13. (a) Magnification of therectangleindicatedin fig. 5.12 and(b) magnificationof therectanglein (a).
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Fig. 5.14. Maximal Lyapunovexponentcomputedfor theparametersof fig. 5.8.
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Fig. 5.16. a1 vs. a2 for theparametersof fig. 5.8.

partial differential equationsmodeling nonlinearstimulated Brillouin scatteringin a medium with a
reflecting boundary.The boundaryleadsto resultsqualitatively different from the predictionsof the
usual steady-statecoupledwave equations,including the generationof subharmonicsof the acoustic
wavefrequency.The scatteredlight intensity may also havechaotictime evolution.
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6. Chaos in infrared laser—moleculeinteractions

6.1. Introduction

A vibrational modeof amoleculepumpedby a laseris basically an exampleof a sinusoidally driven
anharmonicoscillator. The possibility thereforearises that the dynamicsof this nonlinearoscillator
could be chaotic for a certainrangeof parametervalues. In fact the Duffing oscillator consideredin
section2.5 servesas a crude model of a driven molecularoscillator. In this sectionwe will consider
more realistic models, taking into account “background”vibrational modescoupledto the infrared-
active pumpedmode. We will see that for realistic parametervalues the pumped-modedynamics is
indeedpredictedto be chaotic [1241.Furthermorethis chaosmay explain very nicely a generaltrend
observedexperimentallyin the multiple photonexcitationof a largenumberof molecules,namelythat
the absorptiontendsto be fluence dependentratherthan intensity dependent.We will alsodescribea
model that includesmolecular rotations but not the intermodecoupling, and againpredict that the
moleculeundergoeschaoticmotion underthe influenceof the laser[125].

6.2. ThemodelHamiltonian

The energy-levelspacingsfor electronic,vibrational and rotational transitionsdiffer by ordersof
magnitude, and it is reasonablethereforeto assumethe separabilityof thesemotions. The Born—
Oppenheimerapproximation[126] is just the assumptionthat electronicstructuremay be separated
from the vibrational-rotationalstructure of a molecule. Since we are interestedhere in infrared
laser—moleculeinteractions,we will ignore the electronicstructureof the molecules.

Consider first a diatomic molecule, as illustrated in fig. 6.1. The Hamiltonian describing the
interactionof sucha moleculewith an applied (infrared) field is simply

H= ~la~a~ +Bo(J~+J~)+flêzCz~(a~+a~) (6.2.1)

wherethe first andsecondtermsrepresentthe vibrationalandrotationalenergies,respectively,andthe
last term describesthe couplingof the vibration to the applied field. The operatorsa~anda~arethe
annihilationandcreationoperatorsfor the vibrationalmotion alongthe z axis of the molecule;zl is the
frequencydetuningbetweenthelaserandthe molecularvibration. J,, and.J~are the angularmomentum
operatorsfor the two rotationaldegreesof freedom,the constantB0 being inverselyproportionalto the
momentof inertia.11 is the Rabifrequency,andC~is thedirection cosinediadic taking the field along
the Z axisin the laboratoryframeinto the moleculardipole momentalongthe z axisin the molecular
frame; ~z is the unit vectorgiving the orientationof the appliedelectric field.

The anharmonicityof the molecularvibration may be accountedfor by addinga term —~(a~a5)
2to

the Hamiltonian (6.2.1),wherex is the “anharmonicity” constant.Thiscorrectionperturbsthe energy
of vibrationallevel n by —xn2. It maybe regardedas the rotating-waveapproximationto the standard

= (a + a~)4anharmoniccorrection.With this addition the Hamiltonian (6.2.1)applies not only to a
diatomic molecule, but also to a nondegeneratepumpedmode of a polyatomicmolecule.That is, it
containsthe essentialphysics of the laser—moleculeinteraction.

Considernow the specific example of the SF
6 molecule.The two infraredactive normal modesof

vibrationin thiscase,denotedt-’3 and ~ areseparatedby roughly300cm~.This meansthat a lasercan
interactselectivity with one specifiedmode,and sincethe z’3 modevibratesin the 10 ~imregion it has
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Fig. 6.1. A diatomic moleculehavingrotationaldegreesof freedomalongthex andy axes.

beenstudiedextensivelyusing the CO2 laser[127].The v3 modeis somewhatcomplicatedby the fact
that it is triply degenerate,andthis bringssomeadditionalfeaturesinto the Hamiltonian.Furthermore,
we should include non-laser-coupled“background” modes in the Hamiltonian, becausethey are
coupledto the laser-pumpedi’3 modeand can exchangeenergywith it. For our genericHamiltonian
describinginfraredabsorptionin a polyatomicmoleculewe thereforewrite

H= HPM+HBM+HIC+HR+HPMF (6.2.2)

where

HPM = 4iat a— X(at . a)
2 + G(a~xa)2+ T ~ (a~a,)2 (6.2.3a)

11DM = ~ (
4i + ~m)b~m~bm+ EXmm(b

tm~bm)2 (6.2.3b)

Htc~/3m(abm+b~na)+~ ~ ~ (6.2.3c)
m n m~n

H~= B
0J

2 (6.2.3d)

HPMF=f2éC(at+a) (6.2.3e)
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wherewe haveindicated explicitly the vectorcharacterof the various operators.HPM is the Hamil-
tonian operatorfor the pump mode; it containsterms representingits anharmoniccharacter(x), its
vibrational angularmomentum(G), and its vibrational tensorsplitting (T). The latter two terms are
attributableto the degeneracyof the pump mode, andfor this reasonwerenot presentin (6.2.1). The
anharmonicityterm, anotherconsiderationin a realisticmodel,reflectsthe presenceof a continuumat
high excitation energy (i.e., a real molecule can be dissociated!).The Hamiltonian HBM for the
backgroundmodesis similar to HPM, but we neglectthe G and T termsfor simplicity. H1~represents
theintramolecularmodecoupling amongall the modes;the first termis the couplingbetweenthe pump
modeand the backgroundmodes,the secondis a mixing among the backgroundmodes.HR is the
(rigid-rotator)Hamiltonianfor molecularrotation,andfinally HPMF is thelaser-pump-modeinteraction.
The laserfield is treatedas an externallyprescribed,classicalfield.

In the following sectionswe will considermodel problemsbasedon simplifications of (6.2.2).The
mostsignificant aspectof thesemodels,which we believearefairly realistic, is that chaoticbehavioris
predicted. In other words, we believe that chaosis fundamentalto the processof infrared multiple-
photonabsorption.Furthermorethe appearanceof chaoshasinterestingexperimentalconsequences,as
we will see.

6.3. A basic modelof multiplephotonexcitation

We will now describea simplified model basedon the Hamiltonian (6.2.2).First of all let usneglect
entirely the rotationof the molecule.We will take G= T = 0 andassumethat the backgroundmodes
are perfectly harmonic, so that Xmm = 0 in (6,2.3b). We furthermore ignore any coupling among
backgroundmodes,settingXrnn = 0 in (6.2.3c).Thuswe replace(6.2.2) by

H = HPM + HBM + H1~+ HPMF (6.3.1)

where

HPM = L1a~a— X(ata)
2 (6.3.2a)

HBM = ~ (LI + Em)btmbm (6.3.2b)

H
1~ ~13m(a

tbm + b~,,a) (6.3.2c)

HPMF = ~
7(c

ta + a~c) (6.3.2d)

wherec, ct arethe annihilationandcreationoperatorsfor the quantizedlaserfield mode.As indicated
earlier,we will treatthe appliedfield classicallyin the end. It is neverthelessusefulto introducec and
ct at this stagebecausewe can easily identify the constantof the motion

ata+ ~ b~,bm+ ctc= total excitationnumber (6.3.3)
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from the Heisenbergequations.This constantof the motion is a consequenceof the rotating-wave
approximation.

Without much lossof generalitywe will assumethecoupling parameters/3,,, are all the same:/3,,, = /3.
As in radiationlesstransition theory it is also convenientto assumethat the backgroundoscillator
frequenciesareuniformly distributed[128]:

Em =LI0+mp~ (6.3.4)

whereLI0 is the separationbetweenthe bandoriginsof the nearestbackgroundoscillatorandthe pump
mode, andp is the density of backgroundstates.Such a “quasi-continuum”(QC) model in fact has
rootsin the Weisskopf—Wignertheory of radiativedecay[129].RelatedQC modelshaverecentlybeen
consideredin the context of laser—moleculeinteractionsby Eberly et al. [130,131] andGalbraithet al.
[132].The presentmodel permits considerableanalytical simplification via the Poissonsummation
formula [133].

In SF6 the nearestbackgroundmodeto the pump mode ~3is v2+ ~6, andthe anharmonicityof this
mode is less than that of v3. This provides some justification for the simplification of treating the
backgroundas harmonic.The simplification of an infinite numberof backgroundoscillatorsis alsomore
reasonablethan might at first be supposed.The work of Bixon andJortner[1281,for instance,shows
that the strength of the coupling of the pump modewith the background,when diagonalizationis
performed,is a Lorentzian function; for small couplingconstant/3, which we anticipatefor a real
molecule, the numberof backgroundoscillatorscan then besafely extendedto infinity, becausebeyond
acertainnumberthereis essentiallyno contribution.This point is alsodiscussedfrom a different point
of view in ref. [133].

A final approximation,which makesthe model moretractable,is to treatnot only the field but the
entire dynamics classically. Thus, for instance, a, at_~a,a*, ordinary c-numbers.Multiple photon
excitation typically involves the absorption,in many molecules,of —30 photons.We feel that quantum
effects correlateto just a few photonsabsorbed,whereaswe are interestedin grossfeaturesof the
absorptionprocess.Other workers havealso arguedin favor of classicaldynamicsin the theory of
infrared multiple photonabsorption[134—136].

6.4. A discretemapping

Theequationsof motion obtainedfrom the Hamiltonian (6.3.1)are

a = —izla + 2ixajaj
2— ill — if3 ~ bm (6.4.la)

~mi(LI1o+mp1)bmi13a (6.4.lb)

.-iQ
c—~a. (6.4.lc)

We assumethat at t = 0 therearen photonsin the laserfield. The formalsolution of (6.4.lc) is
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c(t) = — ~7 J dt’ a(t’) (6.4.2)

and therefore

c(t)12 n + 211 J dt’ Im[a(t’)] (6.4.3)

for n ~‘ 1. In otherwords,

n — c(t)12= —211J dt’ Im[a(t’)] (6.4.4)

representsthe numberof “photons” absorbedfrom the appliedfield.
From(6.4.lb) we havethe formal solution

bm(t)= —i/3 J dt’ a(t’) exp{-i(LI + ~o + mp’) (t— t’)} (6.4.5)

whereall the backgroundmodesareassumedto bein their ground statesat the initial time t = 0. Now
in (6.4.la)we needthe sum

~ 13,,,(t) = —i/3 J dt’ a(t’) exp{—i(LI + zio)(t — t’)} ~ exp{—imp1(t— t’)}. (6.4.6)

The assumptionthat the backgroundmodesare uniformly spacedaboveand below the pump mode
frequencyallows usto invokethe Poissonsumrule:

m~c,,exp{—imp~(t— t’)} = 2~m~ooô(t — t’ — 2irmp). (6.4.7)

Thus

~ bm(t)= _2iri$p[~a(t)+~ gm~t_ml-R) O(t— mTR)] (6.4.8)
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where 0 is the unit stepfunction and

2irp (6.4.9a)

/3 = exp{—i(LI + Jo)TR}. (6.4.9b)

Using thisresult in (6.4.la),we obtain a time-delaydifferentialequationfor a:

ã(t) = -iLI a(t) - ~ a(t) + 2i~a(t) a(t)12- ill - y ~ /3~a(t - mrg) O(t- mrR) (6.4.10)
2 m=1

where

y~2~r/32p (6.4.11)

is simply the decayrate,out of thepump mode,that would be predictedby Fermi’s Golden Rule.This
exponentialdecayrateappliesin thelimit TR —* ~, i.e., when the backgroundlevel spacinggoesto zero
andwe havethe limiting caseof a truecontinuum.We seethat ‘7~Rplays therole of a “recurrencetime”,
or the rephasingtime of the backgroundmodes.

If we set the anharmonicityx to zeroin (6.4.10),the time-delayequationbecomeslinear andhasan
exact analytical solution [93]. In this casethe systemis not chaotic.Similarly if TR~~~ then (6.4.10)
reducesto

à(t) = —iLI a(t)— a(t)+ 2i~a(t) a(t)12— ill (6.4.12)

which is essentiallyof the form of the RWA Duffing system(cf. (2.5.4)) and likewise doesnot exhibit
any chaoticbehavior.In otherwords,chaoscan only occurin our model if (1) thereis an anharmonicity

x � 0, and(2) the backgroundmodefrequenciesdo not form a continuum.We shall seethat when (1)
and (2) aresatisfiedthe system(6.4.10)describingthe pumpedmode dynamicsis indeedchaotic.

For t < r~eq. (6.4.10)reducesto (6.4.12).The only effect of thebackgroundfor suchtimesis to cause
exponentialdecayfrom the pump modeat the Golden Rule rate. At t = rg, however,the background
“signals” back to the pump mode.This feedbackis evident in theequation

à(t) = —iLI a(t)— a(t)+ 2i,~’a(t)12a(t)—ill — y/3a(t—TR) (Tg < t < 2rR). (6.4.13)

In generalthe behaviorof a(t) on the interval mr~< t < (m + 1)rR is affectedby its behavioron all
earlier intervals. The phase/3 determineshow the relative location of the band origins affects the
absorptionandemissionof photonsby the molecule.

Equation(6.4.10)hassome.usefulscaling relations.Let usdefine

ã=~a (6.4.14a)
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112
(6.4.14b)

y

T = yt (6.4.14c)

TR YTR. (6.4.14d)

Then we may write (6.4.10) in the form

~ (6.4.15)

On resonance(LI = 0), this equationdependson only two variables,a and /3. For simplicity we will
henceforthrestrictour discussionto this caseof exactresonance.

The rescaling(6.4.14)not only simplifiesthe parameterspace,but alsoelucidatessomeof thephysics.
If the relaxationconstanty is very large,for instance,andthe lasercannotpump the moleculevery far
up the vibrational ladder, then the scaled systemwill havea small anharmonicitya. But if the laser
poweris large,thenthe moleculecan bepumpedfairly far up the ladder,andthescaledmodelwill have
an effectivelylargeanharmonicity.Both of thesephysicallyintuitive effectsdemonstratethe equivalence
of many differentmoleculeswith respectto relaxation,laserpower, andanharmonicity.

If the relaxation is very fast (yTR~ 1), then on each interval (mTR< T< (m + 1) TR) a quickly
approachesa “steadystate” for that interval [133].Then we can set a 0, and (6.4.15)reducesto an
equationfor the steadystateon interval N as a function of the steadystatesof all earlier intervals:

{~-2ia ~N~
2} aN =

= —i - f3N-rna (6.4.16)

where~N denotesthe steady-stateamplitude on the interval NT~< T<(N+ l)TR. Equation(6.4.16)
implies that

{~—2ia IaN$} ~N —i(1 — /3)—/~{~+2ia ~N_l~2}~N_l (6.4.17)

wherea
0 satisfies

~— 2ia !a01
2} ao = —i. (6.4.18)

If we define

CN = {~—2ia ãNl } ~N (6.4.19a)

dN = {~+2ia ãNj2} L2N (6.4.19b)
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then

IaN! = f(IcNI2) = f(IdNI2) =—fN (6.4.20)

since !CNI = IdNI. Heref is thecubic function for IãNI2 implied by (6.4.19), andhas only onereal root:

4a2IãN6+ ~I~NI2~ICNI2 = 0. (6.4.21)

Using the definition off, we can rewrite (6.4.17)as

(6.4.22)

~— 2iaf~

Thefactor in squarebracketsis simply aphasefactor:

exp(i~N) (~+ 2iaf.~)/(~— 2iafN) (6.4.23)

andso

CN = —i(1—/3)—/3exp(itiN_l)cN_l (6.4.24)

wherec
0 = —i.

Under the assumptionof fast relaxation to a steady stateon each interval, therefore,we have
reduced(6.4.15)to the discretemapping(6.4.24).In this mappingthe solutionfor CN_1 is neededto get
exp(iIN~l).If the systemis harmonic(a= 0) thenfrom (6.4.23)we haveexp(i~PN)= 1, giving us simply

CN = —i(1—/3)—/3cN..1 (6.4.25)

with solution

_2(_~)~1+1_~

CN = -i { 1+~ (6.4.26)

Thusthereis an N-cycle (i.e., cN= co) when(~f3)’~1. If /3 = —1 we apply l’Hospital’s rule to (6.4.26)to
obtain

CN —ij2(N+ 1)—i] (6.4.27)

which of courseis not cyclical. Although the harmoniccasehasa fairly rich structure,the mappingin
thiscasedoesnot admit chaos.In the following sectionwe will alsoconsiderthe discretemappingin the
anharmoniccase.In either casethe discretemappingis obtainedonly under the assumptionthat a
steadystateis reachedon eachinterval; this ignoresthe influenceon a given interval of the dynamics
from previousintervals. Comparisonwith the resultsfor the system (6.4.15) without this assumption
shows,aswe shall see,that such “memory” effectsarevery important,
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6.5. Chaoticbehaviorin multiplephotonexcitation

Beforeconsideringsomeof the time dynamicslet usconsidersomeparametervaluescharacteristic
of real molecules. Laser intensities of 1—16MW/cm2 are common in multiple photon excitation
experiments;this translatesinto 0.1� 11 � 0.4cm’ for the Rabi frequencyin wavenumbers.We would
expectdensitiesof backgroundstatesin the 1—4/cm1 regimeandpossiblyhigher.Couplingparameters
in the range0.1—0.4cm1,comparableto the Rabifrequency,arealsoexpected.Theseparametervalues
give y -= 0.8—1cm~(y1 =- 5 psec) and ‘rR 30—130psec.A reasonablevalueof x would be -=2 cm~,
which gives a �0.5for the anharmonicityof the scaledmodel.

In the resonantcase/3 = exp(—iziOrR) = exp(—i4), where

4~—LIOTR—21T(JOp) (6.5.1)

and p, we recall, is the inverse of the backgroundlevel spacing. Thus, if z1
0 is halfway between

backgroundlevels,LI0p = ~andç~= ii’. If LI0 is on a backgroundlevel, LI0p = 0 and ~ = 0. We will focus
our attentionon the resonantcase.

By numericallyintegrating(6.4.15),we can computethe averagenumberof photonsabsorbedby the
pump mode andalso, by (6.4.4), the total numberof photonsabsorbedfrom the applied field by the
pump andbackgroundmodes.In fig. 6.2we plot the averagenumberof photonsabsorbedby the pump
modeovera time 5 TRfor the harmoniccasea = 0 with 0 = ir/2, /3 = 0.2cm

1,p = 4cm, 12 = 0.3cm’
(9 MW/cm2 in SF

6). (In this figure andthosewhich follow, it is important to note that the numberof
“photons” plotted is actually the scalednumber a!

2 = (y/Q)2!a!2. For the chosenvalues of y and 11,
therefore,the actualpredictedphotonnumbersarean orderof magnitudelessthanthe scalednumber
that is plotted.)On the first interval we observethe expectedexponentialrelaxationto the steady-state
valueindicatedby a smallbox at the end of the interval. From (6.4.26)we expectthis choiceof 4’ to
give a 4-cycle; note, however,that the approach to steadystate is different on the first and fourth
intervals.In fig. 6.3 we plot the total numberof photonsabsorbed,which is observedto give a linear

PHOTONS ABSORBED
I I

20 - ____ -

10 - -

01 -

Fig. 6.2. Averagenumberof photonsabsorbedby a harmonicpump mode,plotted for 5 TR. A box at theendof each interval gives the steady-
statesolutionpredictedby thediscretemapping. Parametersare a = 4 = 0, p = 4cm,$ = 0.2 cm_t, 12 = 0.3 cm_t, çb = rr/2.
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TOTAL PHOTONS ABSORBED
I I~ I

200 - -

100 -

0- -

-0 2 4

Fig. 6.3. Total number of photons absorbed for theparametersof fig. 6.2.

variation on eachinterval. Again the predictedsteady-statenumberof photonsabsorbedis indicatedby
a box at the end of each interval. We see that the steady-statepredictionbecomesinapplicableafter a
few intervals.The reasonfor this breakdownin the steady-statepredictionis simply the carryoverin the
full dynamical solution from one interval into the next, as mentionedat the end of the preceding
section.Physically, the pumpedmode may reacha steady stateon each interval and stop absorbing
photons,but the backgroundmodesof the moleculecontinueto takeup energyfrom the laser,using
the pump mode as an intermediary.Whetherthe molecule absorbsor emitsphotonsdependson the
interval and the valueof 4’. The importanceof 4’ maybe seenby comparingfig. 6.2with figs. 6.4 and
6.5, which are for 4’ = 0 and 4’ = i~, respectively.For 4’ = ir (fig. 6.5), for instance,we observethe
absorptionproportionalto N2, for large N, as predictedby (6.4.27).

PHOTONS ABSORBED
I I I~

:‘rr[p/

Fig. 6.4. Sameasfig. 6.2 except4~= 0.
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PHOTONS ABSORBED

Fig. 6.5. Sameas fig. 6.2 except4 = sr.

Of coursethe situationof real interestcorrespondsto an anharmonicitya� 0. For fig. 6.6 all the
parametersare identical to those in fig. 6.2, except that we havenow introduced an anharmonicity
a = 0.5. We note that, althoughthe anharmonicityapparentlyaddsmoreringing to the dynamics,the
predictedsteady-statevalues indicated by the boxes are still accurate.In fig. 6.7 we plot the total
(scaled)numberof photonsabsorbedfor the samecase,but with the time extendedto 150 TR. The
steady-statepredictions basedon the discrete mapping of the precedingsection are observed to be
completelyinvalid for the long-term dynamics.The time dynamicsappearsto go chaotic,and showsa
linear absorptionrate with some“noise” superimposed.

I PHOTONS ABSORBED VP

1.5 - : .‘ -

_____ ... ____ .~:

10~(~r i _
0.5 ~:t”’1 -

-0-f I -

-0 2 4

Fig. 6.6. Sameasfig. 6.2excepta = 0.5.
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TOTAL PHOTONSABSORBED
180-~ -
120 - -

60- -

0- -

-0 40 80 120

Fig. 6.7. Total numberof photonsabsorbedfor thesameparametervalues asin fig. 6.2, extendingthe integration to 150 TR.

To see explicitly that the dynamicsis chaotic,we havecomputedthe powerspectrum(fig. 6.8) and
the maximal Lyapunovexponent.For different values of 4’ the systemis still found to be chaotic, but
the slopeof the approximatelylinear absorptioncurve is dependenton the value of 4’. We havenot
founda thresholdfor the onsetof chaos,which we now believeis a characteristicmodeof behavior in
multiple-photonabsorptionexperiments.The linear absorption implies a fluence-dependentabsorption.
Furthermorethis featureis a unimoleculareffect.

FF1 SPECTRUM(LOG PLOT)

_
—0.00 0.10 0.20

Fig. 6.8. Power spectrum corresponding to fig. 6.7.
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6.6. Discussion of the role of chaos

We can summarizeour investigationsof multiple photon absorption basedon the Hamiltonian
(6 3 2), with the QC assumption(6 3 4), as follows For realisticmolecularanddriving field parameters,
the time evolution of the drlven molecularvibrations is chaotic As a consequence,the absorptionof
energy from the laser is approximatelyproportionalto the time. This may be understoodroughly as
follows.

From(6.4.5)we have

~ bm (t)!2 = y J dt’ J dt” a*(tI) a(t”) ~ ~ ô(t” - t’ — mrg) (6.6.1)

wherewe haveagain used(6.4.7). The total excitationnumberin the backgroundmodesmaythusbe
written in the form

m~ bm(t))
2= yJ dt’ a*(tI) a(t’)+ 2 Re ~ ~m O(t— mrg) J dt’ a*(t~)a(t’ + rnTR). (6.6.2)

The secondterm involves the time-averagedcorrelationfunction (a*(t) a(t+ r))~.As is the casewith the
logistic map or the Lorenz model, we find that correlationsdecayfrom their r = 0 values (but not
necessarilyto zero). The major contribution is then from the first term, which describes,in a simple
rate-equationfashion, the growth of the background-modeexcitation at the expenseof the pump mode.
The growth rateis just ya*a, wherey is the GoldenRule rateand a*a is the numberof quantain the
pump mode. It is this rate that gives rise to an approximatelylinear increasewith time of the total
background-modeexcitationnumber(6.6.2). This interpretationhasbeencheckedquantitatively. The
chaos,which causesthecorrelationsin the pumped-modeamplitudeto decay,is in this way responsible
for the incoherentenergydepositioninto the molecule.

Note that the incoherentabsorption is found without recourseto coherence-destroyingdamping
terms in the model. In other words, the incoherent,predominantlyfluence-dependentabsorptionis a
collisionlesseffect, a characteristicof an individual molecule.

Onemight expectit to be difficult to dissociatea moleculewith radiation of onefrequency,for the
anharmonicitydestroysthe equallevel spacingof the harmonicoscillator, andthe systemis effectively
off-resonantafter the absorptionof a few photons.It thereforecame as a surprisewhen SiF

4, for
instance,was found to dissociaterathereasily[137].This led to considerableinterestin the possibilityof
bond-selectivephotochemistryandlaserisotopeseparation.It graduallybecameclear;however,that for
most moleculesthe intramolecularrelaxationof the pump modeinto the backgroundmodesredistri-
butesthe absorbedenergytoo rapidly to achievethesegoalsefficiently. In fact it becamecustomaryto
assumea statistical energy distribution in the backgroundmodes. This background(the quasi-
continuum) was modeledby rate equations,which naturally gave a strongly fluence-dependentab-
sorption,consistentwith experiment.

The dependenceof multiple photonabsorptionon pulseenergyratherthanintensityhasbeenfound
for about 50 polyatomicmoleculesby Lyman et al. [138,139]. Sincean averageover homogeneousand
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inhomogeneouslinewidthscould lead to an explanationof this lack of laser-moleculecoherence,it has
usually been assumedthat hotbandand rotational averagingare responsiblefor this effect. In the
following section we considera model including molecularrotation, and show that rotational effects
cannotbe treatedsimply as a sort of inhomogeneousbroadening.

6.7. Chaos in a vibration-rotation model

The Hamiltonian (6.3.1)doesnot includemolecularrotation.We will now includerotations,but for
simplicity (andin order to isolatesomeof the effects)we will neglectanharmonicityandintramolecular
coupling. We consider a triply-degenerateharmonicoscillator coupled to an applied laser field and
allowedto rotate.From (6.2.2)we can identify the Hamiltonianfor this systemas [140]

H LIat. a + B0J
2+ he~C’(a + at). (6.7.1)

The (classical)equationsof motion obtainedfrom this Hamiltonianare

a = —iLIa — iIIP (6.7.2a)

P = —2B
0(Jx P) (6.7.2b)

f h2PX(a+a~) (6.7.2c)

wherewe havedefined

p ~ (6.7.2d)

We recall from section6.2 that C is the laserpolarizationvector, the componentsof which arereferred
to the lab frame; a anda* for the infrared-activemode of the moleculehavecomponentsreferredto
body-fixedaxes;and is the 3x 3 orthogonalmatrix relating the lab andbody frames.Physically,eq.
(6.7.2b) describesa precessionof the body-fixedcomponentsof the laserpolarization vector (i.e.,
C . C) aboutthe total angularmomentumvector J. In what follows we assumethe initial conditions

a(0)=(0,0,0) (6.7.3a)

J(0)=(0,0,J0) (6.7.3b)

P(0) (1/V2, 0, 1/\/2). (6.7.3c)

Let us note first that, were J takento be a constantof the motion by deleting (6.7.2c) from the set

(6.7.2), thenfrom (6.7.2a)and(6.7.2b),settingJ = ~ we calculate

P(t) = (cos2B0J0t,sin2B0J0t,1). (6.7.4)

Usingthis result in (6.7.2a),we obtain
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a!2=
12211—cos(4+2B0J0)t~1—cos(zl—2B0J0)t~1—cosLIq (675)I 2(LI + 2B0J0)

2 2(LI — 2B
0J0)

2 LI2 J~ .

In ourcalculationswehaveset B
0 = 0.1cm

t, a characteristicvaluefor moleculeswith largemomentsof
inertia (e.g., SF

6), 1? = 1 cm’ andLI = 0.5cmt. The vibrationalenergygiven by (6.7.5) is muchgreater
thanthe rotationalenergy.The resonancesat LI = ±2B0J0andLI = 0 will be recognizedas the P, Qand
R branchesof the spectrum[141].

In fig. 6.9we plot a!
2, given by (6.7.5) with J

0 = 5, as a function of t. For our choiceof parameters,
LI ±2B0J0= 1.5, —0.5cm

t, respectively,with LI = 0.5cm1.Figure 6.10 is a plot of P~.vs. Pb,, showing
the simpleprecessionof P aboutJ (in the z direction)in this caseJ = constant.

Let us now considerthe full set of equations(6.7.2),with J no longer a constantof the motion but
satisfying (6.7.2c). In this casewe obviously havea nonlinearset of equations.Figures 6.11 and 6.12
show a!2 and P~vs. P~,assumingJ

0 = 5 for the magnitudeof the initial angularmomentum(eq.
(6.7.3b)). Figure 6.11 showsan erratic energydepositionin the pump mode, in markedcontrastto the
case shown in fig. 6.9. Figure 6.12 shows the erratic motion of the polarization vector, which is
attemptingto precessabouta movingJ vector. It is evidentthatJ hereis not a constantof the motion.
The power spectracomputed for a!

2 and P~,P~strongly suggestthat the dynamicsof the pumped
vibration-rotation model is chaotic. That the motion is indeed chaotic has been confirmed by the
convergenceof the maximalLyapunov exponentto a positivevalue.

The chaos is associatedwith nonconservationof the molecular angular momentum.We have
J=J

0+L, where[142]

L = i(a X a*) (6.7.6)

10 I I

8- -

C

I-a,
Cw

4- -

-0 I -

-0.0 0,4 0.8

Time(ris)

Fig.6.9. Energy in pumpedmodein thevibration-rotationmodel with J held constant,4 = 0.5 cm~,12 = 1 cm’, B0 = 0.1 cm’ andJ5 = 5.
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I I I

0.4 - -

a-

—0.2-

—0.8 -

—0.8 —0.2 0.4
P2

Fig. 6.10. P~vs. P~for theparametersof fig. 6.9.

flP~ ~ A. -

TIME (ns)

Fig. 6.11. Sameas fig. 6.9 exceptJ is not held constant.

is the vibrational angularmomentum.Since U2 ~ aj2, a largevalue of a!2 resultsin a valueof L large
comparedwith J

0, and a destabilizationof the motion of P. For J0 ~‘ L, on the other hand, thereis
basically a simple precessionof P aboutJ: the dynamicsaregyroscopicallystabilized.In this casethe
motion is not chaotic. In otherwords, the chaosis dominantwhen the photonabsorption(!a!

2) exceeds
the t = 0 angularmomentumJ

0, i.e., understrong driving conditions.Similar conclusionsarededuced
from the considerationof parallel and perpendicularbands of symmetric-top and asymmetric-top
moleculesof nondegenerateand doubly degenerateinfrared-activemodes.Thesestudiesshow that
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-

~. :~
10’

—0.0 1.0

P2

Fig. 6.12. Sameas fig. 6.10 exceptJ is not held constant.

molecular rotationscannotbe treatedcavalierly as simple inhomogeneousbroadening,becausethe
molecule—fieldinteractionstrongly couplesthe rotationalandvibrationalmotion [140].

6.8. Discussion

We have found chaos in a quite reasonablemodel of multiple-photon infrared absorption by
polyatomic molecules.Both the vibrational anharmonicityand the coupling of the pumpedmode to
infrared-inactivemodesare essentialfor chaos; the latter effect has been treatedusing the quasi-
continuummodel employedearlierin radiationlesstransitiontheory.

The appearanceof chaosexplainsseveralfeaturesof multiple-photoninfrared absorption.First, we
havefound that the energyin the molecule increases,approximatelylinearly, with time. This flow of
energyfrom the laserto the molecule doesnot require any collisions. Indeedwe havenot put any
dampingor de-phasingprocessesinto the model. The chaosleadsto a practically irreversible flow of
energyfrom the pumpedmode to the backgroundmodes,which thusacteffectively as a spongefor the
laserenergy.Thisoccursin spiteof thefact that thedensityof backgroundmodesmay not be sufficient
to justify a priori the assumptionof irreversibledecay.

The energy deposited into the molecule is found to be (approximately) fluence-dependent,in
agreementwith generaltrendsfound experimentally.We can thus understandsomeimportantaspects
of multiple-photonexcitation of large polyatomic moleculesthat are found experimentallybut have
hitherto not beensatisfactorilyexplained:(1) The moleculesreadily absorbtensof photonswithout any
bottleneckingarisingfrom their anharmonicity;(2) the processis strongly fluence dependent,and(3) it
doesnot requiremolecularcollisions.According to the presenttheory, thesefeaturesshouldhold also
in low-temperatureexperiments,whererotationaldegreesof freedomare “frozen out”. The molecular
rotation,however,can itself give rise to chaoticbehavior,as we sawin the precedingsection.

We haverecentlylearnedthat chaoticdynamicshasalso beendiscussedby someRussianauthorsin
connectionwith multiple-photonexcitation and dissociation.In particular,Belobrov et al. [143] have
found in a ratherdifferent modelexhibitingchaosthat “stochasticexcitation” of high vibrationalstates
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can be realized. Some time ago Zaslavskii and Chirikov [144] noted that the energyof a driven,
undampedpendulum can increase on averagewith time when its motion is chaotic. These results
suggestthat our conclusionsabout the role of chaos in multiple-photon absorption may be valid
independentlyof the detailsof a specific model.

Such a “diffusive” excitationprocessassociatedwith chaoticdynamicshasalso beenproposedto
explain the microwave excitationand ionization of Rydbergatoms observedby Bayfield and Koch.
[145].Classicalmodelsput forth by Deloneet al. [146],Leopold and Percival [147]andMeersonet al.
[148]seemto beconsistentwith the experimentalresults.LeopoldandPercival [147],for instance,work
with theclassicalHamiltonian

H=~P2—1/r+zEcoswt (6.8.1)

and choose initial conditions by a Monte Carlo method (classical microcanonical ensemble) to
incorporatethe degenerate(1, m) statesfor a given principal quantumnumbern. Resultsin excellent
agreementwith experiment[145]wereobtained,but of coursealternativeexplanationscannotbe ruled
out [146].It may be worth noting that in this caseof atomic diffusive excitation thereis no obvious
resonancesuch as occursin our molecularvibration model,wherethe appliedfield is nearly resonant
with the approximatelyharmonicvibrationalladder.

This diffusive excitation(andionization)processproposedfor Rydbergatoms in microwavefields is
based,as in our modelof multiple-photonexcitation(and dissociation)for moleculesin infrared fields,
on the classicalapproximation.And thereforethe old question of quantumchaosagainarises: what
happensquantummechanicallywhen the correspondingclassicalsystemis chaotic?

Classicalchaosis by nowfairly well understood,andcan beidentified unambiguously(i.e., a positive
Lyapunov exponent); this seemsespecially true in light of the universalroutesto chaosknown for
dissipativesystems.Part of the difficulty with quantum chaosis semantic,as thereseemsto be no
consensusas to how oneshould definequantumchaos.For instance,if oneinsists on defining chaosin
terms of a nondiscretespectrum, then the discrete energy spectrum in our model of infrared
multiple-photonexcitation [149]implies that therecan be no chaotic(quantum)behavior! [150].

As mentionedin section 3.7, thereare quantummanifestationsof classical chaos[56—62].In the
absenceof anyconsensuson adefinition of quantumchaos,however,it seemsfruitlessat this point to
arguewhether our model of infrared multiple-photonabsorptiondoes or does not admit quantum
chaos.Whatwe suggestwill surviveaquantumtreatmentof our model is the strongfluencedependence
of the processand the effectively irreversible influenceof the quasi-continuumon the pumpedmode.
Work is now in progressto investigatequantumcorrectionsto the classicalmodel.
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Notesaddedin proof

The numberof papersdealingwith chaosin quantumopticsandelectronicshasincreaseddramatically
sincewe beganthe preparationof this introductoryreview.We call the reader’sattentionto the feature
issueof J. Opt. Soc. Am. B (January1985)devotedto instabilitiesandchaosin active opticalmedia.An
internationalmeetingon InstabilitiesandDynamicsof LasersandNonlinearOpticalSystemswasheldat
the University of Rochester,18—21 June1985.Tutorial papersfor the conferencewill be publishedby
CambridgeUniversity Press.We also recommendthe book Chaos, by Hao Bai-Lin (World Scientific
PublishingCo., 1984), which consistsof an introduction to chaosin both conservativeand dissipative
systems,a collection of reprintedpapers,andan extensivelist of referencesto studiesof chaosin various
fields.

An interestingdevelopmentin connectionwith the stochasticenergygrowth of driven systemsis the
work of S. Fishman,D.R.GrempelandR.E.Prange,Phys.Rev.Lett. 49(1982)509;Phys.Rev. A29 (1984)
1639.Arguing by analogywith Andersonlocalization, theseauthorsshow that quantumeffectstend to
suppressthe diffusion in phasespacepredictedclassicallyfor certainchaoticsystems.This quantum
suppressionis observed,for instance,in thekicked-rotatormodelof G.Casati,B.V. Chirikov, F.M. Izrailev
andJ. Ford. (SeeStochasticBehaviorin ClassicalandQuantumHamiltonianSystems,eds. G. Casatiand
J. Ford,SpringerLecture Notesin Physics93 (1979).)The possibleimplicationsof chaosfor the classical
principle of determinism, the ergodic principle, and quantum mechanicshave been discussedfor
nonspecialistsby P.W. Milonni in the Proceedingsof the Workshopon the Foundationsof Physics
(Universityof PuertoRico, 11—16March 1985).


