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Abstract:

We describe how chaotic dynamics may appear in some fundamental as well as practical problems of quantum optics. This essay is intended for
researchers in the general areas of quantum optics and laser physics, especially those unfamiliar with the basic ideas and implications of “chaos”.
Our aim is to describe what chaos is, how it may be identified, and why it may be important. We suggest that quantum optics offers an attractive
arena for the study of chaotic behavior. To support this suggestion we consider several examples involving Maxwell-Bloch equations, lasers,
nonlinear optics, and infrared laser-molecule interactions.

1. Introduction

A very active area of research in physics these days comes under the general heading of “chaos”.
What this rubric is meant to imply is a more or less random type of behavior in a system described by
completely deterministic equations of motion (a dynamical system). From a practical standpoint the
study of chaotic dynamics reflects in part the influence of computers on theoretical physics, for chaotic
systems are ‘“‘nonintegrable”, and much of the work in the field involves numerical “experiments”. In
the grander scheme of things, chaotic dynamics may herald a ‘“‘new paradigm, a turning point in
science” [1].

A glance at the table of contents reveals that this review focuses on a modest collection of examples
of chaotic behavior. Specifically, we consider examples in quantum optics and quantum electronics. We
believe that researchers in these fields can benefit from some appreciation of what “‘chaos” is, and this
review is written with their needs in mind. It is only peripherally that we discuss various implications of
chaotic dynamics in a more general context, in order to provide some indication of why this field is
attracting so much general interest among physicists.

Lasers have in several instances been used to test general and fundamental ideas in physics,
particularly in statistical mechanics. They may play an equally valuable role in chaotic dynamics, and
indeed some observations of chaotic behavior in lasers have recently been reported (section 4).
Observations of chaotic behavior have also been made in optically bistable devices (section 5). We
emphasize throughout this review that chaos is not an exotic mathematical curiosity, but that it appears
in some quite fundamental problems in laser physics and quantum optics.

A general overview of chaos is given in the following section, and the ideas are illustrated with
several examples. In section 3 we consider the model of a single-mode field interacting with a collection
of two-level atoms, and show that this apparently “simple” model can exhibit chaotic dynamics. Chaos
in lasers and nonlinear optics is discussed in sections 4 and 5, respectively, where we describe some
results that have been reported by various experimenters. In section 6 we discuss the interesting
possibility that chaos, rather than “order”, is a prevailing feature of multiple-photon laser-molecule
interactions.

We should emphasize at the outset that the literature on chaos is expanding so rapidly that no review
at this time is likely to be “complete”. Furthermore our own interests are in the general area of
quantum optics, and so we apologize in advance to the many authors, either in other fields or on the
more mathematical side of chaos, whose work we have not cited.

2. Overview of chaotic dynamics
2.1. Introduction

We will be concerned mainly with chaotic evolution of dynamical systems of differential equations.
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However, to introduce some basic ideas it is simpler to begin with discrete mappings. In addition to
being easier to work with, discrete mappings can be constructed from systems of differential equations
in various ways. For instance, use is frequently made of Poincaré maps. For many purposes one might
just as well concentrate on discrete mappings rather than “‘continuous flows”. We will begin with two
celebrated examples, the logistic and Hénon mappings.

2.2. The logistic mapping

A simple model for the rate of change of some population x is based on the logistic equation,
X = Bx — Dx?, if the death rate is assumed to vary linearly with the population. Sometimes such a rate
equation is replaced by a discrete mapping, x,..; = f(x,), which is assumed to relate the populations of
successive generations. Such a discrete-time variant of the logistic equation is the logistic mapping [2-5]

Xp=4Mx,(1-x,), 0=xo, A=1 (2.2.1)

which is a noninvertible (because x,-; is not uniquely determined by x,) mapping of the interval [0, 1]
into itself. An important role is played by the parameter A; for certain values of this “knob”, the
sequence {x,} is “orderly”, for others it is chaotic.

Consider the case A = 1. Letting x, = sin® §,, we have from (2.2.1) sin® 8,,, = sin>28,, or 0, =26,
(mod 7/2). In this case, therefore, the logistic mapping reduces to

8, =29, . (2.2.2)

In this form it is easy to see that the sequence of numbers generated by the map is very sensitive to the
value of the initial seed value 8,. If 8y— 6, + &, then 6, - 6, + ¢, where

£, = 2"€0 = goe" 2P, (2.2.3)
The deviation ¢, thus grows exponentially at the rate log 2, which may be called the Lyapunov
exponent. Since the Lyapunov exponent in this case is positive, the sequence generated by the logistic
map is very sensitive to the choice of the initial seed. This very sensitive dependence on initial conditions
is a hallmark of chaos. Thus the sequence {x,} generated by the logistic map for A =1 is “chaotic”

rather than “orderly”.
When A <1 we have x,+ ¢, = f"(xo+ &), where f" is the nth iterate of £, i.e., x; = f(xo) = f(x0),

x2 = f(x1) = f(f(x0)) = f*(x0), etc. Thus
Xot &y =f(Xo)+ &0 [ (X0) = X + 80 [ (X0) (2.2.4)

or &, = &0 f"'(x0), where f"' = df"/dx. From the chain rule for derivatives it follows that
n—1
fr'(xo)=T1f'(x) (2.2.5)
i=0

and therefore
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n—1
len| = |20] [T f'(x:) = 20| €™ (2.2.6)
i=0
where
1 n—1
X =~ 2, log|f'(x). 2.2.7)
i=0
The limit*
1 n—1
x = lim y, = lim - > log|f'(x:)] (2.2.8)
n—se n—oe Il j=0

defines the Lyapunov characteristic exponent (LCE) of the map. A numerical computation for the
logistic mapping with A =1 gives y = log 2, in agreement with (2.2.3). If y >0 we have very sensitive
dependence on initial conditions. For the logistic map with A = 1, for instance, we have exponential
growth of the deviations ¢, for almost every xo, i.e., we have a chaotic sequence. Lyapunov
characteristic exponents are defined for general dynamical systems, and a positive LCE is a signature of
chaotic evolution.

It is found empirically that the limit (2.2.7) exists and is independent of x,. In the general case the
ordinary limit may not exist, and y should be defined as a limit superior (lim sup). Figure 2.1 shows the
result of the computation (2.2.8) for A = 0.95, using three different values of x,. y has been plotted as a
function of A by Huberman and Rudnick [6).

A closely related characteristic of chaotic systems is the absence of any truly periodic behavior. This
has been studied in detail for the case of the logistic map [2-5]). A brief summary is nevertheless
essential for our purposes.

The fixed points x* of the mapping x,. = f(x,) are defined by x* = f(x*). For the logistic map we
have the two fixed points, x5 =0 and xT=1-1/4A. It is important to know whether a fixed point is
stable against a small perturbation; following the same approach used above, we conclude that x* is a

' T T T ' T
11 Xo= 06 —

I /Xo= 0.7 T

LOG o (n/20)

Fig. 2.1. Computation of the Lyapunov characteristic exponent (2.2.8) for the logistic mapping.
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stable fixed point if | f'(x*)|<1, an unstable fixed point if |f'(x*)| > 1, and a “‘marginally stable” fixed
point if | f'(x*)| = 1. ’

For the logistic map, we deduce from this stability criterion that for 0 <A < the only fixed point is
x¢ =0, and it is stable. Whatever the seed value x,, we eventually settle on x§ after successive iterations
of the map; x} is therefore called an attractor of period one, or a one-cycle. For ;< A <3, x§ is unstable,
but the fixed point x} is stable. For A >3, however, both fixed points are unstable. The reader who has
not already done so may enjoy checking these properties with a programmable pocket calculator.

Just beyond A = A, =3, there appear two stable fixed points, x3 and x%, of f2 After initial
“transients”, successive iterates x, bounce to and fro between these fixed points of f?, so we now have
an attractor of period two, or a two-cycle. A period doubling, from a one-cycle for A < A, to a two-cycle
for A = Ay, has occurred by “turning the A knob”. The two fixed points of f? are stable until A is
increased to A, =(1+V6)=0.862372. .., where another period-doubling bifurcation occurs, and we
then have a four-cycle a, b, ¢, d, a, b, ¢, d,... As A is increased further we continue to see
period doublings, and the “window” of A values associated with a given n-cycle gets rapidly narrower
with increasing n. Feigenbaum [3,4], by a combination of functional and numerical analysis, has
established that the sequence {A,} of A values, at which period doublings occur, converges geometric-
ally at a rate given by

. An - An—]
lim ———— = § = 4.6692016091 . . . (2.2.9)

n—o flpt] n

Feigenbaum’s constant & is universal in the sense that (2.2.9) applies to all maps with quadratic
maxima, such as the logistic map or the map x,.; = A sin 7x,. The sequence {A,} has a limit point
A*=0.892... Beyond this value of the “knob”, the sequence {x,} appears to be a chaotic sequence
without a periodic attractor, except for certain “windows” of A values. The period has doubled ad
infinitum. Feigenbaum’s discovery stimulated a lot of interest because it uncovered a quantitative
universality in a period-doubling route to chaos.

Thus far we have referred to chaotic behavior in terms of (1) a positive LCE implying very sensitive
dependence on initial conditions, and (2) the absence of any periodicity. These two properties are
closely related. Suppose, for instance, that A is such that there does exist a stable n-cycle. Then there are n
stable fixed points x%,i=1,2,..., n, of f", so that |f*'(x*%)| <1, and

N I
x = lim —log [ T|f"(x)|
i=1

e M

A min 1
= lim —log(ﬂlf’(x,)l) : =—log (1) <0. 2.2.10)

m-—o i=1

It therefore follows also that a positive LCE implies the absence of any n-cycle. The converse need not
be true; aperiodicity does not necessarily imply very sensitive dependence on initial conditions.
Throughout this review we will refer to a dynamical system having properties (1) and (2) above as
chaotic.
We have mentioned that periodic windows appear in the chaotic regime A >A* of the logistic
mapping. When an n-cycle is found, it is possible to infer the existence (but not the stability) of other
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cycles [7-9]. Define the ordered sets {2°-3,2°-5,2°-7,...2"-3,2"-5,2'-7,,..22:3,2*.5,2*.7,...=3,
57,...6,10,14,...12,20,28,.. }and {. .., 32, 16, 8, 4, 2, 1}. Sarkovskii’s theorem [7-9] says that if a
continuous unimodal mapping f on an interval of the real line has an n-cycle, then it has an m-
cycle for every m such that n<& m in the ordering 3&5&7...6&10&€14...12&20&28...
32& 16 &£8& 4 <2 & 1. In particular, a 3-cycle implies the existence of all n-cycles, including aperiodic
sequences associated with period doubling ad infinitum. That is, “Period Three Implies Chaos” [9].

Let us return to the case A = 1. The sequence {x,} in this case is known to be dense in the interval
[0, 1], i.e., it passes arbitrarily close to any point on the interval for almost every x, [10]. The fact that
the sequence is chaotic, with very sensitive dependence on x,, means that all memory of the initial seed
is eventually lost; an effectively “random” behavior is present even though the mapping itself is
perfectly deterministic. However, we can be sure of the way the sequence of iterates is distributed over
the interval: Defining a “probability” distribution P(x) such that P(x)dx is the relative number of
terms appearing in the interval [0, 1], and noting that for large n the 6, are uniformly distributed on
[0, 7/2], we write P(x)dx = (2/m) d#é, and therefore, since x = sin* 6,

/7=

P)= Vi-2

2.2.11)

Such a probability distribution for a chaotic system would frequently be of interest in physical
applications. Unfortunately the logistic map with A =1 is a very special case of a chaotic system; in
general it is not known how to determine such probability distributions without numerical “‘experi-
ments”.

There is another universal Feigenbaum constant (denoted «) for maps with quadratic maxima [3-5].
Since we will not discuss this aspect of the logistic map, we refer the interested reader to Feigenbaum’s
papers. There one can find general conditions on f leading to a period-doubling route to chaos.

2.3. The Hénon mapping

The Hénon mapping is “A Two-Dimensional Mapping with a Strange Attractor” [11]. It has the
form

Xn+1= Yn +1- ax?l
N 23.1)

where a, b are constants, a >0 and 0< b <1. Unlike (2.2.1), the Hénon map is invertible, i.e., x,.1,
Yn+1 determine x,, y, uniquely. It has the fixed points x%, y* = bx%, where

1
xt=-{= (1= b)=[(1~ b +4a]"}. (2.32)

By proceeding in the same way as for the logistic map, it is found that the fixed point (x*, bx*) is always
unstable, whereas (x¥, bx}) is unstable if a >3 (1 - b)2

We will focus our attention on the case b = 0.3 [11]. The sequence of points {x,, y,} generated by
(2.3.1) settles onto an attractor or diverges to infinity, depending on the initial seed (xo, yo). (The set of
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all points (xo, yo) for which the sequence {x,, y,} converges onto an attractor may be called the basin of
attraction of that attractor.)

For b = 0.3, both fixed points of (2.3.1) are unstable when a > a, = 0.3675. Beyond this value of a the
situation is analogous to that for the logistic map with A > A,. At a, a two-cycle (or attractor of period
two) is born. Then at a = a, = 0.9125 this attractor becomes unstable, and a stable four-cycle is born.
Successive period-doubling bifurcations are found as a is further increased and, remarkably, the
sequence {a,} of a values at which a 2"-cycle is born converges geometrically at the universal
Feigenbaum rate (2.2.9). This is seen from the “experimental” results of table 2.1, following Derrida et
al. [12].

The Jacobian of the transformation (2.3.1) is

d +1y Yn+ - n 1
Mz , 2ax l =_p. (2.3.3)
Xy Yn) b 0

For b = 0.3 the map (2.3.1) is therefore area-contracting, i.e., the modulus of the Jacobian determinant
is less than unity. The attractors of the map therefore have zero area. With this in mind it is perhaps a
little less surprising that the (two-dimensional) Hénon map can undergo the same kind of period-
doubling sequence, governed by Feigenbaum’s 8, as the one-dimensional logistic map [12].

Because it is a two-dimensional mapping, the Hénon map has two characteristic Lyapunov
exponents. These are defined by proceeding along the same lines as for the logistic map. Let
Xo—> Xot €0, Yo Yo+ 8o. Then x; > x;+ &, and y, - y, + 8;, where for small &, &,

(2) = J (X0, o) (;‘;) (2.3.4)

and the Jacobian matrix

oflox  ofl ay) _ (2.3.5)

I y)= (aglax ag/dy

Table 2.1
Values of a at which period-doubling bifurcations occur in the
Hénon map with 5= 0.3

Period (2") [ (an - an—l)/(anﬂ _an)
2 0.3675
4 0.9125 4.844
8 1.026 4.3269
16 1.051 4.696
32 1.056536 4,636
64 1.05773083 4.7748
128 1.0579808931 4.6696
256 1.05803445215 4.6691
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After n interations the perturbations ¢,, 8, are similarly

(;) = J(n) (;‘;) (2.3.6)

where J(n) = J(X,-1, Yu-1) J (¥n-2, Yu=2)* - - (%o, ¥o). In a coordinate system in which J(n) is diagonal we
have

&) = 1A1(n) go| = |ed| exp(ny " (2.3.7)
182] = |Ax(n) 8o| = |0l exp(ny P (2.3.8)

where Ay(n), Ax(n) are the eigenvalues of J(n). The limits [13, 14]

A®? = lim [magnitude of eigenvalues of J(n)]'"" 2.3.9)

are called the Lyapunov numbers of the mapping, and
x @2 =log A©2 (2.3.10)

are the Lyapunov characteristic exponents.

Computations for the Hénon map with a =14, b=0.3 yield A®=152, A?=0.197, y¥=0.42,
x® = ~1.62. Mathematical aspects of the LCE for the Hénon map, and numerical results for a range of
a, b values, have been described by Feit [15].

The fact that one of the LCE is positive in this example means that in a certain direction the mapping
is “stretching”, i.e., there is very sensitive dependence on initial conditions. If there is stretching in
some directions and contraction (negative LCE) in others, as in this example, we have a situation called
hyperbolicity. The directions associated with the positive LCE are inside the attractor, the other
directions being contracting directions. For our purposes it is sufficient to recognize that there need only
be one stretching direction for the system to be chaotic (very sensitive dependence on initial conditions).
That is, a dynamical system may be regarded as chaotic if there is at least one positive LCE.

The largest LCE is generally much easier to compute than the full spectrum of exponents. Suppose we
introduce small perturbations &,, 8, and proceed to solve (2.3.1) and (2.3.6) simultaneously, computing
along the way the quantity

1
a(n)=—log[er+ 87]'7. (2.3.11)
n
For large n this is equivalent to
1 1
a(n)=—logle./ = x2°, 2.3.12)

since only the stretching direction survives the large-n limit. Thus lim,.. a(n) gives the largest LCE.
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The procedure based on (2.3.11) is much simpler to use than (2.3.10), as it does not require finding
eigenvalues. It may be extended to N-dimensional systems. We will see later that an analogous
approach may be used to find the largest LCE for a system of differential equations.

We will loosely refer to a chaotic attractor, having the property of hyperbolicity, as a strange
attractor. Strange attractors have a sort of “structure within structure”, or ‘“self-similarity”; that is
frequently the reason (but not the original reason) for calling them strange. Figure 2.2 shows the Hénon
(chaotic) attractor for a = 1.4, b = 0.3. The structure within structure is seen by expanding the scale,
looking in finer and finer detail at the attractor, as in fig. 2.3.

It is interesting that, because the map is area-contracting, the attracting set shown in fig. 2.2 must
have zero area. However, the dimension of the attractor is not zero or one, as it would be for an
obvious zero-area set in the plane (e.g., a point or a curve). In fact the attractor is closely akin to what
Mandelbrot calls a fractal [16]. To briefly motivate this idea, consider that a unit cube contains
N(g)= £~ cubes of side &, a unit square contains N (&) = £ squares of side ¢, and a unit line segment
contains N(e)= ¢ segments of side &; in each case the dimension of the object is d =
log N(¢)/log (1/¢). We define the fractal dimension, or (loosely) Hausdorff dimension, as

d=lim log N(e) . (2.3.13)

e—o tog (172)-
(This is only one of a variety of possible definitions of dimension. To be more precise, we might call 4 a
“capacity”.) The definition applies to an n-dimensional space as well, if we take N(¢) to be the number
of n-dimensional hypercubes of side £ needed to cover the object. A fractal may be considered to be an
object having nonintegral Hausdorff dimension. The strange attractor of figs. 2.2 and 2.3 is a fractal of

T
0.4 — - —
N
> 0.0 — ! \ —
P
A
)‘_/,' ,_;/ly’
-0.4 | - —
| L
-1.5 -0.5 0.5 1.5

Fig. 2.2. The Hénon attractor for a = 1.4, =0.3.
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Fig. 2.3. Structure within structure of the Hénon attractor, obtained by expanding the scale of fig. 2.2,
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dimension d = 1.26 [13]. (Mandelbrot [16] defines a fractal as a set having a “fractal” dimension greater
than its “topological” dimension.)
A famous example of a set with fractional Hausdorff dimension, and “‘structure within structure”, is

the Cantor set, which may be defined by the following construction: Divide the line segment [0, 1] into

thirds and remove the middle (open) third. Do the same with the remaining two segments, and continue
the process of removing middle thirds. The set obtained by continuing the process ad infinitum is the
Cantor set. It has a number of illustrative mathematical properties; for instance, it is nondenumerable
but has measure zero. Using line segments of side ¢ = (1/3)™, with N(g)= 2", it follows from (2.3.5)
that the Hausdorff dimension of the Cantor set is log 2/log 3. The Hénon strange attractor, with its
fractal dimensionality, has a transverse Cantor-like structure. (In general it is very difficult to prove that
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an attractor is strange. We use “‘strange attractor”” and “‘chaotic attractor” synonymously, and base our
discussions on numerical evidence rather than rigorous proofs.) A chaotic attractor can be simultaneously
hyperbolic and of zero-volume because it has a structure within structure, or ribbon-like aspect, that keeps
the motion bounded but allows exponential divergence of initially close trajectories.

2.4. Dynamical systems of differential equations

We now turn our attention to a different type of (deterministic) dynamical system, namely a set
of ordinary differential equations. Once again we will have periodic or aperiodic behavior, the latter
being chaotic when the system has a positive LCE. Just as the logistic and Hénon maps have become
“standard” examples of chaos in one- and two-dimensional mappings, there is a standard example of
chaos in systems of ordinary differential equations. This is the Lorenz model, which was discussed by
Lorenz in 1963 [17]. The Lorenz model has a rich variety of behaviors, and has been the subject of
many papers and at least one monograph [18]. Before discussing the Lorenz model, let us quickly
review some pertinent features of ordinary differential equations in general.

By solving for the independent variable ¢ in terms of the dependent variables and their derivatives,
we can (in principle) write any ordinary differential equation (ODE) as an autonomous one of one
higher order. (‘“‘Autonomous” means there is no explicit ¢ dependence.) Further, by letting y, =y,
y2=Y, y3=J,... we can write an autonomous ODE of order N in the form of N first-order
autonomous ODE:

y,,=F,,(yV1,y2,...yN), n=123...N. (2.4.1)

E, and 0F,/dy,, are assumed to be bounded, continuous functions of their arguments. The existence and
uniqueness theorem for differential equations is therefore applicable.

We regard the system (2.4.1) as giving the motion of a point in the N-dimensional phase space
(¥1, Y2, - - - yv)- This motion is called a trajectory. The uniqueness theorem for (2.4.1) guarantees that
trajectories associated with different initial conditions cannot intersect. We will only be interested in
systems having bounded trajectories in phase space.

Hamiltonian systems are a special case of (2.4.1) in which there exists a function H(qy, @2, . - . G P1s
D2, - .. Dm) Such that

g = 0HJ op; and  p,=—-3H/dq;. (2.4.2)

In this case the phase space is the usual 2m-dimensional phase space of classical Hamiltonian
mechanics.

We will also be concerned with dissipative systems where, in contrast to Liouville’s theorem for
Hamiltonian systems, the time evolution of our dynamical system contracts volume in phase space. The
dissipation arises physically as a result of spontaneous emission, collisional damping, lossy cavities, etc.
Even though we deal fundamentally with Hamiltonian systems, we restrict our attention to an
interesting subsystem and regard everything else as a sink into which the subsystem can irreversibly
decay. The dynamics of our subsystem is then non-Hamiltonian.

Just as in the case of discrete mappings, it is convenient to define fixed points of the dynamical system
(2.4.1). (These are also called critical points or equilibrium points.) These are points (v}, y3, ... y&) of
phase space for which
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F.(y1,y%,...y8)=0  forall n (2.4.3)

or in other words the points where all y, = 0. Also as in the case of discrete maps, it is useful to know
whether the fixed points are stable against small perturbations. This may usually be determined by
linearizing about the fixed points.

If trajectories in the neighborhood of a stable fixed point are closed loops, the fixed point is called a
center. For instance, the equilibrium point of a simple (undamped) harmonic oscillator is a center, the
closed loops being just the circles p*>+ g* = constant in the phase plane. In fact stable fixed points of
Hamiltonian systems are always centers. If all the trajectories in the neighborhood of a stable fixed
point approach it along curves which are asymptotically straight lines, the fixed point is called a stable
node; if neighboring trajectories spiral into the fixed point it is called a stable spiral point. If we displace
a system away from a stable node or spiral point by a small amount, it will return to the equilibrium
point. If the stable equilibrium point is a center, however, the system will remain near to it. Similarly we
can classify unstable fixed points as unstable nodes, unstable spiral points, or saddle points.

Stable nodes and spiral points are simple examples of attractors. Another important example of an
attractor is a stable limit cycle. A limit cycle is a closed, periodic trajectory, “‘isolated” in the sense that
no nearby trajectory is also closed. (The closed loops of the harmonic oscillator, for instance, are
obviously not isolated.) In numerical computations we find a limit cycle as a periodic motion a nonlinear
system settles into after initial transients die out; after the transients decay we are on the attractor. The
periodicity of the motion implies that the trajectory in phase space is a closed loop.

Limit cycles, which arise only in dissipative nonlinear systems, are of great practical importance
[19, 20]. Within its “basin of attraction” in phase space a stable limit cycle, like a stable node or spiral
point, is independent of initial conditions and is determined by the parameters in the equations.

In some physical applications it is not difficult to understand the appearance of a limit cycle as a
balance between “self-excitation” and damping. An example is provided by the pendulum clock. Here
the anchor clip controlling the rotation of the escape wheel also delivers periodic impulses to the
pendulum bob. The damping of the pendulum’s oscillations in turn increases with increasing oscillation
amplitude, and an equilibrium situation is reached. This limit cycle is independent of the starting
impulse and is stable against small perturbations (as occur, for instance, when the clock is moved from
one place to another).

Another example is provided by the van der Pol equation [20]

¥+b(x*-1x+x=0, b>0. (2.4.4)

Here there is positive damping when [x|>1, negative damping when |x|<1. Equation (2.4.4) is
equivalent to y; = y,, y»= —b(yi— 1)y, — y;. There is one fixed point, (y%, y3) =0, and a linear stability
analysis shows that this fixed point is an unstable spiral point. Trajectories in the phase space
(¥1, y2) = (x, £) near the origin therefore spiral outward, but for |x| > 1 there is positive damping. What
happens when (2.4.4) is integrated is that a limit cycle is reached as a balance between positive and
negative damping. Figure 2.4 shows the trajectory in the phase plane, starting out with initial conditions
inside the limit-cycle loop. The limit cycle is obtained for arbitrary initial conditions.

A stable limit cycle should be thought of as an equilibrium state of oscillation of a nonlinear system,
just as a stable fixed point represents a stationary equilibrium. Unfortunately, mathematicians at
present cannot tell us in general whether a limit cycle exists in a given system, although some definite
statements can be made for systems whose phase space is the plane (N =2 in (2.4.1)). For instance,
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Fig. 2.4, The van der Pol limit cycle obtained by numerical integration of (2.4.4).

Bendixson’s Negative Criterion states that if dF;/dy; + dF,/dy is of one sign in a simply-connected (‘‘no
holes™) domain, there are no closed loops. And it is known that a limit-cycle closed loop cannot enclose
a region containing no fixed points.

The system (2.4.1) is “chaotic” if it has the property of very sensitive dependence on initial
conditions. (We of course exclude systems like y; = y;, which have a trivial sort of sensitive dependence
on initial conditions because the motion is unbounded; we are only interested in bounded trajectories in
phase space.) A chaotic system will be nonperiodic. This leads us to the conclusion that systems of the
form (2.4.1) with N <2 cannot be chaotic. If N = 1, for instance, the noncrossing of trajectories severely
restricts the motion on the “phase line”: The trajectory can be a fixed point, it can approach a fixed
point as -, or it goes to *% as ¢— »; there are no other possibilities when N =1 if trajectories
cannot intersect. If N =2 the Poincaré~Bendixson theorem says that a bounded trajectory can either
approach a fixed point as ¢ > or a closed curve, which may be a limit cycle. Fixed points and closed
curves represent regular (periodic) behavior, and so for a system (2.4.1) to have chaotic behavior we
must have N >2. The restriction that trajectories do not cross precludes any possibility of chaos for
N=1or?2

For the Lorenz model, N =3 and there is chaotic behavior. We therefore conclude that we must
have N =3 as a necessary condition for the system (2.4.1) to be chaotic. Furthermore a linear system is
exactly solvable and it is easy to see that bounded motion must be regular in this case, at least for finite
N. In summary, then, systems of the form (2.4.1) can be chaotic only if they are nonlinear and if N = 3.

Frequently a discrete mapping can be constructed from the continuous flow in phase space
represented by (2.4.1). The Poincaré map (or surface of section) technique is one way to accomplish
this, and is most useful in the case N = 3. Figure 2.5 illustrates the basic idea in this case. We plot x5(¢)
vs. x,(f) (for instance) only at those times 7 at which x;(¢f) = 0 and x,(¢) <0. The Poincaré map is thus a
two-dimensional mapping of the plane into itself, although of course we cannot expect to be able in
general to write down an explicit functional form like (2.3.1). If we could, however, the map would be
invertible; this follows simply from the uniqueness theorem for (2.4.1).

The Hénon map was originally studied as an approximation to a Poincaré map obtained numerically
for the Lorenz model. Because the Lorenz equations contract volume in phase space, the Poincaré maps
will be area-contracting. For a Hamiltonian system, on the other hand, the Poincaré maps may be
proven to be area-preserving.
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X T

Xy

Fig. 2.5. Construction of a Poincaré map with the xx; plane as the surface of section. In this illustration the Poincaré map takes point 1 into point 2,
and point 2 into point 3.

If the system (2.4.1) has regular time evolution, a Poincaré map will consist of a repeating set of
points. For chaotic time evolution, on the other hand, successive points will appear to bounce around
haphazardly. They may be constrained to a particular attractor, such as in fig. 2.2, but on this attractor
they appear to wander erratically.

A simple way to check for periodicity is to compute the (discrete) Fourier transform ,(f;) of the
time series y,(#) generated by numerical integration of (2.4.1):

M-1

Iulf)= 2 yult)exp(-2milk/M), k=0,1,...M-1 (2.4.5)
1=0

where 4 = [ A¢, fu = k/M At, and M is the total number of time points, separated by At, sampled from
the time series to compute the Fourier transform. Note that the maximum frequency component that
can be obtained is determined by the spacing A¢ between sampled points of the time series. (Af need
not, of course, be the same as the step size used in the integration.) In practice it is convenient to use
the Fast Fourier Transform (FFT) algorithm [21] to evaluate (2.4.5); in this case M is taken to be an
integral power of 2, typically 1024, 2048 or 4096. To obtain an accurate FFT, a “cosine bell” function or
some other “windowing” function is applied to the sampled time series before the FFT is applied [22].
This eliminates spurious frequency components associated with sharp edges in the time series.

Chaotic systems have a frequency spectrum with a broad-band component, as if there were “noise”
present. This is to be expected from our discussion of the logistic mapping, where a positive LCE
implies nonperiodicity. We will later see several examples of broad-band spectra for systems of
differential equations.

A rigorous test for chaos is to determine whether there is “very sensitive dependence on initial
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conditions”. Suppose we perturb the initial conditions for (2.4.1) very slightly. The resulting pertur-
bations in the y, () then satisfy the (linearized) equations

N Fn
Byn (1) = Z=l j 8y (1) (2.4.6)

or in matrix form
3y(6)=J()dy(¢). (24.7)

The solution of this equation is

!

Sy(1) = exp[ j di, J(tl)]'Sy(O) — A(1)8y(0) | (2.4.8)

0

where the N X N matrix A satisfies
A =T A@). (2.4.9)

We may define the Lyapunov type numbers [23]

A; = lim % log |A;(2)| (2.4.10)

1—c0

where the A,(¢) are the eigenvalues of the matrix A (z). (As mentioned earlier, the limit above need not
exist, and we should write lim sup in general.) Note the similarity of (2.4.10) to the LCE (2.3.10) for a
discrete mapping.

If one of the A; is greater than zero, we have very sensitive dependence on initial conditions. In
connection with the Hénon map we noted that the largest LCE may be computed without solving the
eigenvalue problem, simply by introducing “random” initial perturbations &,, 8, and computing (2.3.11)
and (2.3.12). Benettin et al. [24] have shown how to compute the largest LCE in the general case; they
have also given a procedure for computing the full LCE spectrum [25). We will only consider the much
simpler computation of the largest LCE, which is the main one of interest, of course, in determining
whether the system is chaotic or not.

The method of computing the maximal LCE for (2.4.1) is completely analogous to the method based
on (2.3.11) and (2.3.12) for the Hénon map. We solve the 2N equations (2.4.1) and (2.4.6) simul-
taneously, assuming “‘random” values of the initial variations 8y,(0). We compute

A= Tog By () @411

where ||. . || denotes the Euclidean norm (or any other reasonable norm):
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N , 172
3yl = [ 2 ©yn) ] : (2.4.12)
n=1

Then y = lim,.. A(#) (or more rigorously lim sup A(?)) is the largest LCE of the system. The system is
chaotic if and only if y >0. We will later see some examples of this numerical procedure.

In connection with the full LCE spectrum, it should be mentioned that there appears to be a
relationship between it and the fractal dimension of a chaotic attractor, at least in some cases [13]. In
this introductory review, however, it does not seem appropriate to go into this matter. In any case we
will only be interested in the largest LCE, which tells us whether the system is chaotic.

2.5. The Duffing oscillator
Consider the anharmonic potential (fig. 2.6)
V(x)=3x>-3Bx"*. (2.5.1)

A particle of unit mass in this potential, undergoing a frictional force —yx and a sinusoidal driving force
cos ut, satisfies the equation

X+ yx+ x— Bx® = cos ut 252

which we will call the Duffing equation. Chaotic behavior of the Duffing oscillator was first reported by
Huberman and Crutchfield [26].

Let us begin by applying to (2.5.2) a well-known approximation of quantum optics, namely the
rotating-wave approximation (RWA). We write

x(t)=z[a()e™ +a*()e ] (2.5.3)
I T
] r _
>-0 - N
| -
()]
C
L
_‘I - ]
_2 — —
| | 1
-4 -0 4
Position

Fig. 2.6. The anharmonic potential (2.5.1) for g = 0.1587.
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and assume that |@(¢)| < u?|e(f)|. Then the Duffing equation reduces to

(y+2u)a+(1—-p’+iyp —3Blef)a=1. (25.4)
The steady-state solution of this equation gives the amplitude a; of the steady-state part of x(¢):

x(f) =3[a, e + ate™]. (2.5.5)
a, satisfies the equation

(- p’+iyp -iBlaf) a,=1 (2.5.6)

which is equivalent to a cubic equation for |a>. As |y is real and positive, there will be either one
solution or three solutions to the cubic equation.

Figure 2.7 shows a plot of the solution of (2.5.6) for |ay, assuming 8 =0.1587 and y = 0.72. Also
indicated is the “dissociation threshold”, i.e., the value of |ay at which the potential turns over
(dV/dx = 0) and the particle is outside the well.

In order to compare the RWA solution (2.5.5) with the exact steady-state dynamics, we note from
(2.5.3) that x*(¢) averaged over a driving period is

x*(1)= 3la(n)f. (2.5.7)

We therefore compare [2x?(r)]'? obtained by numerical integration of (2.5.2), with the RWA
steady-state amplitude |a|. The circles in fig. 2.7 are computed values of [2 x(f)]'?, and show that the
RWA is a good approximation when it predicts an oscillation amplitude below the dissociation
threshold.

However, the steady-state RWA solution (2.5.5) predicts a regular oscillation at the driving
frequency, whereas the exact solution x(f) has harmonics (and in some cases subharmonics) of the
driving frequency. Figure 2.8a shows x(f) obtained by solving (2.5.2) numerically for 8 =0.1587,

3.0
é_ 2.0
(23
m
<

1.0

0.0 1 1 ) ]

0.0 0.2 04 06 08 1.0
g

Fig. 2.7. The solution of (2.5.6) for |a| with 8 =0.1587 and y = 0.72. The dotted line indicates the “dissociation threshold” for escaping from the
potential well. The circles are obtained from the integration of the Duffing equation. (See text.)
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Fig. 2.8a. x(¢) obtained by integrating the Duffing equation for 8 = 0.1587, y = 0.728, u = 1.0.
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Fig. 2.8b. The power spectrum of the function shown in fig. 2.8a.

y =0.728 and u = 1.0, and fig. 2.8b shows the power spectrum of this time series obtained with an FFT
algorithm. The spectrum clearly indicates the presence of third, fifth, seventh and ninth harmonics of
the driving frequency (u/27 =0.16). Note that the power spectrum is plotted on a log scale, indicating
that the harmonic components are very weak compared with the fundamental. Of course this is
consistent with the high accuracy of the RWA solution.

Figure 2.9a shows x(f) when u is reduced to 0.53, and fig. 2.9b its power spectrum. Now we notice in
the spectrum not only a zero-frequency component, but also a u/2 subharmonic and its harmonics; the
subharmonic and harmonic components are again weak compared with the fundamental. In fig. 2.10a
we have reduced u to 0.515, and a strong period-2 subharmonic (frequency u/2) is evident both in x(¢)
and its power spectrum shown in fig. 2.10b. Figure 2.11, for u = 0.5143, shows a period-4 component
(frequency u/4). What we are seeing is a period-doubling sequence as the “knob” u is reduced.

Indeed a period-doubling route to chaos is found: If u, denotes the value of x at which the nth
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Fig. 2.9a. x(r) obtained by integrating the Duffing equation for 8 = 0.1587, y = 0.728, u = 0.53.
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Fig. 2.9b. The power spectrum of the function shown in fig. 2.9a.
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Fig. 2.10a. x(¢) obtained by integrating the Duffing equation for 8 = 0.1587, ¥ = 0.728, . = 0.515.
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Fig. 2.10b. The power spectrum of the function shown in fig. 2.10a.
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Fig. 2.11. The power spectrum of the solution x(¢) of the Duffing equation for 8 = 0.1587, y = 0.728, u = 0.5143,
bifurcation occurs, and A, = u,, it is found that
(’\n - /\n—l)/(An+l - An)--) 5

as n increases, 6 being the Feigenbaum number (2.2.9). For these values of 8 and v, a value u = 0.51,
for instance, puts us past the threshold for chaos where the period has doubled ad infinitum. Figures
2.12a and 2.12b show x(f) and its power spectrum. Note the broad-band character of the power
spectrum, indicating nonperiodic motion. The form of this spectrum is typical of chaotic time evolution.

Sensitive dependence on initial conditions is verified by computing Lyapunov exponents. A “quick
and dirty”” way of verifying sensitive dependence on initial conditions, however, is to consider some
measure of distance between two trajectories originating from two different but nearby initial con-
ditions. In fig. 2.13 we show x(#) computed as in fig. 2.12a for u = 0.51, but with slightly different initial
conditions. Figure 2.14 is a plot of the ‘“distance”
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Fig. 2.12a. x(¢) obtained by integrating the Duffing equation for g = 0.1587, y = 0.728, u = 0.51.
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Fig. 2.12b. The power spectrum of the function shown in fig. 2,12a, showing the broad-band structure typical of chaotic time evolution.
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Fig. 2.13. x(¢) as in fig. 2.12a but with slightly different initial conditions (differing by less than a tenth of a percent).
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Fig. 2.14. The distance (2.5.8) between the functions x(r) shown in figs. 2.12a and 2.13, illustrating very sensitive dependence on initial conditions.

8(t)=[(x(1) - x'(1)]" (25.8)

where x(¢) and x'(¢) are given in figs. 2.12a and 2.13, respectively. Figure 2.14 is a nice illustration of
what is meant by “very sensitive dependence on initial conditions”. Such a degree of sensitivity on
initial conditions is never exhibited for regular (bounded) motion.

In connection with the RWA, we have noted that the RWA can be a good approximation even
though it fails to account for the chaotic behavior of the Duffing oscillator. This is illustrated particularly
well by considering the parameter regime investigated by Huberman and Crutchfield [26}: For the form
(2.5.2) of the Duffing equation, take y = 0.4 and B = 0.055. (It may be worth noting that Huberman and
Crutchfield’s results were obtained with an analog computer, and are subject to small errors. For
instance, we find that the onset of chaos occurs at a value of u different from that in their paper.) Figure
2.15 compares the exact solution of the Duffing equation in this case with the RWA solution, exactly as
in fig. 2.7. We see from this figure that for this choice of parameters the RWA is surprisingly accurate.

For the case shown in fig. 2.15 the Duffing oscillator has a range of driving frequencies u for which
three solutions of (2.5.6) exist. However, the middle branch is unstable, as indicated by the pattern of

Fig. 2.15. Comparison of exact (O) and RWA solutions (—) of the Duffing equation for 8 = 0.055 and ¥ = 0.4, as in fig. 2.7.
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circles in fig. 2.15. In other words, we have a bistable (rather than tristable) regime. Which branch the
solution takes depends upon the initial conditions, as implied by the arrows; that is, we have hysteresis
behavior. It is interesting to note that the RWA equation (2.5.4) also exhibits bistability and hysteresis,
but not chaos. For these parameters, therefore, the RWA is quite accurate, except that it does not
predict chaos. This is consistent with fig. 2 of the Huberman~Crutchfield paper, which indicates that the
broad-band portion of the power spectrum of x(¢) is quite weak. The numerical solution of the Duffing
equation in this case has relatively small deviations from periodicity. In this case “very sensitive
dependence on initial conditions” is manifested mainly by an eventual dephasing of the oscillations
corresponding to two slightly different initial conditions.

The Duffing equation has no known closed-form solution. What we have called the RWA is a
well-known approximation in the theory of nonlinear oscillations [27]; it is sometimes called Duffing’s
approximation. If instead of the RWA we use standard perturbation theory, assuming the nonlinearity
to be small, we find only the odd harmonics of the driving frequency in (2.5.2). Some progress has been
made in understanding the period doubling, which is always observed to be preceded by the appearance
of even harmonics [14, 28-30]. Novak and Frehlich [28], for instance, have interpreted the even
harmonics and the period-doubling sequence, in the case of increasing driving amplitude, in terms of
parametric resonance.

We have also observed some stable n-cycles in the chaotic regime, and in the order specified by
Sarkovskii’s theorem. In particular, we have found a 3-cycle (“Period Three Implies Chaos” [9))
followed by a period-doubling sequence (i.e., 3-6-12-24-. . ) [14, 30].

2.6. The Lorenz model

In 1963 Lorenz [17] published a paper entitled “Deterministic Nonperiodic Flow”, in which he
discussed the remarkable properties of the system

Xx=-ox-y), o>0 (2.6.1a)
y=-y-—xz+rx, r>0 (2.6.1b)
z=xy- bz, b>0. (2.6.1¢)

Using the present terminology we can say that this system, called the Lorenz model, has a chaotic
regime, i.e., for certain parameters o, r and b it has nonperiodic time evolution with very sensitive
dependence on initial conditions. Lorenz obtained (2.6.1) as a rather drastic truncation of a set of partial
differential equations for fluid flow. The Lorenz model has become a standard example of chaos in a
low-dimensional flow in phase space (i.e., chaos in a system of the form (2.4.1) with N a small integer).

As in the case of the Duffing oscillator, the Lorenz model has no known analytical solution, so let us
begin by simply making some general observations, and then integrating the equations numerically.
First we note that the system (2.6.1) is invariant under the transformation (x, y, z)->(-x, -y, z).
Furthermore the z-axis is invariant in the sense that any trajectory starting at (or passing through) a
point (0,0, z) on the z-axis remains on the z-axis, and moreover all such trajectories approach the
origin, (0, 0,0).

An obvious fixed point of the Lorenz system is (0,0,0). If r>1 it is found that there are two
additional fixed points in the three-dimensional phase space:
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x*=y*=x[p(r-D]V2, z*=r-1. 2.6.2
Yy

The stability of these fixed points may be investigated in the familiar way by linearizing (2.6.1) about a
fixed point, and finding the eigenvalues of the resulting 3 X 3 matrix. For the linearized flow near the
origin, these eigenvalues are

A==b, —Yo+1)=Y(o-17+4dor]". (2.63)

One of these eigenvalues is positive whenever r>1, and so the origin is an unstable fixed point for
r>1,

(Actually the origin is “nonstable” for r > 1. The definition of stability — that starting near the set in
question we remain near to it —refers to any point near the set. But we have seen, for instance, that the
z-axis is invariant and that the origin attracts any trajectory starting on the z-axis. Since the origin is
unstable for “most” points surrounding it, we will call it “unstable”, as is frequently done whenever one
of the eigenvalues of the linearized flow has a positive real part.)

The other two fixed points are found to be unstable (more precisely, nonstable) when

o>b+1 (2.6.4a)
and
r>a(ctb+3)(c-b-1). (2.6.4b)

For o =3 and b =1, (2.6.4) is satisfied whenever r>21. One of the eigenvalues around the linearized
flow is real and negative for all r. For r>21 the other two eigenvalues have positive real parts. The
transition at r =21, where the complex eigenvalues cross the imaginary axis and take on positive real
parts, is an example of a Hopf bifurcation [31, 32].

Suppose we integrate the Lorenz equations numerically for o =3, =1, x(0)= y(0)= z(0) = 1.0,
letting r be our “knob”. Figure 2.16 shows the resulting y(t) for r=3; y(¢) approaches y* =0 in this
case, because (0, 0,0) is the only stable fixed point. For r=4, (0,0, 0) is unstable, but the fixed point
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Fig. 2.16. y(¢) of the Lorenz model for ¢ =3, =1, r=1/2, x(0) = y(0) = z(0) = 1.0.



230 J.R. Ackerhalt et al., Chaos in quantum optics

(V3,V3,3) predicted by (2.6.2) is stable, and the solution converges onto this simple attractor, as

shown in fig. 2.17. At r = 21 for these initial conditions, y(7) begins as an orderly but growing oscillation,

then apparently breaks into chaos (fig. 2.18). Similar behavior is observed in fig. 2.19 for r = 22.
Consider the divergence of the flow velocity in phase space:

Vev = 08lax + 0510y + 930z = ~(o + b+ 1). (2.6.5)
Thus
f Ex V- v—fdav i- Jd3x(0+b+l)——(a+b+1)V
ves
or
V()= V(0)e rorir, (2.6.6)
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Fig. 2.17. As in fig. 2.16, but with r = 4. Fig. 2.18. As in fig. 2.16, but with r = 21,
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Fig. 2.19. As in fig. 2.16, but with r = 22.
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That is, if we let each point on some closed surface in phase space evolve in time according to (2.6.1),
the enclosed volume contracts exponentially to zero. Lorenz [17] proved the existence of a bounded
ellipsoid in phase space that attracts all trajectories. Equation (2.6.6) in turn implies that all trajectories
eventually settle onto a zero-volume set within this ellipsoid. In other words, any attractor of (2.6.1)
must occupy zero-volume in phase space. This is interesting when r > 21, in which case the fixed points
of the flow are all unstable. It is precisely in this case that the Lorenz system can be chaotic, and that its
attractor can have the property of hyperbolicity (strange attractor). The situation here is much like in
the case of the area-contracting Hénon map.

Figure 2.20 shows the power spectrum of y(f) for the case r=22 (fig. 2.19), taken after initial
transients have decayed away. We see the characteristic broad-band spectrum of chaos. In fig. 2.21 we
illustrate very sensitive dependence on initial conditions by plotting for r =22
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Fig. 2.20. Power spectrum of y(r) shown in fig. 2.19.
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Fig. 2.21. The distance (2.6.7), illustrating very sensitive dependence on initial conditions.
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d=[(y(t)-y'(OF]"” 2.6.7)

where y(f) and y'(¢r) are obtained from initial conditions (1.0, 1.0, 1.0) and (1.001, 1.001, 1.001). A
similar result is found when the difference in initial conditions is very much smaller. When a system is
chaotic, the slightest difference in initial conditions will lead (on average) to exponential separation of
initially close trajectories.

Figure 2.22 shows z(f) corresponding to fig. 2.19. Following Lorenz, we plot in fig. 2.23 the nth
maximum of z vz. the (n— 1)st maximum for ¢=20, i.e., after we have settled onto the chaotic
attractor. This map looks something like the parabola of the logistic map, although the maximum is
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Fig. 2.22. z() of the Lorenz model for the parameters of fig. 2.19.
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Fig. 2.23. The nth maximum of z(¢) (fig. 2.22) vs. the (n — 1)st maximum, for = 20.



J.R. Ackerhalt et al., Chaos in quantum optics 273

much sharper than quadratic. Evidently this mapping has no stable n-cycle, but instead generates a
chaotic sequence having the property of very sensitive dependence on initial conditions.

There is a vast literature on the Lorenz model, and we cannot possibly in the space allotted do more
than touch upon some of its interesting features. Sparrow’s monograph [18] is recommended to the
reader wishing to undertake a detailed study of this system. We will end our casual introduction by
summarizing some of the behavior of the Lorenz model as r is varied. We will focus on the parameter
values studied by Lorenz: o = 10 and b =35. For these values, (2.6.4a) is satisfied and (2.6.4b) becomes
r>470/19=24.71 =r.. Lorenz considered in detail the case r = 28.

For r<1 all trajectories approach the origin. Two of the eigenvalues (2.6.3) of the linearized flow
about the origin are always negative, indicating that there is a two-dimensional stable manifold of the
origin - the set of points where a starting trajectory approaches the origin as #- o; the one-dimensional
unstable manifold of the origin existing for r > 1, on the other hand, consists of points approaching the
origin as t— —, This is indicated in fig. 2.24a. At r=1 the new fixed points (2.6.2) are born, and a
trajectory starting on the unstable manifold of the origin for » > 1 heads for that fixed point lying in the
same half space. As indicated in fig. 2.24b, the trajectory spirals toward the fixed point (a stable spiral
point). This is consistent with the oscillatory approach to fixed points found numerically in fig. 2.17, and
is simply a consequence of having a complex eigenvalue associated with the linearized flow. As 7 is
increased the spiral loops get larger.

Unstable manifold of origin

—

2 Stable manifold of origin

Fig. 2.24a Stable and unstable manifolds of the origin in the Lorenz model.

Fig. 2.24b. For 1 <r </ a trajectory starting on the unstable manifold of the origin approaches the stable fixed point in the same half space.
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An interesting thing happens when r is raised beyond 13.926...=7r'. In this case the spirals have
become large enough that they become attracted to the fixed point in the other half space, as indicated
schematically in fig. 2.25. In fig. 2.26a we show a plot of y(¢) vs. x(¢) obtained by numerically integrating
the Lorenz system with o =10, b =% and r = 13.84 </, assuming an initial condition on the unstable
manifold of the origin. In fig. 2.26b we show the corresponding result for r = 13.96 > 1/, indicating how
the trajectory crosses over to the fixed point in the other half space. What happens at r=r' is that a
trajectory starting out on the unstable manifold of the origin is eventually attracted to the origin, or in
other words the unstable manifold of the fixed point at the origin lies within its stable manifold. In this
case it is said that we have a homoclinic orbit — a trajectory tending to a fixed point x* for both #— = and
t— —oo, This is illustrated in fig. 2.27.

Beyond r = r' the two branches of the unstable manifold of the origin are attracted to the fixed point
in the opposite half space, as in fig. 2.25. By numerically constructing the Poincaré map with surface of
section z = r— 1, Kaplan and Yorke [33] have shown that there exists an infinite number of both chaotic
and periodic orbits. All of these are unstable, however, as most trajectories are attracted to one of the

Fig. 2.25. For r' <r<r. a trajectory starting on the unstable manifold of the origin approaches the stable fixed point in the opposite half space.
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Fig. 2.26a. y(t) vs. x(r) for r = 13.84, illustrating the behavior shown in fig. 2.24b.
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Fig. 2.26b. y(1) vs. x(¢) for r = 13.96, illustrating the behavior shown in fig. 2.25.
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Fig. 2.28. An example of “preturbulent™ behavior for r = 22.2.
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Fig. 2.29. y() vs. x(¢) for r = 26.

two stable fixed points for r <r.. Thus we have the possibility of “preturbulence” [34] or “metastable
chaos”. An example is shown in fig. 2.28 for r = 22.2.

At r=7r', the homoclinic orbit gave way to an unstable limit cycle. At r=24.06=/" the unstable
manifold of the origin now spirals onto the unstable limit cycle rather than the stable fixed point.
Between r=r" and r = r. trajectories settle on a chaotic attractor or one of the stable fixed points,
depending on initial conditions. At r = r. the unstable limit cycles collapse onto the fixed points (a
so-called subcritical Hopf bifurcation), and beyond r = r, all three fixed points are unstable. Only the
stable chaotic attractor (the ‘“standard” Lorenz attractor) remains. Results like those shown in figs.
2.18-2.22 are typical of this chaotic regime. Figure 2.29 shows x(¢) vs. y(z) for r =26. As this picture
evolves the trajectory appears to switch from the neighborhood of one of the (unstable) fixed points to
the other in an apparently random fashion.

For very large r nearly all trajectories are attracted to a stable limit cycle [35]. Figure 2.30 shows x(t)
vs. y(¢) for r = 230, 220 and 216; we are seeing there the early stages of a period-doubling route to chaos
as r is decreased from these large values. As in the logistic map, periodic windows occur within the
chaotic regime where stable limit cycles are found.

As the reader has by now surmised, the Lorenz model has been studied in great detail. It exemplifies
the remarkably rich variety of behavior to be found even in “simple-looking” nonlinear systems. To our
knowledge, however, the Lorenz model as yet has no experimental realization. We will later discuss an
example in quantum optics where model equations have exactly the same form as the Lorenz system.

In closing our introduction to the Lorenz model, we mention that Shimada and Nagashima [36] have
computed the three Lyapunov exponents of the Lorenz system for o = 16, b = 4, r = 40. They obtain a
maximal LCE =1.37. Conjectured formulas relating the dimension of an attractor to the LCE [37, 3§]
give a fractal dimension d = 2.06 for the Lorenz attractor in this case.

2.7. Routes to chaos

As we have mentioned, part of the interest in chaotic dynamics lies in the fact that certain routes to
chaos seem to be characteristic of a large number of chaotic systems. We have seen the periodic-
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doubling route to chaos, for instance, in the logistic and Hénon maps, the Duffing oscillator, and in the
Lorenz model for large r. There are many routes to chaos, but the period-doubling route, and two
others, have been rather well defined both theoretically and in experimental (actual or numerical)
studies. Eckmann [39] has reviewed these particular “roads to turbulence” in dissipative systems. Here
we will briefly describe the different “‘scenarios”. We will see later that al/l these scenarios have now
been experimentally realized in experiments with lasers.

First we mention one of the oldest formulated routes to turbulence, that of Landau [40]. In this
scenario a fluid becomes turbulent by an unlimited sequence of instabilities: As the Reynolds number
increases, the flow becomes doubly, then triply, then quadruply, ... periodic. That is, the number of
incommensurate frequencies in the spectrum keeps growing, and the flow pattern becomes very
complicated or “turbulent”. However, we now recognize that this is not really chaotic motion, because
the spectrum is always discrete, becoming effectively broad-band only in the limit of an infinite number
of incommensurate frequencies.

Furthermore the Landau scenario appears even to be “unlikely”. Ruelle and Takens [41] suggested
that nonlinearities make the transition from a doubly periodic state to a triply periodic one unlikely, and
that, after the doubly periodic state, a strange attractor is more likely. (This was the first paper to refer
to a “strange” attractor.) Implicit in their paper is the assumption that chaos (turbulence) in a real fluid
may be associated with the appearance of a low-dimensional strange attractor in the phase space of a fully
deterministic system.

In the Ruelle-Takens route to chaos, a steady state (stable fixed point) gives way to an oscillatory
state (limit cycle) by means of a Hopf bifurcation as a “knob” is turned. Then another bifurcation
occurs and the motion becomes doubly periodic, corresponding to a toroidal surface in phase space (two
incommensurate frequencies in the spectrum). Finally a third bifurcation occurs in which the doubly
periodic, toroidal motion gives way to a chaotic attractor.

Curry and Yorke [42] have described a two-dimensional map in which doubly-periodic motion is
followed by a chaotic (strange) attractor. In the case of a continuous flow, Curry [43] has studied a
system of ordinary differential equations with N = 14, and infers from a Poincaré map that chaos is
preceded by a two-dimensional torus in the 14-dimensional phase space. It is interesting to note that
Curry’s system arose from an extension of the Lorenz model to include more terms in a modal
expansion.

In addition to the period-doubling and Ruelle-Takens scenarios is the Pomeau-Manneville or
“intermittency” route to chaos [44]. This is associated with a “collision” of a stable fixed point with an
unstable fixed point, as Eckmann [39] has illustrated with an example of a one-dimensional map. Unlike
the period-doubling or Ruelle-Takens scenarios, this scenario does not tell us “when” the transition
occurs. It describes a situation in which the motion alternates between periodic behavior and (inter-
mittent) “bursts” of chaos. Very loosely, we can imagine a limit cycle that becomes unstable when a
parameter is swept through some critical value, giving rise to ‘“‘chaotic” motion. In its chaotic
meandering a trajectory enters the basin of attraction of the limit cycle, and therefore gets “trapped”
again — temporarily — into periodicity.

We will see experimental evidence of these three scenarios in the following sections. For a much less
“hand-waving” discussion the reader is referred to Eckmann’s review [39], where references to
experimental studies of routes to chaos in fluid flows may be found. Experimental reports of chaos by
various routes now abound. We mention, for instance, experiments on semiconductor nonlinear
oscillators, which accurately confirm predictions of the theory [45-47].
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3. Chaos in a many-atom Jaynes~-Cummings model
3.1. Introduction

Any doubts about the relevance of chaotic dynamics to quantum optics may be dispelled by
considering one of the simplest models in the field: The interaction of a collection of two-level atoms
with a single mode of the electromagnetic field. This model has chaotic time evolution, as first discussed
by Belobrov et al. [48]. Similar conclusions were later reported independently in ref. [49], the notation
of which we will follow here. In particular, it was found that the rotating-wave approximation (RWA)
fails completely to account for chaotic behavior, just as in the case of the Duffing oscillator discussed in
the preceding section. This failure of the RWA may be one reason why this example of chaos was not
discovered much earlier. According to Belobrov et al., “The neglect of the [non-RWA] terms is so
weakly based because of the formal difficulties which occur, that the generally accepted use of the
[RWA] Hamiltonian of the system has changed into a sort of symbol of faith” [48].

Our treatment will be semiclassical, i.e., the field is treated classically whereas the two-level atoms, of
course, are quantum mechanical and are described by the time-dependent Schrodinger equation. All the
atoms will be assumed to lie within a region small compared with the wavelength of the (single-mode)
field. The model is basically an extension of the Jaynes—Cummings and Tavis-Cummings models
[50, 51]. The former considers a single two-level atom (TLA) interacting with a single field mode,
whereas the latter extends the treatment to N>1 TLAs. Our treatment differs in that (1) the
semiclassical approximation is made but (2) the RWA is not made.

3.2. Equations of motion

For a single TLA the state vector at any time ¢ may be written as a superposition of the upper- and
lower-energy eigenstates, |2) and |1), respectively:

() = ci(t) 1)+ cx() 12) . (3.2.1)

From the Schrodinger equation, with

x(8) = c1(t) ca(t) + cs(1) c3(2) (3.2.2a)
y(&) =i[ci(t) c2t) - ca(r) c3(8)] (3.2.2b)
z(1) = e ()P - e (3.2.2¢)

it follows that [52]

X = —woy (3.2.3a)
2d

y=wox +—=Ez (3.2.3b)

s 2d Ey (3.2.3¢)

h
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where fiw,= E,— E, and d is the transition electric dipole moment in the direction of the (linearly
polarized) field. Equations (3.2.3) are the well-known optical Bloch equations, assuming an interaction
—d - E between the atom and the field. They have the first integral x>+ y*+ z%2= 1, which means that
any trajectory of (3.2.3) lies on the “Bloch sphere” of phase space.

Equations (3.2.3), with E a prescribed external field, do not admit chaotic behavior because of the
restriction to motion on the Bloch sphere. Suppose, however, that E(¢) is the field generated by N
TLAs per unit volume. For E(¢) we then write the Maxwell equation

E(1)+ w? E(t) = —4wNd £(f) (3.2.4)

for a single-mode field of angular frequency w. The system (3.2.3) plus (3.2.4) couples the Schrodinger and
Maxwell equations self-consistently. That is, E determines the motion on the Bloch sphere via (3.2.3),
while the TLAs in turn act as a source for E via (3.2.4). Let 7= wot and e(t) = (2d/hwo) E(t). Then our
dynamical system (3.2.3) plus (3.2.4) is

X=-y (3.2.5a)
y=x+ez (3.2.5b)
z=-—ey (3.2.5¢)
é+u’e =By (3.2.5d)

which may be written trivially in the form (2.4.1). We have defined the dimensionless parameters
4 = w/wy and

B = 87Nd*/hw, (3.2.6)

and the derivatives in (3.2.5) are with respect to 7.

The divergence of the flow in phase space of the system (3.2.5) is zero, so that our dynamical system
is not dissipative. As such it has no attracting sets (attractors). This is because our semiclassical
approach does not account for spontaneous emission, and indeed there are no damping terms,
phenomenological or otherwise, in (3.2.5). Although the system therefore will not have a strange
attractor, it can nevertheless be chaotic, as we will see.

3.3. Chaotic behavior

We will restrict ourselves to the case of exact resonance (u = 1) between the TLAs and the field, and
also to the case of initially excited atoms (z(0) = 1). Figure 3.1 shows the result for z(r) of a numerical
integration of (3.2.5), assuming e(0) = 107%, ¢é(0)= 0 and 8 = 1 (z(0) = 1 implies that x(0) = y(0) = 0). In
fig. 3.2 we show the power spectrum of z(7), obtained by applying a cosine beil window to the time
series and then taking a 4096-point FFT. The power spectrum is broad-band with no evident
periodicities. To confirm more rigorously that we have chaotic time evolution, we have computed the
maximal LCE; our result, y =0.087, confirms that the system is indeed chaotic in the sense of “very
sensitive dependence on initial conditions”.
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Fig. 3.2. Power spectrum of the time series of fig. 3.1.

In fig. 3.3 we show x(7) vs. y(7) for the case 8 = 1. This plot shows clearly the irregularity of the time
evolution of the system. Compare fig. 3.3 with fig. 3.4, which is for the manifestly nonchaotic case 8 =0,
where the atoms and field are uncoupled and we are looking at just the solution of the Bloch equations.

In our numerical computations we found that the chaos becomes more pronounced as 8 increases.
For small values of 8 the computation of the maximal LCE showed that y was close to zero, but it was
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Fig. 3.3. x(7) vs. y(7) for 8 = 1.0.

Fig. 3.4. x(7) vs. y(7) for the orderly case g = 0.

generally difficult to obtain convergence (in which case y should be defined as a lim sup). The power
spectra for small values of 8 showed marked periodicities with some “noise”. Figures 3.5 and 3.6 show
power spectra of z(7) for 8 =0.01 and 8 = 0.1, respectively. Note that the level of broad-band noise
rises with increasing 8. We have not found a sharp boundary between order and chaos as the 8 knob is

varied.
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3.4. Chaos and the rotating-wave approximation
In (3.2.3) and (3.2.4) let
x(t) = u(t) cos[wt + ()] — v(t) sin[wt + &(1)] (3.4.1a)
y(t) = u(t) sinfwt + ¢(2)] + v(t) cos[wt + ¢(¢)] (3.4.1b)
E(t) = &(t) cos[wt + ¢(1)] (3.4.1c)

and assume that u, v, z, € and ¢ are slowly varying compared with sin wf and cos wt. In this
rotating-wave approximation (RWA) to (3.2.3) and (3.2.4) we obtain

u=-(4-¢p (3.4.2a)
v=(4-du +% &w (3.4.2b)
P % %, (3.4.2c)
& = (2wNdw)v (3.4.2d)
¢ = ~(2mNdw)u/ € (3.4.3)

where 4 = wo— w and w(f) = z(). Now (3.4.3) may be regarded as merely a definition of ¢ in (3.4.2a)
and (3.4.2b), since ¢ itself no longer appears in the equations. The four-dimensional autonomous
system (3.4.2) has two integrals:
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w+ o+ wr=1 (3.4.4)

and the energy integral

1
(Nhow)w + yy &2 = const. (3.4.5)

This means that trajectories in the four-dimensional phase space (u, v, w, &) are confined to a
two-dimensional surface: (3.4.2) is equivalent to an autonomous system of dimension two. The
Poincaré—Bendixson theorem therefore precludes chaotic behavior of the RWA system.

We thus have a situation analogous to that with the Duffing oscillator: When the RWA is made there
is no chaos, whereas the original dynamical system without any approximations can be chaotic. The
consequences of the RWA are therefore quite drastic, for it does not reveal the practical impossibility
of detailed long-term prediction, i.e., very sensitive dependence on initial conditions.

3.5. Physical implications

Suppose d = 10" esu and A = 10 um. Then 8 = 1.3X 107* N, where N is the number of atoms per
cm®. This shows that relatively large number densities are typically required to reach the strongly
chaotic regime B =1: For B8 =1 we require N ~8x 10 cm™. For A ~250 pm and d =3 x 107" esu,
corresponding to a rotational transition of the HF molecule [48], 8 = 1 requires N ~4x 10" cm™>, or a
pressure of about 1.6atm at T =300 K. Thus the required number density for the strongly chaotic
regime is considerably greater than that of a typical experiment in quantum optics, where the
Maxwell-Bloch equations alone might provide a good model. However, much smaller densities are
required for Rydberg atoms (d large). In any case our interest in this problem is at the fundamental
level, for the possibility of chaos in so simple a system suggests that chaotic dynamics may be quite
important in laser physics and quantum optics.

Results like that shown in fig. 3.3 indicate an effectively statistical character in the atomic dipole
oscillations. The broad-band spectrum of x(7), for instance, implies that the atomic transition is in effect
broadened; the dipole correlation function will decay, indicating a loss of coherence. Belobrov,
Zaslavskii and Tartakovskii [48] remarked at the end of their paper that the appearance of chaos in this
system “shows that the analysis of the interaction of radiation with matter under conditions where there
is a strong coupling must as a matter of principle take into account the unremovable statistical nature of
the motion which in quantum optics so far has not been considered”.

One thing that might be noted in connection with the RWA is that the parameter 8 is on the order
of the Rabi frequency for the field due to all the atoms, divided by the natural transition frequency wy.
Unless B is quite small, therefore, the RWA is not a good approximation. So it is not terribly surprising
that the RWA fails to describe the (chaotic) dynamics when 8 ~ 1.

3.6. Remarks on the equations of motion
The analysis of Belobrov et al. [48] is based on the equations
E+ 0’E = Am*upm (3.6.1)

m + w’*m = —(2uw/h) En (3.6.2a)
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i = Qu/hw) En. (3.6.2b)

Equations (3.6.2) are equivalent to the Bloch equations (3.2.3) with m = x, @ = wo, u = d, n = z. With
p = N in our notation, however, (3.6.1) is equivalent to

E + w?E = 47Ndw*x = 470>P (3.6.3)

where P = Ndx is the polarization density. Note that the right-hand side of (3.6.3) differs from that of
(3.2.4). If we write (3.2.4) in terms of the electric displacement D = E + 47P, however, it becomes

D+ w?D = 47Ndw*x (3.6.4)

which is the same as (3.6.3) if we identify E in the latter as D.
Equation (3.2.4) is a single-mode variant of the Maxwell wave equation

1. 4r. 4
VE-—E-= C—Z p= C—Z Ndi (3.6.5)

for the (transverse) electric field. Equations (3.2.3) and (3.6.5) are widely used as the “Maxwell-Bloch
equations”, although in general they are replaced by RWA equations for slowly varying amplitudes.
The electric displacement D, on the other hand, satisfies

1.
V2D - = D = 47V?P (3.6.6)
C

of which (3.6.4) is a special case.

Which is the correct set of equations for our problem, (3.2.3) and (3.2.4) or (3.6.1) and (3.6.2)? In
spite of the wide-spread use of the Maxwell-Bloch equations in the form of (3.2.3) and (3.6.5), the
system (3.6.1) plus (3.6.2) provides a somewhat more satisfactory description of the many-atom
Jaynes—Cummings problem. The reasons for this have been discussed recently [53], and are based on an
examination of the unitary transformation taking us from the minimal coupling Hamiltonian to the
—d - E form [54). However, since for practical purposes the different sets of equations used in refs. [48]
and [49] lead to physically equivalent predictions, we will not dwell on this question here.

3.7. Quantum chaos?

A basic feature of our treatment is that the field is treated classically. This raises the very interesting
question of what changes might be expected when the field is quantized. At the present time we do not
have a fully quantum-mechanical treatment of the problem, although some preliminary work in this
direction has been reported by Graham and Hohnerbach [55].

More generally, one can ask what is the effect of quantum mechanics on a system which, treated
classically, exhibits chaotic behavior. This is the question of ‘‘quantum chaos”, and it is not a trivial
matter. For instance, a closed system will have a discrete energy spectrum, and expectation values of
observables will therefore not have the broad-band spectra associated with classical chaos. There is also
the question of how separation of initially close ““trajectories” extends to a quantum system.
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Various examples suggest that classical chaos does have quantum manifestations, but not always in
unambiguous ways [56-58]. Among the different ideas that have been put forth to characterize quantum
chaos, we mention Percival’s suggestion [59, 60] that the distribution of energy eigenvalues has sensitive
dependence on a control parameter, and Peres’ definition of quantum chaos, according to which
dynamical variables are represented by pseudo-random matrices when the Hamiltonian is diagonal [61].
The interested reader is also referred to the discussion and references given recently by Berry [62].

The model considered in this section is much more amenable to a fully quantum-mechanical
treatment when the RWA is made. Even the single-atom case displays a rich ‘“collapse and revival”
behavior [63,64], which can be interpreted in terms of the generation of incommensurate eigen-
frequencies [65]. The case N >1 has been considered by Barnett and Knight [66], who find that the
semiclassical approximation predicts a periodic evolution of the atomic inversion, whereas the fully
quantized treatment does not.

4. Chaotic lasers
4.1, Introduction

It is not unusual for lasers to have noisy and even unstable output. Ruby lasers with continuous-wave
excitation, for instance, exhibit “undamped spiking” behavior, and GaAs lasers tend after a certain
aging period to have a pulsating output. Such behavior is usually attributed to certain “random” factors
that are not included in standard laser theory. These include such things as impurities and defects, pump
variations, self-focusing, etc. Part of the art of designing a laser system is to minimize such instabilities
as much as possible. }

Recently, however, it has been possible to produce truly chaotic (in the sense of this article) laser
output. Only a few years ago this type of laser operation would have been classified as “noisy” and not
of intrinsic interest, and in any case it would have been avoided. The recent upsurge of interest in
chaotic dynamics has altered this situation considerably: Experimentalists are reporting laser operation
with well-defined routes to chaos. In particular, the period-doubling, Ruelle-Takens, and intermittency
routes to chaos have all been observed with lasers. In this section we will review some of this recent
work on chaotic lasing. Further experimental progress will no doubt occur, but it has already been
established that chaotic lasing is achievable, and that the “chaos” is classifiable and in accord, at least in
some cases, with theoretical expectations.

4.2. The Lorenz model and the single-mode laser
An early indication that lasers could be chaotic was provided by Haken in 1975 [67]. Consider the
RWA equations (3.4.2) and (3.4.3) with 4 =0, i.e., the case of exact resonance between the atoms and
the field. Adding phenomenological damping terms in the usual way [52], we obtain the system
u=-Bu— 2uNdw)uv/& (4.2.1a)
0= —Bv+ QaNdw)u?*/& + (d/h)Ew (4.2.1b)

w=—y(w—wy)—(d/h)&v 4.2.1¢)
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& = 2uNdw)v - 2. (4.2.1d)

Here B/2m is the homogeneous linewidth (HWHM) of the transition, y is the rate at which the
population inversion relaxes to its equilibrium value wy in the absence of an applied field, and 1y, is the
field loss rate. Assuming w(0)= =1 implies that «(0)= v(0)= 0, which from (4.2.1a) means that u is
identically zero. Thus (4.2.1) reduces to

o =—PBv+ (d/h)Ew (4.2.2a)
w=—y(w—w)— (dh)év (4.2.2b)
€ = 2uNdw)v - v.%. (4.2.2¢)

Equations (4.2.2) may be used to model a single-mode, homogeneously broadened laser (SMHBL),
assuming line-center (4 = 0) operation. In this case v, is the cavity loss rate for the field, and is inversely
proportional to the cavity Q:

0] mwy C[

Ye =5

1
= —= - 1
3 > a og Rle] 4.2.3)

2L

where a is the average distributed loss coefficient, R, and R, are the mirror reflectivities, and L is the
mirror separation.
The fixed points of the dynamical system (4.2.2), i.e., the steady-state solutions, satisfy the relations

v, = (dIhB) E.w, (4.2.42)
we = wo— (dIfty) €0, (4.2.4b)
%, = QaNdw/y)v, (4.2.4c)

whose solutions are well known [52]. We introduce the new variables 7, W, ¢ as follows:
i=vv,, Ww=ww, &=Ye8,. (4.2.5)

In terms of these variables (4.2.2) becomes

i=-B5+BEw (4.2.62)

W=—yw+y(A+1)- yA&d (4.2.6b)

€= y.(5- %) (4.2.6c)
where |

A=wy/w,—1. 4.2.7)
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Finally let

r=A+1= wlw, (4.2.82)
o= vJB (4.2.8b)
b=vyB (4.2.8¢)
=Pt (4.2.8d)

and define the new dependent variables

x=(bA)2 € (4.2.9a)
y=(BA)"?0 (4.2.9b)
z=r—w=(wo~— w)/w,. 4.2.9¢)

In terms of these new variables (4.2.6) may be written

X=~-c(x~-y) (4.2.10a)
y=-y—-xz+rx (4.2.10b)
z=xy-bz (4.2.10c)

where the derivatives are taken with respect to 7.

The system (4.2.10) is identical to (2.6.1). In other words, the system (4.2.2) that is sometimes used to
describe a SMHBL is equivalent to the Lorenz model [67]. Obviously this suggests that a SMHBL might
have chaotic output if the parameters are chosen within the chaotic regime of the Lorenz model.

Although this Lorenz-type chaos in a SMHBL seems possible, the required parameter range is highly
atypical. In particular, the condition (2.6.4a) translates in a SMHBL to y.> 8+ v, or

Ye > 2w+ y 4.2.11)

where 3, is the HWHM Lorentzian linewidth of the laser transition. Now from (4.2.3) we have
y. = 3¢g,, where g, is the threshold gain coefficient for laser oscillation, and so (4.2.11) may be written

38 >2mdvo+y 4.2.12)

which is a necessary condition for chaotic laser oscillation. However, it is exactly the opposite inequality
that is satisfied in a typical SMHBL. That is, the Lorentzian width of the bare-cavity mode is usually
much smaller than the laser transition linewidth. (In the rate-equation approximation, 8 is assumed to
be much larger than either y or y., so that the off-diagonal elements of the TLA density matrix follow
the population inversion adiabatically, and one writes coupled equations only for the population
inversion and the cavity intensity [52].)
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The instability conditions (2.6.4) for a SMHBL were also derived some time ago by Shirley [68],
among others, who noted that the rate-equation approximation to (4.2.2) predicts only stable fixed
points (steady-state solutions). It is also interesting that Buley and Cummings [69], in a numerical study
of the SMHBL equations, remarked that “A case has also been run... in which the output
(intensity] ... appears as a series of almost random spikes”. Evidently they were seeing the chaotic
behavior that Lorenz, at about the same time, was studying in a completely different context!

We are not aware of any SMBHL for which both conditions (4.2.2) are satisfied. Since the Lorenz
system has yet to be studied in an actual experimental realization, such a laser would be of considerable
interest.

4.3. The Lorenz model and self-pulsing in a unidirectional ring laser

In the travelling-wave case equations (4.2.6) are

o6/dt = — B + BEW (4.3.1a)
owlot=—yw +y(A +1)— yA&p (4.3.1b)
c 30z + 080t = y(5—- &). (4.3.1c)

These equations have the steady-state solution &= = & =1, The stability of this solution was
investigated by Risken and Nummedal [70], who found that there can be an instability in the
unidirectional ring laser without necessarily having y.> B + ¥, a condition required for the Lorenz-type
SMHBL instability. This instability corresponds to the onset of multimode, phase-locked pulsing, and
requires [70]

r>5+3b+[8(b + 1)(b +2)] 4.3.2)

in the notation of (4.2.8). This represents a “second laser threshold”. If b= y/8 is small, (4.3.2) is
equivalent to r = wo/w, =9, i.e., the laser must be pumped about 9 times above threshold.

Risken and Nummedal found pulse-train solutions of (4.3.1) in which &, w and & are functions of
t- z/v,, where v, is a phase velocity determined by cavity boundary conditions. These solutions satisfy
the ordinary differential equations

i =—Bi+ BEéw (4.3.3a)
w=—yw+yQA+1)— & (4.3.3b)
=5-¢ (4.3.3c)

with & = (1 - ¢/v,)/y. and the derivatives are with respect to ¢ — z/v,. Equations (4.3.3) are of the same
form as (4.2.6), and therefore are isomorphic to the Lorenz system with r=2A+1= wo/w,, 6=1/Be =
(v./B)I(1 - ¢/v,), and b = y/B. It is interesting that the numerical studies of Risken and Nummedal in
cases where r < r. revealed apparently stable periodic solutions, for in the corresponding Lorenz model
there are no stable limit cycles for r below the critical value r.. This difference evidently arises from the
periodic boundary conditions imposed on solutions of (4.3.3) in the case of a laser cavity [71].
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Graham [71] has derived (4.3.2) in a way that connects it to the Lorenz instability condition (2.6.4).
Since v, and therefore ¢ in the present example are not specified in the equations, it is interesting to
find the value g min of & that minimizes r.. From (2.6.4b) with o = & we find

Gomin = (b + D) +[4(b + 1)(b +2)] 4.34)
for which
Fe = Imin=5+3b+[8(b + 1)(b +2)]** 4.3.5)

which implies the “second laser threshold” (4.3.2).

Of course the instability represented by the transition from single-mode to stable mode-locked
operation in the absence of an external modulation (“self-pulsing”) is not a transition to chaos. In some
experiments, however, it is found that the successive pulses in a mode-locked train are different, and
this could be a form of chaotic lasing. In this connection we mention an experiment of Kaufmann and
Marowsky [72], on the “‘order transition” of a passively mode-locked dye laser, where they investigated
the mode-locking properties of the laser as the concentration of the mode-locking dye was varied. These
authors described a model in which the field-matter interaction involved primarily the passive dye,
while the active dye medium was characterized in first approximation by a constant linear gain
coefficient. In such a model r = wo/w, >0 is satisfied because w,, w, <0, and the authors argued that
self-pulsing in their ring laser might occur if the concentration of the passive dye were large enough.
They did observe the onset of mode locking as they increased the concentration of the passive dye,
although for large concentrations the mode locking was no longer observed; the latter effect could not
be explained with their crude model. For an intermediate range of passive dye concentrations they
observed ‘“irreproducible, incoherently superimposed transient pulse trains of small modulation depth
[72], which possibly was chaotic lasing.

Chaotic solutions of systems like (4.3.1) are known to exist, but do not seem to correspond very well
to actual laser devices [73]). However, various instabilities in a homogeneously broadened ring dye laser
are reported by Hillman et al. [74]. Such “intrinsic” instabilities of the Haken-Lorenz or Risken—
Nummedal type are more readily observed in inhomogeneously broadened systems, as we shall see.

4.4. Chaos in a Q-switched CO, laser

The first observation and characterization of chaos in a quantum-optical molecular system was
reported by Arecchi et al. in 1982 [75). The CO, laser they employed was such that the rate-equation
approximation for a SMHBL is applicable. Here we describe their model and experimental results.

If B> v it may be assumed in (4.2.2) that »(¢) follows w(¢) adiabatically:

v()=(d/hB) (1) w(z). 4.4.1)
Therefore (4.2.2b) and (4.2.2c) become

w(t) = —y[w(t) - wo] — @md*w/hBV)'? n(t) w(t) 4.4.2a)
n(t) = @nd*w/hB) N n(t) w(t) = 2y. n(t) (4.4.2b)
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where n(t) is the cavity photon number, i.e.,
c chw
It)=— %@l =—r 4.4.3
(O)=3 - 8@=—7n@) (4.4.3)

and V is the “mode volume” of the intracavity field. Following Arecchi et al., we define the quantities

A=NVw(t), G=4rdw/hBV
R=NVyw,, K=2 4.4.9)

in terms of which (4.4.2) has the form
4=R-2Gnd - y4 (4.4.5a)
n=Gnd4 - Kn. (4.4.5b)

As noted earlier, these approximate rate equations have no unstable fixed points. In any case they
cannot, according to the Poincaré-Bendixson theorem, have chaotic time evolution, because they form
an autonomous system of order 2. The situation is changed completely, however, if the cavity loss is
time-dependent, for then the order of the equivalent autonomous system is >2. Arecchi et al.
modulated the cavity loss of a CO, laser in such a way that

K- K (1+mcos ). 4.4.6)

In their device B/y~10°, and so eqs. (4.4.5) are applicable, with K given by (4.4.6). Numerical
simulation of this system predicts a period-doubling sequence and a chaotic regime for a certain range
of modulation frequencies {2, and such behavior was in fact observed experimentally.

Obviously the cavity loss modulation in this example is crucial to the observation of chaos. As noted
earlier, intrinsic instabilities and chaos are more readily observed in inhomogeneously broadened
systems. For instance, chaotic emission has been observed in He-Xe and He-Ne lasers. We now turn
our attention to some experimental and theoretical work on instabilities and chaos in inhomogeneously
broadened lasers.

4.5. Self-pulsing in the case of inhomogeneous broadening

Low-pressure electric-discharge Xe and He—Xe lasers have large small-signal gains and are highly
inhomogeneously (Doppler) broadened. The strong 3.508 pm line may have a gain ~1cm™* with a
Doppler width d»p~ 100 MHz [76]. This combination of high gain and narrow linewidth leads to
particularly strong resonant dispersion effects such as frequency pulling [76].

The coupled Maxwell-Bloch equations for a Doppler-broadened, single-mode, two-level laser
medium, generalized to allow upper- and lower-level decay, have been solved numerically by Casperson
[77]. He finds a self-pulsing instability for a range of reasonable parameter values. Figure 4.1 shows
numerical results for the field and intensity, assuming parameter values appropriate to a 3.51 pm Xe
laser at a pressure of 5% 107> Torr [77]; in particular, the collisional de-phasing time T,~ 0.9 ps. The
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Fig. 4.1. Theoretical plots of the self-pulsing in a 3.51 pm xenon laser. Fig. 4.2. Experimental plots of the self-pulsing for discharge currents
(Courtesy of L.W. Casperson, copyright IEEE 1978.) of (a) 40mA and (b} 50 mA. (Courtesy of L.W. Casperson, copyright
IEEE 1978.)

pulse variations shown in fig. 4.1 are fast compared with this dipole coherence time, and Casperson
emphasized that this instability cannot be derived from rate-equation analyses. Furthermore the pulsing
is slow compared with a cavity transit time 2L/c, and the analysis is single-mode, so there is no
connection with mode-locked pulsing. This self-pulsing instability was found to apply only to the case of
inhomogeneous broadening, and did not appear far above threshold [77].

What is especially interesting is that Casperson observed the kind of behavior shown in fig. 4.1
‘experimentally. Figure 4.2 shows experimental plots of intensity for two different discharge currents. We
note that as the current was increased from 40 to 50 mA a period-doubling seems to have occurred. At a
current of 70 mA a chaotic output, with a broad spectrum, was observed [78].

For the numerical results shown in fig. 4.1 y.~1x10°s™!, B ~2.5x10"s7 " and y ~2x 107s™* (y is
actually the lower-level decay rate in this case). Thus the “bad-cavity” condition y.> 8 + v, eq. (4.2.11),
is satisfied. Since y.=cg and B =2#dw,, dv, being the homogeneous linewidth, we can write this
condition in the useful form [78]

cg2mdry > 1 4.5.1)

if v <pB. This puts a necessary condition on the (threshold) gain coefficient g of the medium for the
self-pulsing instability to be realized.

Casperson [79] has presented a stability analysis of the semiclassicai laser equations that were solved
numerically earlier [77], and has derived (4.5.1) under some reasonable approximations. He interprets
the self-pulsing instability in a bad-cavity inhomogeneously broadened laser in terms of mode splitting.
Mode splitting arises from the strong resonant (or “anomalous”) dispersion in a high-gain laser medium,
and leads to the possibility that more than one frequency may be associated with the same longitudinal
mode (wavelength) [76]. It may be understood as follows. If L and / are the lengths of the cavity and
gain tube, respectively, and n(w) is the refractive index, the mode condition is

mA2=(L-D+In(w), m = positive integer 4.5.2)
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or
%[n(a))— llw = Wn — @ 4.5.3)

where w,, = mc/L is a bare-cavity mode frequency and w is the laser oscillation frequency. Equation
(4.5.2) predicts that there may be several frequencies o associated with the same mode index m,
depending on n(w), and these frequencies can lase simultaneously if they have gain>loss. For a
Doppler-broadened line the resonant refractive index is given by

nw)—-1= L,(w ::)) F(x) (4.5.42)

with

log2 -
L (4.5.4b)
T BVD

where g(wo) is the line-center gain coefficient, 3vp is the Doppler linewidth (FWHM), and F(x) is
Dawson’s integral [80]. The solution of eq. (4.5.3) for the oscillation frequency w is obtained from the
intersection of the line y ='w,, — w with the dispersion curve y = (J/L)[n(w)— 1), as indicated in fig. 4.3
[76]. It can be seen that this “spontaneous mode splitting™ effect [81], wherein several frequencies can
lase on a single longitudinal mode, occurs only when the frequencies are appreciably displaced from line
center.

Thus far we have ignored the possibility that spectral holes can be burned into the resonant

m-|

N

Tx_[n(w)-ll

Fig. 4.3. Solutions of eq. (4.5.3). (See text.)
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Fig. 4.4. Effect of hole burning on solutions shown in fig. 4.3.

dispersion curve. Figure 4.4 shows what can happen when this hole burning due to a line-center mode is
taken into account [79]. Now a mode splitting close to line center can occur, and the allowed
frequencies can be expected to lase. (Note that they are away from the dip burned into the center of the
gain curve, and so have small-signal gains greater than the gain of the saturating line-center mode.) This
“induced mode splitting” [81] is strongest at line center. It is plausible that pulse formation results from
the phase locking of the allowed oscillating frequencies.

The Casperson and Risken-Nummedal self-pulsing instabilities are similar in the sense that they are
both “intrinsic” instabilities understandable from the same Maxwell-Bloch equations. However, the
Casperson instability associated with mode splitting arises out of the dispersive part of the atomic
susceptibility, and so in another sense is of a different physical origin. The most important difference is
that the Casperson instability does not require the laser to be typically nine times above threshold, as
for the Risken-Nummedal instability. Thus the Casperson instability is more easily observed, although
it does require the atypical parameter relation (4.5.1) (‘“bad cavity”), which is not necessarily required
for the Risken-Nummedal instability in a homogeneously broadened ring laser [71]. The fact that
inhomogeneous broadening leads to a more readily observable instability has been discussed by Minden
and Casperson [82] and Mandel [83]. Casperson [84] has also investigated the case of non-Doppler
inhomogeneous broadening.

Abraham et al. [81, 85) have observed self-pulsing in a single-mode He-Xe laser, and gave strong
evidence that this was due to either spontaneous or induced mode splitting, depending on the detuning
of their cavity from line center. They also found a (single) period-doubling in the output pulsations.
Period-doubled and two-frequency self-pulsing were also observed in a bad-cavity 3.39 um He-Ne laser,
and for a small range of cavity detunings the pulsations appeared to be chaotic [86].

4.6. Chaos in inhomogeneously broadened lasers

A simplified analysis of the single-mode self-pulsing instability suggests that, for either homogeneous
or inhomogeneous broadening, it is associated with a Hopf bifurcation [83). The experimental
observations mentioned above clearly indicated that this transition from a cw steady state to a periodic
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Fig. 4.5. Three period-doublings (a—d) and chaos (e), followed by orderly oscillation (f and g), as one of the mirrors of a 3.39 um He-Ne laser is
tilted. The spectra shown correspond to sidebands of intermode beats, (Courtesy of C.0. Weiss.)
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Fig. 4.7. Two-frequency (Ruelle-Takens) route to chaos in a 3.39 pm
He-Ne laser as one mirror is tilted. (Courtesy of C.O. Weiss.)
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output might be followed by more complicated and even chaotic behavior. Although more experimental
progress will certainly be made, it has already been established that lasers under certain conditions may
be intrinsically chaotic. Furthermore the period-doubling, Ruelle-Takens (or two-frequency), and
intermittency ‘‘scenarios” have been realized with lasers. We have already mentioned the period-
doubling route to chaos observed in a loss-modulated CO, laser by Arecchi et al. [75], and now focus
our attention on the “intrinsically” chaotic behavior that has been found in inhomogeneously
broadened lasers. The observation of different routes to chaos in an inhomogeneously broadened laser
was recently reported by Weiss et al. [87, 88] and by Gioggia and Abraham [89}.

Weiss and King [87] used a high-gain 3.39 p.m He-Ne laser having a resonator free spectral range
(c/2L) of 60 MHz. By tilting one of the resonator mirrors they observed three period doublings and then
chaos, as shown in fig. 4.5, and then an orderly oscillation again. The total tilt angle in going from fig.
4.5a to fig. 4.5g was only about 2 x 10~* radian. The spectra shown in fig. 4.5 correspond to sidebands of
the intermode beats (“‘beat-beat frequencies”).

Weiss, Godone and Olafsson [88] modified the experiment by introducing a second, Lamb-dip
stabilized laser. By heterodyning this second laser with the test laser, they could control the frequency
(resonator length) of the latter. They found three routes to chaos - period-doubling, two-frequency, and
intermittency — as the mirror was tilted. The particular route taken to chaos depended upon the degree
of detuning from the center of the gain curve of the single-mode laser with no mirror tilt. Their
experimental results for period-doubling and two-frequency (Ruelle-Takens) routes to chaos are shown
in figs. 4.6 and 4.7, respectively. Figure 4.8 shows their experimental evidence for the intermittency
route to chaos.

Although a theoretical analysis of this chaotic behavior is not at present available, it seems clear that
the chaos is closely associated with the presence of three longitudinal modes. With no mirror tilt the
laser operated on a single longitudinal mode, whereas when the mirror was tilted two additional modes,
separated from the original one by ¢/2L, began to lase and increase in intensity with the tilt angle. Phase
locking of the modes is also a closely related consideration [88].

Gioggia and Abraham [89] also reported period-doubling, two-frequency, and intermittency routes to
chaos in an inhomogeneously broadened laser, this time a bad-cavity 3.51 um Xe laser. The free
spectral range of their resonator, however, was quite large (~900 MHz), so this was certainly single-
mode chaotic emission. The different routes to chaos were observed in different ranges of detuning from
line center, and each route could be followed as the detuning was varied. Some of their data showing
period-doubling and two-frequency routes to chaos are shown in fig. 4.9. Here again no theoretical
analysis is yet available, although it seems likely that mode splitting plays an important role. In any case
the instability here is certainly distinct from that in the experiments of Weiss et al. [87, 88] as it involves
only one longitudinal mode.

Chaos in a three-mode 3.39 um He-Ne laser was also observed by Halas et al. [90]. As in the
experiments of Weiss et al. [87, 88] the chaotic behavior appears in the low-frequency secondary beats
when the laser is not mode-locked. In this case, however, the chaos is observed as the discharge current
is varied, not by misaligning a resonator mirror. The origin of the instabilities may nevertheless be
similar. Chaotic emission has also been observed in a Xe ring laser [91]. For details of all these
observations the reader is referred to the cited literature.

4.7. Numerical experiments with Maxwell-Bloch equations

When damping terms and Doppler broadening are taken into account, and each level has its own
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Fig. 4.8. Intermittency route to chaos in a 3.39 um He-Ne laser as one mirror is tilted. (Courtesy of C.O. Weiss.)

pumping and relaxation rates, the system (3.4.2) plus (3.4.3) is replaced by
u=-(4-¢-ksyv—Bu
0=(4 -~ ks)u-Bv+z2— 2)
2,= Ry— v22,— 30
Zi=Ri—yiz; +3 Qv

oo

O=—y0+A j ds W(s) v(s, 1)

(4.7.1a)
(4.7.1b)
4.7.1¢)

(4.7.1d)

4.7.1¢)
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o

0=-A j ds W(s) u(s, 1). @7.16)

These equations have been written in terms of the Rabi frequency 2 = de/h. z, and z, are the upper-
and lower-level occupation probabilities, respectively, with pumping rates R, R; and damping rates y,,
y1- W(s) is the (one-dimensional) Maxwell-Boltzmann velocity distribution function: W(s)=
(s7'?) ! exp(—s*/x?), where x = 2RT/M)"? is the most probable speed at temperature T and molecular
weight M. ks is the (angular-frequency) Doppler shift for an atom with velocity s along the optical axis,
and we have defined A = 27Nd?w/h. Finally v, is the field damping rate, as in (4.2.3).

Equations (4.7.1) describe a unidirectional, Doppler-broadened ring laser. A numerical study of this
system has been made by Shih et al. [92], who find period-doubling, two-frequency, and intermittency
routes to chaos as a parameter (e.g., y. or R) is varied, provided the bad-cavity condition (y.> B) is
satisfied. These numerical results, based on realistic values of the various pumping and relaxation rates,
demonstrate once again the importance and relevance of chaotic dynamics to quantum optics and
electronics.

Figure 4.10a shows the intensity computed from (4.7.1) for the following parameters: 8 = 61 x 10°s™/,
R,=0, R,=85%107°8, y.=54B, y1=0.88, y,=0.0128, A=6.4%x102s"% 4 =0, and a Doppler
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Fig. 4.10. Period-doubling route to chaos as the pump rate Rj is increased. (See text.)
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Fig. 4.11. Power spectrum of the electric field after the period-doubling sequence has proceeded ad infinitum, showing the broad-band component
typical of chaotic dynamics.
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width (FWHM) 8, = kxVlog 2/m = 110 MHz. These choices are discussed in ref. [92]. In fig. 4.10a and
throughout this section we plot results only after initial transients die out. In each case we assume
u ==z = z,=0initially, with £ having some small initial value in order to start the laser. In a fully
quantized approach the initial “noise” arises from spontaneous emission.

Figure 4.10b shows the computed intensity when R, is raised to 9.0 x 107°8. In going from fig. 4.10a
to fig. 4.10b we see that a period doubling bifurcation has occurred. Figures 4.10c and 4.10d show the
intensity for R, =9.3x107°8 and 9.4 x 10~° 8, respectively, revealing further period doublings. Slight
further increases in R, result in more period doublings and chaos as the period doubles ad infinitum
according to the Feigenbaum sequence. Figure 4.11, for instance, shows the power spectrum of () for
R,=9.6x107°B.

In figs. 4.12a—4.12d we show the power spectrum of the electric field for the same parameters as
above, but with R, fixed at 5.6x 107°8 and the detuning 4 increasing from 3.7258 to 3.758. What we
are seeing now is a two-frequency route to chaos, in which the dynamics becomes chaotic following the
appearance of two incommensurate frequencies (i.e., motion on a two-torus in phase space).

In some numerical experiments we have also found chaos developing via intermittency. Figure 4.13
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Fig. 4.13. Development of chaos via increasingly frequent irregular bursts. (See text.)
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shows an example of such a route to chaos as R, is increased, for a somewhat different range of
parameters than in figs. 4.10-4.12 [93].

The system (4.7.1) assumes a unidirectional ring, not a standing-wave or bidirectional ring device.
Although the traveling-wave assumption may be a good approximation [78], the most direct comparison
of our computations with experiment would be for a truly unidirectional device. Chaos in a bad-cavity
unidirectional ring laser has now been observed by Urbach et al. [94], but we do not at present have any
corresponding numerical results, as our computations assumed parameters more appropriate to the
Gioggia—Abraham experiments [89]. In any case we believe from numerical experiments done thus far
that a one-to-one comparison of theory and experiment will be very difficult without highly accurate
values for the various rates and cross sections; small changes in these parameters can dramatically alter
the solutions of (4.7.1).

From numerical results like those shown in figs. 4.104.13 we can nevertheless draw an important
conclusion: Standard semiclassical laser theory, with its traditional simplifying assumptions like plane-
wave fields and constant pump rates, predicts the same “universal” routes to single-mode chaos that
have been observed experimentally. It is also quite interesting that the fundamental system (4.7.1),
which has been known and studied for a long time in quantum electronics, displays all this rich chaotic
behavior of so much current interest.

4.8. Remarks

The ubiquity of a few “universal” routes to chaos is one reason why the subject is attracting so much
interest. Deterministic chaos seems to explain the transition from laminar to turbulent fluid flow [95],
and lasers have now been added to the wide variety of nonlinear systems in which chaos has been
observed and characterized. This possibility of understanding at least some aspects of “turbulence”,
with relatively simple models, certainly must count as a fundamental breakthrough.

Now that some pioneering experiments have been reported, it is expected that laser physicists will
take an increased interest in chaotic lasing, and that observations will be made on many more systems.
It would be especially interesting now to investigate the possibility of chaotic behavior in somewhat
more typical lasers. Furthermore there is clearly room for more theoretical analyses of the chaotic lasers
already studied experimentally. One might also ask whether there are interesting photon-statistical
aspects of chaotic laser radiation [92]. In closing this section we will briefly mention some other work
that has come to our attention. The list is by no means exhaustive, and it is expected that more
developments will occur by the time this introductory review is published.

Yamada and Graham [96] and Scholtz et al. [97] have considered a SMHBL with modulated external
field and population inversion, respectively, both leading to chaos. In the latter case the chaos develops
via intermittency. Mayr et al. [73] find chaotic behavior in the self-pulsing described by equations for a
ring SMHBL. Arecchi et al. have observed chaos in a laser with an injected signal [98]. Graham and
Cho [99] have described two simplified models of self-pulsing and chaos in a single-mode in-
homogeneously broadened laser, and compare the chaotic behavior with that for the Lorenz model.

The multimode case, of course, has well-known theoretical complexities. The strong-signal theory in
the case of Doppler broadening has been aptly described as “horrendous, to say the least” [100]. With
regard to chaos, some interesting progress along the lines of the original Lamb third-order theory has
been made by Brunner and Paul [101] for the Doppler limit. They find that the assumption of
free-running operation [102], which allows one to write equations for intensities only, becomes invalid
when the homogeneous linewidth = twice the mode spacing. In this case the numerical analysis suggests
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that the multimode oscillation is chaotic. Brunner and Paul note that this prediction seems consistent
with the irregular spiking behavior of argon-ion lasers at high excitation [103].

It is also possible that spatial inhomogeneities in the pumping of a laser can lead to chaotic emission
as a result of coupling of different transverse modes [104]. A related conclusion has been reached by
Hauck et al. [105], and they provide some experimental evidence using a solid-state device. In the
model described in ref. [104] there is a period-doubling route to chaos [92, 93].

5. Chaos in nonlinear optics
5.1. Introduction

It should by now come as no surprise to the reader that chaotic behavior can occur in various sorts of
nonlinear optical processes. Thus far most of the attention in this area of ‘“‘optical turbulence” has
focused on optical bistability. However, it seems likely that other examples of chaos will be found in
nonlinear optics as interest in chaos and nonlinear dynamics continues to grow. In the following section
we describe how chaos can arise in optically bistable devices, and point to some of the experimental
work on this aspect of optical bistability. We also consider examples involving coupled wave equations
for Raman and Brillouin scattering, which suggest other examples where chaos may appear in nonlinear
optics.

5.2. Chaos in optical bistability

A system may be said to be bistable if it has two possible output states for the same input state. An
optical bistable device is generally defined to have two possible output states for the same input
intensity. A comprehensive review of optical bistability has been given by Abraham and Smith [106].
The concept goes back to early papers by Szoke et al. [107] and McCall [108]. Here we consider the
possibility, first discussed by Ikeda [109], of chaotic behavior, or “optical turbulence”, in an optically
bistable device.

The system of interest is illustrated in fig. 5.1. Mirrors 1 and 2 have reflectivity R=1-T<1,
whereas mirrors 3 and 4 are assumed to be perfect reflectors. The cell inside this cavity contains N
two-level atoms per unit volume. E; denotes the field strength of the monochromatic input field, and the
transmitted and intracavity fields are denoted by Er and E, respectively. The cell length is L, the total
ring circuit length is %, and we denote the difference by /=% - L.

The system of fig. 5.1 is described by the Maxwell-Bloch equations, together with the cavity
boundary conditions. The major differences between this device and a laser is that the medium is an
absorber rather than an amplifier (w, = —1), and there is an injected field E;. Generalizing equations
(3.4.2) and (3.4.3) to allow a z-dependent field amplitude and phase, we write

dulor=—Av - Bu (5.2.1a)
v/ dt = Au— Bv+ (d/h)éw (5.2.1b)

awlor=—y(w+ 1)~ (d/h)év (5.2.1¢)
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Fig. 5.1. Ring cavity configuration for an optically bistable device.

0éjdz = 2wNdk)v (5.2.1d)
&3¢0z = —(2wNdk)u (5.2.1e)
where 7=1t~-z/c and k = w/c. Loss is assumed to occur only at the mirrors, so that y. =0, and the

absorber is assumed to be homogeneously broadened.
Let us assume that B is large enough that

v (5.2.2a)

v z% u+ % (—Z %’w) (5.2.2b)

in (5.2.1). In this rate-equation approximation to the TLA Bloch equations we replace (5.2.1) by

d d*/h

=yl ) (fz - ﬁ2)|E|2w (5.23a)
OE [ 2aNd*kih _

'5; = ({WT) (B+i4) Ew (5.2.3b)

where E = € ¢'%. From (5.2.3) it follows by simple manipulations that
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E<T+ % z> = E(7,0) eXp[———zzf ‘j ;ﬁh (B+id) W(r, z)] (5.2.4a)
4 _ . of [ ATNAkBIH _
W 2)= Y[ Wi 2)+ 2]~ e JE(0) {exp[ g Ve z)] 1} (5.2.4b)
where
’ Z_, ’
Wi, z)fjdz w<r+ 2 ) (5.2.4¢)

0

We must also specify the cavity boundary conditions, which may be conveniently written in terms of
the fields at the ends of the absorption cell [109]:

E(,0)= VT E(t) + R exp(ik?) E(t - f L) (5.2.5)

Ex(t)= VT E(, L) exp(ikL) . (5.2.5b)

Equations (5.2.4) and (5.2.5) are the bases of Ikeda’s analysis. He defines the population difference in
such a way that w = 3(~3) for an atom in the upper (lower) energy state. The connection with Ikeda’s
work is therefore made easier by replacing W in (5.2.4) by 2W, so that W below will actually be the
same as Ikeda’s. Defining 8 = 2aNd’k/h, Aw = 4, yr = B, = ¥, and u = d/h, we can write eqs. (5.2.4a)
and (5.2.4b) as eqs. (4) and (5) of Ikeda’s paper [109]:

iAo +
E(¢+f, 2)= E(r, 0)exp [29W(7, e 7;] (5.2.6a)
c Aw*+y?

by, W ]— 1} . (5.2.6b)

L Wis2y= (W 2) - B 0 e
PRMA AL 200" *Plaw?+ y2

2

We now define the dimensionless variables [109]

x=yt, «k=ydec, Ad=Avly,

s=7 w(i-=,1)

e(t2)= S E(6 2) [yan(1+ 497 (5.27)
ex{t) = %ET(t - é) [yiy(1+ 4%

ex(t) = 3 E0) [yl + 497
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in terms of which (5.2.5) and (5.2.6) may be combined in the form of time-delay equations [109]:

e(x,0)= VT e(x)+ R e(x — k, 0) exp{aL ¢(x)} expfifaLd (¢ (x)+ 1) — 8]} (5.2.8a)
d¢ . 1
- @) +32)=2]e(x - &, O [exp{2al ¢(x)} 1] (5.2.8b)
X al
er(x)= VT e(x - k, 0) explaL ¢(x)} expli[aLA(d(x) + 1) — (8, + kD)]} (5.2.8¢)
where
a =20y, /(Aw?+ y1) (5.2.92)
_ [ Nelhe
8o = k[(l Aw2+yi>L+l]+27rM (5.2.9b)

and 27M is introduced as the integral multiple of 27 closest to the first term on the right-hand side of
(5.2.9b).

The steady-state limit of (5.2.8) is obtained by setting d¢/dx = 0 and &(x, 0) = constant. If §,= 4 =0,
we obtain after simple algebra the steady-state relation

1 2
log[1+ T(?— 1)] +—5%{[1+ T(Z- 1)} - 1}= Lal (5.2.10)
Er 2T ET

where £r denotes the steady-state value of er. This is the relation for “absorptive” optical bistability
obtained by Bonifacio and Lugiato [110]. They show that, for R greater than some critical value
depending on L, there are two allowed values of &y for the same value of ¢y, i.e., there is optical
bistability. (This is called ‘“‘absorptive” bistability because 4 = 0 implies there is no resonant dispersion.)
If aL, adL, |8, and |&*/T are all small compared with unity, we have the case of ‘“dispersive”
bistability observed in experiments of Gibbs et al. [111].

For a detailed review of optical bistability, and an extensive bibliography, the reader is again referred
to Abraham and Smith [106). Henceforth we will focus our attention primarily on chaos in optical
bistability.

If the population difference has a relaxation time much shorter than the ring transit time %/, so that
k > 1, we may set d@p/dx =0 in (5.2.8b), and the time-delay equations in this limit reduce to a discrete

mapping:

£o.n=VT &1+ R €0, ,-1 explaLs,) explijaLd (¢, + 3) — o)} (5.2.11a)

e1,n= VT g n-1 explaLe,) explifaLA(¢, +3)~ (8o+ kD)]} (5.2.11b)

2
b, t+3= I [£0, n-1I* (1 - exp(aLd,)) (5.2.11¢)
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where
£o.n = €(xo+ nx, 0) (5.2.12a)
E1 . =ex(Xx + nx). (5.2.12b)

Ikeda [109] iterated the mapping (5.2.11) for the example adL =6, al =4, §,=0 and R =0.95.
Within a range of values of |g[, the sequence {er, .} of transmitted field strengths is chaotic, and follows
a period-doubling route to chaos. This possibility of chaos in optical bistability sparked a lively interest
in “‘optical turbulence”.

Consider now a medium of TLAs far removed from resonance with the input field. If the absorption
coefficient of the medium is nonsaturable and the TLAs, being far from resonance, make no significant
contribution to it, then in (5.2.8) we may replace aLé by aL(—3). Defining e and 6 by

e(x,0)=[24(1 - e *F)] 2 ¢(x) (5.2.13a)
$(x)+3=(1/adL) 6(x) (5.2.13b)

we then obtain from (5.2.8) the time-delay system

e(t)= A+ Be(r—~ tr) expfi[8(¢) - So]} (5.2.14a)

%n 6(t)= —8(t) + |e(t - tx)]? (5.2.14b)
where

A=[2TA(1-e L)) 2g (5.2.15a)

B=Re 7 (5.2.15b)

=Y. (5.2.15¢)

Equations (5.2.14) for the case of “dispersive” optical bistability are identical to those of Ikeda et al.
[112] for the case in which the cell contains a medium with a nonlinear refractive index. In their case the
longitudinal relaxation rate y, of the optical Bloch equations is replaced by the relaxation rate used in
the Debye theory of dielectric relaxation, and A is defined differently. They show that the equations
(5.2.14) admit chaotic behavior, and Nakatsuka et al. [113] have observed this optical turbulence
experimentally, as discussed below.

When the cavity circuit time is much larger than the material relaxation time (i.e., s > 1), we may
use an adiabatic approximation to 6(f), setting the left-hand side of (5.2.14b) to zero so that
6(t)=|e(t — tr)*. Then from (5.2.14a) we obtain

e(t)= A+ Be(t— tg) expfil|e(t — t=)]*— o)} . (5.2.16)
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In this approximation, therefore, the differential-difference system (5.2.14) is replaced by the discrete
mapping

e, = A+ Be,_;expfille,—s|* — 8]} (5.2.17)

studied by Ikeda et al. [112]. This takes the form of a real two-dimensional mapping that has a
period-doubling route to chaos. The results of a detailed study of this map have been reported by
Carmichael et al. [114].

The fixed points é of the map (5.2.17) may be found numerically. In particular, the amplitudes |é]
are determined by the equation

A= |e|[1+ B2~ 2B cos(|éf? - 8] (5.2.18)

assuming for simplicity that A is real. Figure 5.2 shows |¢] as a function of A for §,=0 and B = 0.5, and
also indicates which branches of the solution are stable. Proceeding along the lower stable branch from
A =0, stability is lost at A=1.24775, and a period-doubling bifurcation occurs. At A =15, for
instance, the iteration of (5.2.17) starting from e,=0 yields |e,| = 1.807953, 0.6226517, 1.807953,
0.6226517, ... after initial transients die out. At A=1.511525 a 4-cycle is found, and very small
increases in A lead to more period doublings and chaos. Carmichael et al. [114] have verified that the
rate of period doubling to chaos is governed by the Feigenbaum number §.

Figure 5.3 shows the chaotic attractor in the complex e plane as computed by Ikeda et al. [112] for
the case B = 0.4, A =4.39. The enlargement shown in fig. 5.3b shows a structure within structure, as in
the case of the chaotic Hénon attractor (fig. 2.3). In fig. 5.4 we show the Ikeda attractor for the case
B =0.5, A=1.565. The attractor in this case also shows the characteristic ribbonlike aspect of a strange
attractor under enlargement.
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Fig. 5.2. |é] as a function of A for & =0 and B = 0.5, indicating which branches of the solution are stable. (Courtesy of H.J. Carmichael.)
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It is interesting to consider the influence of noise on a chaotic dynamical system. Zardecki [115] has
considered the effect on the Ikeda attractor of Gaussian noise superimposed on the incident driving
field. The added noise term is g, + i, ], where g is a small real number and &,, 7, are independent
Gaussian random variables of zero mean and unit variance. Figure 5.5a shows a section of the Ikeda
attractor for B = (0.8, A = 3.0 without noise (g = 0), and fig. 5.5b shows the same section for ¢ = 0.001.
It is evident that one effect of noise is to change the fractal dimension d (eq. (2.3.13)) of the attractor.
Figure 5.6 shows d(z) = log N(g)/log(s™") computed by Zardecki for both the Tkeda and Hénon maps,
with and without noise. On a very fine scale of resolution (¢ smalil), below the magnitude of the noise,
d(e) is close to 2.0, which is in fact the fractal dimension of two-dimensional Gaussian noise. That is, at
high resolution d(¢) is a measure of the noise and not the dynamical system. For coarse resolution d(e)
approximates the fractal dimension of the attractor in the absence of noise, i.e., 1.26 and 1.41,
respectively, for the Hénon and Ikeda maps.

Ikeda et al. [112] argue that, with increasing ¢, eq. (5.2.17) eventually becomes inapplicable, even if
the condition yytx>1 is satisfied. This is a consequence of very sensitive dependence on initial
conditions. For if e(f) has any variations, small differences between e(t;) and e(f;) 0=1,# 1, <tg)
become magnified, and their images under the mapping (5.2.17) eventually have a very short “cor-
relation time”. When this time becomes as small as the material relaxation time, we can no longer make
an adiabatic elimination of 8(¢).

If B<1but A’B ~ 1, we can write the following approximate version of (5.2.14):

% 6(t) = —8(£)+ A1+ 2B cos[8(t - tz) — &)} . (5.2.19)
I

(Note that this time-delay differential equation is effectively equivalent to an autonomous system of
infinite order. The Poincaré~Bendixson theorem does not apply.) By numerically integrating (5.2.19),
and Fourier transforming the time series so obtained, Ikeda et al. [112] find a transition to chaos as A is
varied: The power spectrum of #(¢) changes from a series of sharp spikes to a broad-band spectrum.
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The experiments of Nakatsuka et al. [113] on chaos in an “all-optical”’ bistable system support this
prediction. Their experimental arrangement is indicated in fig. 5.7. A single-mode optical fiber, having a
quadratic nonlinear index, is used as the nonlinear “cell” in the ring cavity. The high power level
necessary for the observation of chaos with this system was obtained from the second harmonic of a
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Fig. 5.7. Schematic of experimental arrangement of Nakatsuka et al. [113]. (Courtesy of H. Nakatsuka.)
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mode-locked YAG laser (pulse separation ~7.6ns). As the bifurcations to chaos stem from the
interference of the input and cavity fields, it was necessary to match the ring transit time to the period
of the mode-locked pulses. The cavity was such that B =0.4-0.5, and the parameter A could be
increased sufficiently, by raising the input power level, to realize a chaotic regime of the system. When
the peak power of the input pulse train was raised from 50 to 160 W, a period doubling of the output
train was observed. At a power level of 300 W the output was chaotic. The results were consistent with
the theoretical model.

Chaos in a “hybrid” optically bistable device, in which a delay time is introduced electronically using
a delayed feedback line, was observed in 1980 by Gibbs et al. [116]. Their hybrid device is well
described by eq. (5.2.19) of Ikeda et al. [112], although of course the origin of the delay time 7 is
different.

Chaos in an all-optical ring-resonator system employing an ammonia cell and injected CO, laser
pulses has been reported by Harrison et al. [117). As in the experiments of Gibbs et al. there is evidence
of a period-doubling route to chaos. Their approach offers considerable flexibility for the variation of
parameters, and furthermore enjoys the theoretical neatness associated with a homogeneously
broadened two-level system.

The development of chaos in a ring resonator pumped by a sequence of sech pulses has been studied
numerically by Blow and Doran [118]. Their analysis is based on a nonlinear, Schrodinger-like wave
equation, in which the dispersive nonlinearity is due to the Kerr effect. Chaos via period doubling was
observed with increasing pump intensity, followed by an inverse Feigenbaum sequence. In contrast to
the dispersionless case [113], all points of the pulse circulating in the cavity seem to have the same
dynamics for their choice of parameters.

5.3. Chaos in optical mixing

It is also possible for chaos to appear in the propagation of intense laser radiation in a nonlinear
optical medium. We will consider an example involving coupled wave equations for the pump, Stokes
and anti-Stokes modes in Raman scattering [119].

Let A;, A; and A; be the electric field amplitudes for the anti-Stokes, pump and Stokes modes,
respectively, and assume perfect phase matching. We write [120, 121]

Al = ""ylAl - Bl['AZIZAl + A%A;] (5313)
Az = - ’)/2A2 + BZ[IAIIZ - 'A3|2]A2 (5.31b)
A3 = "’)’3A3 + ﬂ3[‘A2|2A3 + ATA% . (5.31(:)

The y; are loss or gain coefficients, and the B; are mode-coupling coefficients involving Raman cross
sections {120]. Introduce real variables a; and 6, by writing

A; = ai(z)expli 6,(2)} (5.3.2)

and assume for simplicity that 26, — 6, — 6, = 0 at the input plane z = 0. Then (5.3.1) takes the form of a
third-order autonomous system:
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d; = —y1a,— Bi(a; + as)a3 (5.3.3a)
dr = —y2a, 1 Bo(ai — a3)a, (5.3.3b)
d3 = —%Ya3ds3 + ,83(a1 + (13)0% . (533C)

We will focus our attention on the parameter values y; = -1, .= y3=~79, £ =9,8,=5,8;= 1.
Consider first the case y = —1. There are five fixed points of (5.3.3), and in this case they are all
unstable. Figure 5.8 shows ay(z) for the initial condition a;(0) = a»(0) = as(0) = 1. The evolution of a,
looks chaotic, and this is confirmed by taking the Fourier transform of a,, for instance, as shown in fig.
5.9. In fig. 5.10 we plot ax(z) vs. a;(z). The orbit winds around one fixed point and then another, and
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Fig. 5.8. Variation of pump amplitude a; with z for 1= -1, 2= y3=1,8/=9, 8:=5, 8= L.
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Fig. 5.9. Power spectrum of a; of fig. 5.8.
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Fig. 5.10. a; vs. ay for the parameters of fig. 5.8, 40 < z < 100.

when one looks at its development in time (or actually z) it appears to switch erratically between the
two. A similar result is found when a;(z) is plotted vs. a,(z) (fig. 5.11). These results are reminiscent of
the Lorenz model, and in fact (5.3.3) has an important property in common with the Lorenz model: It is
invariant under the transformation (a,, a,, as)— (—ay, 4,2, —as), the a, axis is invariant, and any point on
the a, axis approaches the origin.

Let us now consider a Poincaré map using the surface of section a, = 0 (see fig. 2.5). The points on
the Poincaré map shown in fig. 5.12 for y = 1 appear in the a,as plane in an apparently random fashion.
We also show in fig. 5.13 a magnified section of fig. 5.12. When this section is further enlarged we can
begin to see structure within structure, or self-similarity, suggesting that the Poincaré map has a
Cantor-like structure associated with strange attractors.
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Fig. 5.11. ay vs. a3 for the parameter values of fig. 5.8, 40 < z < 100.
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Fig. 5.12. Poincaré map obtained by plotting a3(z) vs. az(z) for points z at which a; = 0 and 4, <0.

Sensitivity to initial conditions for this chaotic Raman attractor may be verified by computing the
Lyapunov characteristic exponents of the system. We have ‘“very sensitive dependence on initial
conditions” (chaos) if any of the Lyapunov exponents is positive, and so it suffices, in order simply to
verify that the system is chaotic, to compute the largest exponent. This may be done as described in
section 2.4. The result of the computation for the chaotic Raman attractor with y = 1 is shown in fig.
5.14. y converges to about 0.1, verifying that the attractor is chaotic.

If we reduce y to 0.05, we obtain for a,(z) the result shown in fig. 5.15. The system reaches a stable
limit cycle, as confirmed both by spectral analysis and Poincaré maps. In fig. 5.16 we show a;(z) vs.
ax(z) for this case of orderly behavior. The orbit in the a,a; plane simply keeps retracing its path over
the figure eight.

This example of order and chaos in a nonlinear optical problem will be difficult to study experiment-
ally, as it assumes gain at the anti-Stokes frequency but loss at the Stokes and pump frequencies.
Nevertheless it suggests that chaos may be found in other nonlinear optical phenomena of this type. For
instance, Ray [122] has suggested that chaotic behavior described by the Lorenz model may be found in
three-wave optical mixing. It should also be mentioned that Randall and Albritton [123] have studied
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Fig. 5.16. ay vs. a; for the parameters of fig. 5.8.

partial differential equations modeling nonlinear stimulated Brillouin scattering in a medium with a
reflecting boundary. The boundary leads to results qualitatively different from the predictions of the
usual steady-state coupled wave equations, including the generation of subharmonics of the acoustic
wave frequency. The scattered light intensity may also have chaotic time evolution.
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6. Chaos in infrared laser-molecule interactions
6.1. Introduction

A vibrational mode of a molecule pumped by a laser is basically an example of a sinusoidally driven
anharmonic oscillator. The possibility therefore arises that the dynamics of this nonlinear oscillator
could be chaotic for a certain range of parameter values. In fact the Duffing oscillator considered in
section 2.5 serves as a crude model of a driven molecular oscillator. In this section we will consider
more realistic models, taking into account “background” vibrational modes coupled to the infrared-
active pumped mode. We will see that for realistic parameter values the pumped-mode dynamics is
indeed predicted to be chaotic [124]. Furthermore this chaos may explain very nicely a general trend
observed experimentally in the multiple photon excitation of a large number of molecules, namely that
the absorption tends to be fluence dependent rather than intensity dependent. We will also describe a
model that includes molecular rotations but not the intermode coupling, and again predict that the
molecule undergoes chaotic motion under the influence of the laser [125].

6.2. The model Hamiltonian

The energy-level spacings for electronic, vibrational and rotational transitions differ by orders of
magnitude, and it is reasonable therefore to assume the separability of these motions. The Born-
Oppenheimer approximation [126] is just the assumption that electronic structure may be separated
from the vibrational-rotational structure of a molecule. Since we are interested here in infrared
laser-molecule interactions, we will ignore the electronic structure of the molecules.

Consider first a diatomic molecule, as illustrated in fig. 6.1. The Hamiltonian describing the
interaction of such a molecule with an applied (infrared) field is simply

H=4a'a, + By(J2+ T+ 06,C 5,(a}+ a,) 6.2.1)

where the first and second terms represent the vibrational and rotational energies, respectively, and the
last term describes the coupling of the vibration to the applied field. The operators a, and a’ are the
annihilation and creation operators for the vibrational motion along the z axis of the molecule; 4 is the
frequency detuning between the laser and the molecular vibration. J, and J, are the angular momentum
operators for the two rotational degrees of freedom, the constant B, being inversely proportional to the
moment of inertia. (2 is the Rabi frequency, and C_, is the direction cosine diadic taking the field along
the Z axis in the laboratory frame into the molecular dipole moment along the z axis in the molecular
frame; éz is the unit vector giving the orientation of the applied electric field.

The anharmonicity of the molecular vibration may be accounted for by adding a term —y(ala,) to
the Hamiltonian (6.2.1), where y is the “anharmonicity” constant. This correction perturbs the energy
of vibrational level n by —yn? It may be regarded as the rotating-wave approximation to the standard
g*=(a+ a")* anharmonic correction. With this addition the Hamiltonian (6.2.1) applies not only to a
diatomic molecule, but also to a nondegenerate pumped mode of a polyatomic molecule. That is, it
contains the essential physics of the laser-molecule interaction.

Consider now the specific example of the SFs molecule. The two infrared active normal modes of
vibration in this case, denoted v; and v,, are separated by roughly 300 cm™"*. This means that a laser can
interact selectivity with one specified mode, and since the v; mode vibrates in the 10 um region it has
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Fig. 6.1. A diatomic molecule having rotational degrees of freedom along the x and y axes.

been studied extensively using the CO, laser [127]. The v; mode is somewhat complicated by the fact
that it is triply degenerate, and this brings some additional features into the Hamiltonian. Furthermore,
we should include non-laser-coupled ‘“‘background” modes in the Hamiltonian, because they are
coupled to the laser-pumped »; mode and can exchange energy with it. For our generic Hamiltonian
describing infrared absorption in a polyatomic molecule we therefore write

H = Hpy+ Hem + Hic t Hr + Hemp (6.2.2)
where
Hpm=A4a"-a-x(a'-aY+ G(a"xay + T 3 (ala;) (6.2.3a)
Hov=2 (A +&n) bl b+ 2 Xonm (B} * b (6.2.3b)
Hic=2 Bn(@" by +bl-a)+ 2> > Xoun(bn+b7,) (br - b)) (6.2.3¢)
m n m¥n
HR = B()J2 (623d)

Hong = 06 -C-(a"+a) (6.2.3¢)



J.R. Ackerhalt et al., Chaos in quantum optics 281

where we have indicated explicitly the vector character of the various operators. Hpy is the Hamil-
tonian operator for the pump mode; it contains terms representing its anharmonic character (y), its
vibrational angular momentum (G), and its vibrational tensor splitting (7). The latter two terms are
attributable to the degeneracy of the pump mode, and for this reason were not present in (6.2.1). The
anharmonicity term, another consideration in a realistic model, reflects the presence of a continuum at
high excitation energy (i.e., a real molecule can be dissociated!). The Hamiltonian Hgy, for the
background modes is similar to Hpy, but we neglect the G and T terms for simplicity. Hic represents
the intramolecular mode coupling among all the modes; the first term is the coupling between the pump
mode and the background modes, the second is a mixing among the background modes. Hy is the
(rigid-rotator) Hamiltonian for molecular rotation, and finally Hpuy is the laser-pump-mode interaction.
The laser field is treated as an externally prescribed, classical field.

In the following sections we will consider model problems based on simplifications of (6.2.2). The
most significant aspect of these models, which we believe are fairly realistic, is that chaotic behavior is
predicted. In other words, we believe that chaos is fundamental to the process of infrared multiple-
photon absorption. Furthermore the appearance of chaos has interesting experimental consequences, as
we will see.

6.3. A basic model of multiple photon excitation

We will now describe a simplified model based on the Hamiltonian (6.2.2). First of all let us neglect
entirely the rotation of the molecule. We will take G = T =0 and assume that the background modes
are perfectly harmonic, so that x,.. =0 in (6.2.3b). We furthermore ignore any coupling among
background modes, setting y... = 0 in (6.2.3c). Thus we replace (6.2.2) by

H = Hpm+ Ham+ Hic+ Hpme (6'3-1)
where
Hpy=4da'a— y(a'a) (6.3.2a)
HBM = Z (A + Em)b-,r"bm (632b)
Hic=2 Bn(a'b, + bla) (6.3.2c)
a ., . .
Hpmp=—=(c’a + a’c) (6.3.2d)
Vn

where ¢, ¢’ are the annihilation and creation operators for the quantized laser field mode. As indicated
earlier, we will treat the applied field classically in the end. It is nevertheless useful to introduce ¢ and
c' at this stage because we can easily identify the constant of the motion

a'a+3 bl.b, + c'c = total excitation number (6.3.3)
m
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from the Heisenberg equations. This constant of the motion is a consequence of the rotating-wave
approximation.

Without much loss of generality we will assume the coupling parameters §3,, are all the same: 8,, = 8.
As in radiationless transition theory it is also convenient to assume that the background oscillator
frequencies are uniformly distributed [128]:

em = Ao+ mp~! (6.3.4)

where 4, is the separation between the band origins of the nearest background oscillator and the pump
mode, and p is the density of background states. Such a “quasi-continuum” (QC) model in fact has
roots in the Weisskopf-Wigner theory of radiative decay [129]. Related QC models have recently been
considered in the context of laser-molecule interactions by Eberly et al. [130, 131] and Galbraith et al.
[132]. The present model permits considerable analytical simplification via the Poisson summation
formula [133].

In SF, the nearest background mode to the pump mode v; is v»+ v, and the anharmonicity of this
mode is less than that of »;. This provides some justification for the simplification of treating the
background as harmonic. The simplification of an infinite number of background oscillators is also more
reasonable than might at first be supposed. The work of Bixon and Jortner [128], for instance, shows
that the strength of the coupling of the pump mode with the background, when diagonalization is
performed, is a Lorentzian function; for small coupling constant B, which we anticipate for a real
molecule, the number of background oscillators can then be safely extended to infinity, because beyond
a certain number there is essentially no contribution. This point is also discussed from a different point
of view in ref. [133].

A final approximation, which makes the model more tractable, is to treat not only the field but the
entire dynamics classically. Thus, for instance, a, a'—>a, a*, ordinary c-numbers. Multiple photon
excitation typically involves the absorption, in many molecules, of ~30 photons. We feel that quantum
effects correlate to just a few photons absorbed, whereas we are interested in gross features of the
absorption process. Other workers have also argued in favor of classical dynamics in the theory of
infrared multiple photon absorption [134-136].

6.4. A discrete mapping

The equations of motion obtained from the Hamiltonian (6.3.1) are

i =—ida+2iyalal*-i2-iB D b, (6.4.1a)

b = —i(4 + Ao+ mp )b, —iBa (6.4.1b)

L (6.4.1c)

c=—=—a. 4.1C
Vn

We assume that at ¢ = ( there are n photons in the laser field. The formal solution of (6.4.1¢) is



JR. Ackerhalt et al., Chaos in quantum optics 283

— i
)=V -—— f dr a(r) (6.4.2)
Vn
0
and therefore

!

(R =n+20 f dr' m[a (1)) 6.43)

0

for n > 1. In other words,
n—le(t)2 = —20 J dt' Tmfa(?)] (6.4.4)
0

represents the number of “photons” absorbed from the applied field.
From (6.4.1b) we have the formal solution

¢

b (1) = i j a7 a(r') expi=i(d + do+ mp~) (1~ 1)} (6.4.5)

0

where all the background modes are assumed to be in their ground states at the initial time ¢ = 0. Now
in (6.4.1a) we need the sum

> b.(t)=-iB f dt’ a(t') exp{-i(4 + Ao)(t— ')} D, exp{—imp~'(t - 1)}. 6.4.6)

The assumption that the background modes are uniformly spaced above and below the pump mode
frequency allows us to invoke the Poisson sum rule:

o

> expl~imp i (t— )} =2mp i 8(t~1t—-2mmp). (6.4.7)

m=-—o0 m=-—c

Thus

S b, (1) = —27ifp [%a(t)+ S Aralt - mrg) 0(t - mTR)] (6.4.8)

m
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where @ is the unit step function and
TR =27p (6.4.9a)
B = exp{—i(4 + do)7s} . (6.4.9b)

Using this result in (6.4.1a), we obtain a time-delay differential equation for a:

a(t)=—-id a(t)- % a(t)+2iya(®) ja()P —iL2-v 2-1 B™ a(t— mrg) 6(t — mry) (6.4.10)
where
y =2uB%p (6.4.11)

is simply the decay rate, out of the pump mode, that would be predicted by Fermi’s Golden Rule. This
exponential decay rate applies in the limit 7 > =, i.e., when the background level spacing goes to zero
and we have the limiting case of a true continuum. We see that 7r plays the role of a “recurrence time”,
or the rephasing time of the background modes.

If we set the anharmonicity y to zero in (6.4.10), the time-delay equation becomes linear and has an
exact analytical solution [93]. In this case the system is not chaotic. Similarly if 7r > then (6.4.10)
reduces to

(1) = —id a()- % a(0)+ 2iy a(e) |a ()P - i2 (6.4.12)

which is essentially of the form of the RWA Duffing system (cf. (2.5.4)) and likewise does not exhibit
any chaotic behavior. In other words, chaos can only occur in our model if (1) there is an anharmonicity
x # 0, and (2) the background mode frequencies do not form a continuum. We shall see that when (1)
and (2) are satisfied the system (6.4.10) describing the pumped mode dynamics is indeed chaotic.

For 1 < 7 eq. (6.4.10) reduces to (6.4.12). The only effect of the background for such times is to cause
exponential decay from the pump mode at the Golden Rule rate. At t = 7g, however, the background
“signals” back to the pump mode. This feedback is evident in the equation

a(r) = —id a(f) - -;— a(t)+ 2iy la(OR a()-i2 - yBa(t—m7) (e <t<27a). (6.4.13)

In general the behavior of a(¢) on the interval mrg <t <(m + 1)1y is affected by its behavior on all
earlier intervals. The phase 8 determines how the relative location of the band origins affects the
absorption and emission of photons by the molecule.

Equation (6.4.10) has some. useful scaling relations. Let us define

i="a (6.4.14a)

e
0
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02
a=—yx (6.4.14b)
Y
T=yt (6.4.14c)
TR = y7& . (6.4.14d)

Then we may write (6.4.10) in the form

a(T) = —i%d(T)—%d(TH dia |a(T)? a(T) - i- i 3™ (T - mTg) O(T - mTy). (6.4.15)

On resonance (4 = 0), this equation depends on only two variables, @ and B. For simplicity we will
henceforth restrict our discussion to this case of exact resonance.

The rescaling (6.4.14) not only simplifies the parameter space, but also elucidates some of the physics.
If the relaxation constant y is very large, for instance, and the laser cannot pump the molecule very far
up the vibrational ladder, then the scaled system will have a small anharmonicity «. But if the laser
power is large, then the molecule can be pumped fairly far up the ladder, and the scaled model will have
an effectively large anharmonicity. Both of these physically intuitive effects demonstrate the equivalence
of many different molecules with respect to relaxation, laser power, and anharmonicity.

If the relaxation is very fast (yrr > 1), then on each interval (mTp < T <(m + 1)Tx) a quickly
approaches a “steady state” for that interval [133]. Then we can set @ = 0, and (6.4.15) reduces to an
equation for the steady state on interval N as a function of the steady states of all earlier intervals:

N
{%* 21a IdN,Z} dN = _i“ E BmdN_m
m=1
N-1 _
=—i- > BN "4, (6.4.16)

m=0

where dy denotes the steady-state amplitude on the interval NTy < T <(N + 1)Tg. Equation (6.4.16)
implies that

{3- 2ia [anf} an = ~i(1 - B)~ B+ 2ia |an_ P dn-1 (6.4.17)

where @, satisfies

L= i |aoP} do=—i. (6.4.18)
If we define
CN = %_ 2 |¢i~|2} dN (64193)

dy = {5+ Zia |an ]} an (6.4.19b)
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then
|an[* = flen?) = fldnP) = fn (6.4.20)
since |en| = |dn|. Here f is the cubic function for |ay|* implied by (6.4.19), and has only one real root:
40y |°+ H|anP - len 2= 0. (6.4.21)

Using the definition of f, we can rewrite (6.4.17) as

on=—i1-B)-§ [igﬂ”—‘] Cnet. (6.4.22)

%" 2iafN—1

The factor in square brackets is simply a phase factor:

exp(i®n) = (3 + 2iafy)/(t - 2iafy) (6.4.23)
and so
en =—~i(1-B)— B exp(i®Pn_1) cn-1 (6.4.24)

where ¢y = —1.

Under the assumption of fast relaxation to a steady state on each interval, therefore, we have
reduced (6.4.15) to the discrete mapping (6.4.24). In this mapping the solution for ¢y, is needed to get
exp(i®n- ). If the system is harmonic (a = 0) then from (6.4.23) we have exp(i®y) = 1, giving us simply

en = —i(1- B)— Bew- (6.4.25)

with solution

(6.4.26)

- ]

Thus there is an N-cycle (i.e., cx = co) when (=)~ = 1. If 8 = —1 we apply I'Hospital’s rule to (6.4.26) to
obtain

v = ~i2(N+ 1)~ 1] (6.4.27)

which of course is not cyclical. Although the harmonic case has a fairly rich structure, the mapping in
this case does not admit chaos. In the following section we will also consider the discrete mapping in the
anharmonic case. In either case the discrete mapping is obtained only under the assumption that a
steady state is reached on each interval; this ignores the influence on a given interval of the dynamics
from previous intervals. Comparison with the results for the system (6.4.15) without this assumption
shows, as we shall see, that such “memory” effects are very important.
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6.5. Chaotic behavior in multiple photon excitation

Before considering some of the time dynamics let us consider some parameter values characteristic
of real molecules. Laser intensities of 1-16 MW/cm® are common in multiple photon excitation
experiments; this translates into 0.1 < £2 < 0.4 cm™"* for the Rabi frequency in wave numbers. We would
expect densities of background states in the 1-4/cm™" regime and possibly higher. Coupling parameters
in the range 0.1-0.4 cm™', comparable to the Rabi frequency, are also expected. These parameter values
give y~0.8-1cm™ (y~'~ 5psec) and 7x ~ 30-130 psec. A reasonable value of y would be ~2cm™,
which gives a =0.5 for the anharmonicity of the scaled model.

In the resonant case E = exp(—iA_orR) = exp(~i¢), where
¢ = Aot = 2m(dop) 6.5.1)

and p, we recall, is the mverse of the background level spacing. Thus, if Ao is halfway between
background levels, Aop = 3 and ¢ = . If 4, is on a background level, 4op = 0 and ¢ = 0. We will focus
our attention on the resonant case.

By numerically integrating (6.4.15), we can compute the average number of photons absorbed by the
pump mode and also, by (6.4.4), the total number of photons absorbed from the applied field by the
pump and background modes. In fig. 6.2 we plot the average number of photons absorbed by the pump
mode over a time 5 Ty for the harmonic case a = 0 with ¢ = m/2, 8=02cm™", p=4cm, 2=03cm™}
(9 MW/cm? in SF). (In this figure and those which follow, it is important to note that the number of
“photons” plotted is actually the scaled number |d[> = (y/2)*|al*. For the chosen values of y and {2,
therefore, the actual predicted photon numbers are an order of magnitude less than the scaled number
that is plotted.) On the first interval we observe the expected exponential relaxation to the steady-state
value indicated by a small box at the end of the interval. From (6.4.26) we expect this choice of ¢ to
give a 4-cycle; note, however, that the approach to steady state is different on the first and fourth
intervals. In fig. 6.3 we plot the total number of photons absorbed, which is observed to give a linear
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Fig. 6.2. Average number of photons absorbed by a harmonic pump mode, plotted for 5 Tr. A box at the end of each interval gives the steady-
state solution predicted by the discrete mapping. Parameters are e =4 =0, p=4cm, 8=02cm™, 2=03cm™, ¢ = n/2.
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Fig. 6.3. Total number of photons absorbed for the parameters of fig. 6.2.

variation on each interval. Again the predicted steady-state number of photons absorbed is indicated by
a box at the end of each interval. We see that the steady-state prediction becomes inapplicable after a
few intervals. The reason for this breakdown in the steady-state prediction is simply the carryover in the
full dynamical solution from one interval into the next, as mentioned at the end of the preceding
section. Physically, the pumped mode may reach a steady state on each interval and stop absorbing
photons, but the background modes of the molecule continue to take up energy from the laser, using
the pump mode as an intermediary. Whether the molecule absorbs or emits photons depends on the
interval and the value of ¢. The importance of ¢ may be seen by comparing fig. 6.2 with figs. 6.4 and
6.5, which are for ¢ =0 and ¢ = 7, respectively. For ¢ = 7 (fig. 6.5), for instance, we observe the
absorption proportional to N?, for large N, as predicted by (6.4.27).

PHOTONS ABSORBED
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Fig. 6.4. Same as fig. 6.2 except ¢ = 0.
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Fig. 6.5. Same as fig. 6.2 except ¢ = 7.

Of course the situation of real interest corresponds to an anharmonicity a # 0. For fig. 6.6 all the
parameters are identical to those in fig. 6.2, except that we have now introduced an anharmonicity
a =0.5. We note that, although the anharmonicity apparently adds more ringing to the dynamics, the
predicted steady-state values indicated by the boxes are still accurate. In fig. 6.7 we plot the total
(scaled) number of photons absorbed for the same case, but with the time extended to 150 Tr. The
steady-state predictions based on the discrete mapping of the preceding section are observed to be
completely invalid for the long-term dynamics. The time dynamics appears to go chaotic, and shows a
linear absorption rate with some “‘noise” superimposed.
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Fig. 6.6. Same as fig. 6.2 except o = 0.5.
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Fig. 6.7. Total number of photons absorbed for the same parameter values as in fig. 6.2, extending the integration to 150 Tx.

To see explicitly that the dynamics is chaotic, we have computed the power spectrum (fig. 6.8) and
the maximal Lyapunov exponent. For different values of ¢ the system is still found to be chaotic, but
the slope of the approximately linear absorption curve is dependent on the value of ¢. We have not
found a threshold for the onset of chaos, which we now believe is a characteristic mode of behavior in
multiple-photon absorption experiments. The linear absorption implies a fluence-dependent absorption.
Furthermore this feature is a unimolecular effect.

FFT SPECTRUM (LOG PLOT)
T T 1

3.0 - —

-0.0 r —

i i |
-0.00 0.10 0.20

Fig. 6.8. Power spectrum corresponding to fig. 6.7.
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6.6. Discussion of the role of chaos

We can summarize our investigations of multiple photon absorption based on the Hamiltonian
(6.3.2), with the QC assumption (6.3.4), as follows: For realistic molecular and driving-field parameters,
the time evolution of the driven molecular vibrations is chaotic. As a consequence, the absorption of
energy from the laser is approximately proportional to the time. This may be understood roughly as
follows.

From (6.4.5) we have

o0

S |ba(R=y f dr f dr' a*(¢) a(t") i Bm8(t" -t — mrg) (6.6.1)

m=—o0 m=—o

0 0

where we have again used (6.4.7). The total excitation number in the background modes may thus be
written in the form

4 t—miR
w©

S b0 =y f dr a*(¢)a(f)+ 2Re S A (- mrs) j df a*(f)alf + mra).  (6.62)

m=-—x

0 0

The second term involves the time-averaged correlation function (a*(¢) a(t + 7)), As is the case with the
logistic map or the Lorenz model, we find that correlations decay from their =0 values (but not
necessarily to zero). The major contribution is then from the first term, which describes, in a simple
rate-equation fashion, the growth of the background-mode excitation at the expense of the pump mode.
The growth rate is just ya*a, where y is the Golden Rule rate and a*a is the number of quanta in the
pump mode. It is this rate that gives rise to an approximately linear increase with time of the total
background-mode excitation number (6.6.2). This interpretation has been checked quantitatively. The
chaos, which causes the correlations in the pumped-mode amplitude to decay, is in this way responsible
for the incoherent energy deposition into the molecule.

Note that the incoherent absorption is found without recourse to coherence-destroying damping
terms in the model. In other words, the incoherent, predominantly fluence-dependent absorption is a
collisionless effect, a characteristic of an individual molecule.

One might expect it to be difficult to dissociate a molecule with radiation of one frequency, for the
anharmonicity destroys the equal level spacing of the harmonic oscillator, and the system is effectively
off-resonant after the absorption of a few photons. It therefore came as a surprise when SiF,, for
instance, was found to dissociate rather easily [137]. This led to considerable interest in the possibility of
bond-selective photochemistry and laser isotope separation. It gradually became clear, however, that for
most molecules the intramolecular relaxation of the pump mode into the background modes redistri-
butes the absorbed energy too rapidly to achieve these goals efficiently. In fact it became customary to
assume a statistical energy distribution in the background modes. This background (the quasi-
continuum) was modeled by rate equations, which naturally gave a strongly fluence-dependent ab-
sorption, consistent with experiment.

The dependence of multiple photon absorption on pulse energy rather than intensity has been found
for about 50 polyatomic molecules by Lyman et al. [138, 139]. Since an average over homogeneous and
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inhomogeneous linewidths could lead to an explanation of this lack of laser-molecule coherence, it has
usually been assumed that hotband and rotational averaging are responsible for this effect. In the
following section we consider a model including molecular rotation, and show that rotational effects
cannot be treated simply as a sort of inhomogeneous broadening.

6.7. Chaos in a vibration-rotation model

The Hamiltonian (6.3.1) does not include molecular rotation. We will now include rotations, but for
simplicity (and in order to isolate some of the effects) we will neglect anharmonicity and intramolecular
coupling. We consider a triply-degenerate harmonic oscillator coupled to an applied laser field and
allowed to rotate. From (6.2.2) we can identify the Hamiltonian for this system as [140]

H=Aa"a+ByJ*+0é-C-(a+a). 6.7.1)

The (classical) equations of motion obtained from this Hamiltonian are

a=-ida~i0QP (6.7.2a)
P =-2By(J x P) (6.7.2b)
J=0Px(a+a*) : (6.7.2¢)

where we have defined
P=¢-C. (6.7.2d)

We recall from section 6.2 that £ is the laser polarization vector, the components of which are referred
to the lab frame; a and a* for the infrared-active mode of the molecule have components referred to
body-fixed axes; and Tis the 3x3 orthogonal matrix relating the lab and body frames. Physically, eq.
(6. Z_)Zb) describes a precession of the body-fixed components of the laser polarization vector (i.e.,
£ - C) about the total angular momentum vector J. In what follows we assume the initial conditions

a(O) = (O’ 0’ 0) (6738)
J(0)=10,0, Jo) (6.7.3b)
= (1/V2,0,1/V2). (6.7.3¢)

Let us note first that, were J taken to be a constant of the motion by deleting (6.7.2¢) from the set
(6.7.2), then from (6.7.2a) and (6.7.2b), setting J = J,Z, we calculate

1 ;
P = % (cos 2BoJot, sin 2ByJot, 1) . 6.7.4)

Using this result in (6.7.2a), we obtain
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—_ + —_ —_ -—
laf = 02 1-cos(4 2Bozjo)t N 1-cos(4 2Bo;lo)t 4 1 cozs At ' 6.7.5)
—{%(-A—ﬁ—z-gmé— —2A—2Bf— —AJ

1

In our calculations we have set By=0.1 cm™, a characteristic value for molecules with large moments of
inertia (e.g., SFe), 2 =1cm™" and 4 = 0.5cm™". The vibrational energy given by (6.7.5) is much greater
than the rotational energy. The resonances at 4 = +2B,J, and 4 = 0 will be recognized as the P, Q and
R branches of the spectrum [141].

In fig. 6.9 we plot |al?, given by (6.7.5) with J, =5, as a function of 1. For our choice of parameters,
A £2ByJo =15, —0.5cm™", respectively, with 4 = 0.5cm™". Figure 6.10 is a plot of P, vs. P,, showing
the simple precession of P about J (in the z direction) in this case J = constant.

Let us now consider the full set of equations (6.7.2), with J no longer a constant of the motion but
satisfying (6.7.2c). In this case we obviously have a nonlinear set of equations. Figures 6.11 and 6.12
show |a* and P, vs. P,, assuming Jo =5 for the magnitude of the initial angular momentum (eq.
(6.7.3b)). Figure 6.11 shows an erratic energy deposition in the pump mode, in marked contrast to the
case shown in fig. 6.9. Figure 6.12 shows the erratic motion of the polarization vector, which is
attempting to precess about a moving J vector. It is evident that J here is not a constant of the motion.
The power spectra computed for |a|* and P,, P, strongly suggest that the dynamics of the pumped
vibration-rotation model is chaotic. That the motion is indeed chaotic has been confirmed by the
convergence of the maximal Lyapunov exponent to a positive value.

The chaos is associated with nonconservation of the molecular angular momentum. We have
J = Jo+ L, where [142]

L=i(axa") (6.7.6)
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Fig. 6.9. Energy in pumped mode in the vibration-rotation model with J held constant, 4 =0.5cm™!, 2= lem™, By=0.1cm™! and Jp=5.



294 J.R. Ackerhalt et al., Chaos in quantum optics

P1

-0.2 F ]

-0.8 1 —

ENERGY (nu3)

1
0.0 0.4 0.8
TIME (ns)

Fig. 6.11. Same as fig. 6.9 except J is not held constant.

is the vibrational angular momentum. Since |L <|a, a large value of |a]* results in a value of L large
compared with J,, and a destabilization of the motion of P. For J,> L, on the other hand, there is
basically a simple precession of P about J: the dynamics are gyroscopically stabilized. In this case the
motion is not chaotic. In other words, the chaos is dominant when the photon absorption (Ja[*) exceeds
the =0 angular momentum Jj, i.e., under strong driving conditions. Similar conclusions are deduced
from the consideration of parallel and perpendicular bands of symmetric-top and asymmetric-top
molecules of nondegenerate and doubly degenerate infrared-active modes. These studies show that
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Fig. 6.12. Same as fig. 6.10 except J is not held constant.

molecular rotations cannot be treated cavalierly as simple inhomogeneous broadening, because the
molecule—field interaction strongly couples the rotational and vibrational motion [140].

6.8. Discussion

We have found chaos in a quite reasonable model of multiple-photon infrared absorption by
polyatomic molecules. Both the vibrational anharmonicity and the coupling of the pumped mode to
infrared-inactive modes are essential for chaos; the latter effect has been treated using the quasi-
continuum model employed earlier in radiationless transition theory.

The appearance of chaos explains several features of multiple-photon infrared absorption. First, we
have found that the energy in the molecule increases, approximately linearly, with time. This flow of
energy from the laser to the molecule does not require any collisions. Indeed we have not put any
damping or de-phasing processes into the model. The chaos leads to a practically irreversible flow of
energy from the pumped mode to the background modes, which thus act effectively as a sponge for the
laser energy. This occurs in spite of the fact that the density of background modes may not be sufficient
to justify a priori the assumption of irreversible decay.

The energy deposited into the molecule is found to be (approximately) fluence-dependent, in
agreement with general trends found experimentally. We can thus understand some important aspects
of multiple-photon excitation of large polyatomic molecules that are found experimentally but have
hitherto not been satisfactorily explained: (1) The molecules readily absorb tens of photons without any
bottlenecking arising from their anharmonicity; (2) the process is strongly fluence dependent, and (3) it
does not require molecular collisions. According to the present theory, these features should hold also
in low-temperature experiments, where rotational degrees of freedom are “frozen out”. The molecular
rotation, however, can itself give rise to chaotic behavior, as we saw in the preceding section.

We have recently learned that chaotic dynamics has also been discussed by some Russian authors in
connection with multiple-photon excitation and dissociation. In particular, Belobrov et al. [143] have
found in a rather different model exhibiting chaos that “‘stochastic excitation’ of high vibrational states
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can be realized. Some time ago Zaslavskii and Chirikov [144] noted that the energy of a driven,
undamped pendulum can increase on average with time when its motion is chaotic. These resuits
suggest that our conclusions about the role of chaos in multiple-photon absorption may be valid
independently of the details of a specific model.

Such a “diffusive” excitation process associated with chaotic dynamics has also been proposed to
explain the microwave excitation and ionization of Rydberg atoms observed by Bayfield and Koch.
[145]. Classical models put forth by Delone et al. [146], Leopold and Percival [147] and Meerson et al.
[148]) seem to be consistent with the experimental results. Leopold and Percival [147], for instance, work
with the classical Hamiltonian

H=3P?—1/r+ zE cos wt (6.8.1)

and choose initial conditions by a Monte Carlo method (classical microcanonical ensemble) to
incorporate the degenerate (/, m) states for a given principal quantum number n. Results in excellent
agreement with experiment [145] were obtained, but of course alternative explanations cannot be ruled
out [146]. It may be worth noting that in this case of atomic diffusive excitation there is no obvious
resonance such as occurs in our molecular vibration model, where the applied field is nearly resonant
with the approximately harmonic vibrational ladder.

This diffusive excitation (and ionization) process proposed for Rydberg atoms in microwave fields is
based, as in our model of multiple-photon excitation (and dissociation) for molecules in infrared fields,
on the classical approximation. And therefore the old question of quantum chaos again arises: what
happens quantum mechanically when the corresponding classical system is chaotic?

Classical chaos is by now fairly well understood, and can be identified unambiguously (i.e., a positive
Lyapunov exponent); this seems especially true in light of the universal routes to chaos known for
dissipative systems. Part of the difficulty with quantum chaos is semantic, as there seems to be no
consensus as to how one should define quantum chaos. For instance, if one insists on defining chaos in
terms of a nondiscrete spectrum, then the discrete energy spectrum in our model of infrared
multiple-photon excitation [149] implies that there can be no chaotic (quantum) behavior! [150].

As mentioned in section 3.7, there are quantum manifestations of classical chaos [56-62]. In the
absence of any consensus on a definition of quantum chaos, however, it seems fruitless at this point to
argue whether our model of infrared multiple-photon absorption does or does not admit quantum
chaos. What we suggest will survive a quantum treatment of our model is the strong fluence dependence
of the process and the effectively irreversible influence of the quasi-continuum on the pumped mode.
Work is now in progress to investigate quantum corrections to the classical model.
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Notes added in proof

The number of papers dealing with chaos in quantum optics and electronics has increased dramatically
since we began the preparation of this introductory review. We call the reader’s attention to the feature
issue of J. Opt. Soc. Am. B (January 1985) devoted to instabilities and chaos in active optical media. An
international meeting on Instabilities and Dynamics of Lasers and Nonlinear Optical Systems was held at
the University of Rochester, 18-21 June 1985. Tutorial papers for the conference will be published by
Cambridge University Press. We also recommend the book Chaos, by Hao Bai-Lin (World Scientific
Publishing Co., 1984), which consists of an introduction to chaos in both conservative and dissipative
systems, a collection of reprinted papers, and an extensive list of references to studies of chaos in various
fields.

An interesting development in connection with the stochastic energy growth of driven systems is the
work of S. Fishman, D.R. Grempel and R.E. Prange, Phys. Rev. Lett. 49 (1982) 509; Phys. Rev. A29 (1984)
1639. Arguing by analogy with Anderson localization, these authors show that quantum effects tend to
suppress the diffusion in phase space predicted classically for certain chaotic systems. This quantum
suppression is observed, for instance, in the kicked-rotator model of G. Casati, B.V. Chirikov, F.M. Izrailev
and J. Ford. (See Stochastic Behavior in Classical and Quantum Hamiltonian Systems, eds. G. Casati and
J. Ford, Springer Lecture Notes in Physics 93 (1979).) The possible implications of chaos for the classical
principle of determinism, the ergodic principle, and quantum mechanics have been discussed for
nonspecialists by P.W. Milonni in the Proceedings of the Workshop on the Foundations of Physics
(University of Puerto Rico, 11-16 March 1985).



