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Abstract:
We reviewsomerecentdevelopmentsin theoreticalcavity quantumoptics, with specialattentionto themicrowaveregimeandto aspectsrelated

to quantummeasurementtheory.

1. Introduction

This article reviews somerecentdevelopmentsin theoreticalcavityquantumoptics. We concentrate
mostlyon the microwave regime,whereexceedinglyhigh Q-factorscan be achievedandthe resonator
can bethoughtof as a “photontrap”, andspecially addressquestionsrelatedto the quantumtheoryof
measurement.Unfortunately, this does not allow us to do full justice to the spectacularprogress
recentlywitnessedin the opticalregimeof cavityquantumopticsandto the considerablework thathas
beencarriedout in ion andneutralatomtraps. Evenwithin this restrictedframework, it is impossibleto
give a completereview of the recentdevelopmentsof the field within a few pages.We do not address
the problemof radiativecorrectionsin cavity QED, which is discussedin detail in two recentreviewsby
Haroche [1991]andMeschede[1992]andconcentratealmost entirely on the so-calledstrong-coupling
regime,characterizedby spontaneousemissionin the form of a nearly periodic exchangeof energy
betweenthe atom and a cavity mode.

This paper,which is essentiallyan abridgedversionof a recentreview[Meystre19921, is organizedas
follows: In section 2, we outline important aspectsof the Jaynes—Cummingsmodel describingthe
dipole interaction betweena single two-level atom and a single modeof the electromagneticfield.
Section3 outlinesthe conceptsof enhancedandinhibited emissionin the Born—Markovregime,usinga
densityof modesapproach.The strongcoupling regimeis discussedin section4, usingacoupled-modes
approach. Section 5 outlines key featuresof the micromaser theory. The analysis of selective
measurementsis coveredin section6, while QND measurementsarediscussedin section7. Section8
thenpresentstwo proposedways to generateSchrödingercats in micromasers.Finally, section9 is an
outlook and conclusion.

Considerablymore details and complete lists of referencescan be found in the recentreviews
by Haroche [1992],Meschede[1992],and Meystre [1992].The paper by Walther in this issue deals
with experimentalaspectsof cavity QED. The contribution by Harocheextendsour discussionof
Schrödingercats,while the paperby Kimble presentsexciting recentresults in the optical regime.

2. Jaynes—Cummingsmodel

The simplest form of interaction betweena two-level atom and a single quantizedmode of the
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electromagneticfield is describedby the Jaynes—CummingsHamiltonian [Jaynesand Cummings1963,
Barnettet al. 1986]

~f{=~hw~+hQata+h(gatu+adj.)=~~+ ~f, (2.1)

where

= + h[2a~a, (2.2)

~=/l(gatu +adj.). (2.3)

Here, w is the atomictransition frequency,lithe field frequency,a andat arethe bosonannihilation
and creation operatorsof the field mode, with [a, a~]= 1, o~,o~and o-~are atomic pseudo-spin
operators,with [o~, o~]= a~.The couplingconstant

g = (~~QI2h)sin KZ (2.4)

is the electric dipole matrix elementat the location Z of the atom,where ~ is the “electric field per
photon” ~ = (h11/e

0V)”
2 [e.g. Meystre and Sargent1991].

With the developmentof micromasers[Meschede,WaltherandMuller 19851, it hasbecomepossible
to reachexperimentalsituationsvery close to a practical realizationof this model andto investigatein
detail the complexitiesof the atom—field dynamicsin that simplestof all situations.

The eigenenergiesof the Jaynes—CummingsHamiltonian (2.1) are

~ (2.5)

E
211h(n+ ~)(I— ~h~~=h[~w+nfl— ~(~+~)], (2.6)

where ~ = w — 11 is the atom—field frequency detuning and we have introduced the generalized
n-photonRabi flopping frequency

(2.7)

The correspondingeigenvectorsare

1,n~=sinO,ja,n)+cosO~~b,n+1~, (2.8)

2, n~= cos0,, a,n~— sin 0~b, n + 1~, (2.9)

wherethe stateIa~and b) are the upperand lower atomic states,respectively,and n) are number
statesof the field modewith a~a~n~= n~n).The angle 0 is definedvia the relations

cosO~= ~ — ~)I\/(~~ — 6)2 + 4g
2(n+ 1), (2.10)

sin O~= 2gV~ 1!\/(~?J~,— 6)2 + 4g2(n+ 1) . (2.11)
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For n = 0 and on resonancew = ~ul,the dressedlevels 1,0) and 2, 0) are separatedby the frequency

9R0=2g, (2.12)

the so-calledvacuumRabi splitting frequency.
From theseresults, it is possible to compute all dynamicalpropertiesof the Jaynes—Cummings

model. In particular,assumingthat the atom is initially in its upperstate a) andthe field in the number
state n), we find that on resonancew = 11, the probability Can(t) 2 for the atom to be in the upper
stateat time t is given by

Can(t)~
2= cos2(gv~7~Tft). (2.13)

Similarly, if the atom is initially in its lower state b), we find

Can(t)~2= sin2(gvnt) . (2.14)

Theseresultsindicatethat the upperstatepopulationoscillatesperiodicallyat the Rabi frequency,very
much like in the caseof classical fields. There is howeveran importantdifferencebetweenthe two
situations:in the caseof a quantizedfield theRabi frequencyis different if the atom startsin the upper
or the lower state, respectively.This is due to the non-commutingcharacterof the creation and
annihilationoperatorsa~anda.

The Rabi solutions(2.13) and(2.14) yield the simplestform of “spontaneousemission”,as can be
seenreadily by setting n = 0 in theseequations.For an atom initially in the upperstate, this gives

Cao(t)~2= cos2(gt), (2.15)

while for an atom initially in its lower statewe find

Cao(t)~2= 0 . (2.16)

In contrast, in the caseof an atom driven by a classical field of zero amplitude,one would have
= 0. The reasonfor this fundamentaldifferencebetweenthe quantumandclassicaldescriptions

of the field lies in the fact that even though the expectationvalue of the quantizedfield amplitude
vanishes,that for its intensity does not:

~E2) = ~(0~(a + at)2~0)= ~. (2.17)

Statedanotherway, the vacuumfluctuationseffectively stimulatethe excitedatom to emit, a process
called spontaneousemission. The slow Rabi flopping that occurs for n = 0 is due to spontaneous
emissionfollowed by reabsorption,a processwhich is neglectedin the semiclassicalapproximation.

A numberof further featuresof the Jaynes—Cummingsmodel, including collapse[Cummings19651
and revivals, are reviewed e.g. in [Barnett et al. 19861. Revivals similar to the Jaynes-Cummings
revivals [Eberly, Narozhny and Sanchez-Mondragon1980] have been observedin a micromaser
experimentby Rempe,Waltherand Klein [1987].
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3. Enhancedandinhibited spontaneousemission

The Jaynes—Cummingsmodel exhibitsa skeletalform of spontaneousemissionwhosesignatureis a
periodic exchangeof energybetweenthe two-level atom and the initially empty cavity mode. In free
space,the situation is completely different, as the atom interactswith a continuumof modesof the
electromagneticfield. In this case,the probability amplitudescorrespondingto the interaction of the
atomwith eachof thesemodesinterferewith one anotherandcan lead to an exponentialdecayof the
upper statepopulation.

To treatthis problem,we considera two-level atom interactingwith a multimode electromagnetic
field. In the dipole and rotating-waveapproximations,this interactionis describedby the Hamiltonian

= ~hwo, + h ~ ul5aa, + h ~ (g,a~r + adj.). (3.1)

Here, ~ is the frequency of the sth mode of the field, a, and a; are the correspondingboson
annihilationand creationoperators,with [a,, a.] = 6,,., andg5 is the dipole couplingconstantbetween
the atom and modes.

If the atom is initially in its upperstate a) andthe field in the multimodevacuumstate {0}), one
easily finds that the probability Ca~üjfor the atom to still be excited at time t is governedby the
integro-differentialequation[seee.g. Meystre and Sargent1991]

C~0~= g~
2f dt’ Ca~ti(t’)exp[i(Q, — w)(t — t’)]. (3.2)

This equationwas first solvedby WeisskopfandWigner [19301,who found that in free spaceandin the
so-calledBorn—Markov approximation,the upperstatepopulationdecaysexponentiallyat the rate

= (1/47~))4w3~d~2I3hc3, (3.3)

where d is the dipole matrix element of the transition. The Weisskopf—Wignertheory predictsan
irreversibleexponentialdecayof the upperstatepopulationwith no revivals and/orperiodic exchange
of energybetweenthe atom andthe field. Although underthe actionof eachindividual modethe atom
would havea finite probability to return to its upper state,as in the Jaynes—Cummingsproblem,the
probability amplitudesfor all such eventsinterfere destructivelywhen summedover the continuumof
free spacemodes.

The Weisskopf—Wignerdecay rate ~f dependsexplicitly on the densityof modesof the electro-
magneticfield, as readily seenfrom eq. (3.2). Indeed,the result (3.3) is valid for free spaceonly, as it
replacesthe sum in eq. (3.2) by an integral, wherethe measureis the free spacemodedensity

~7f(Q) = Q2/ir2c3 . (3.4)

We also note that the Born—Markovapproximationusedin this derivation implicitly assumesa weak
couplingbetweenthe atom andthe electromagneticfield. Indeed,it resultsfrom successiveapplications
of second-orderperturbationtheory anddecorrelationsof the atom from the field modes.Clearly, the
Jaynes—Cummingsresult doesnot makethis assumptionand is valid to all orders. More generally,the
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coupled-modesapproachof section4 will considerspontaneousemissionof an atom in a cavity, and
showthat threedifferentcouplingconstantsmustbeconsideredandcompared,g beingoneof them. In
the strong coupling limit whereg is the largestof theseconstants,spontaneousemissionis qualitatively
as well as quantitativelydifferent from its weak couplinglimit.

Concentratingfor now on the weak coupling limit, and consideringa geometrycharacterizedby a
modedensity ~g(Q), we obtainthe decayrate

Yg~[~hig(Q)~f(Q)1Yf, (3.5)

provided that the Markov—Born approximationis still applicable.Dependingon the valueof
eq. (3.5) leadsto enhanced[Purcell 1946] or inhibited [Kleppner 1981] spontaneousemission.

It is perhapsuseful at this point to make a commentabout the dependenceof the spontaneous
emissionrate on the cavity densityof modes.The modestructuredependson the boundaryconditions
imposedby the cavity, and one might wonderhow the atom can initially “know” that it is inside a
cavity ratherthan in free space. Is there some action at a distance involved, and if not, what is the
mechanismthrough which the atom learnsof its environment?This problemhasbeen addressedby
Parker and Stroud [1987]and by Cook and Milonni [1987].These authorsshowedthat a proper
multimodedescriptionyields a simple answerto this question.In a real cavity, the atom initially in its
upperstatestartsto spontaneouslydecaywhile radiatinga multimodefield that propagatesaway from
the source.Eventually, this field encountersthe cavity walls, which reflect it. The reflectedfield acts
back on the atom, carryinginformation about the cavity walls as well as about the stateof the atom
itself at earlier times. If the phaseof this field is just right, it will thenpreventany furtheratomicdecay.
An alternativeway to think of this problem, first discussedby Milonni and Knight [1973]is the image
methodthat replacesthe mirror cavity by a string of virtual images.This method,which is valid for
cavitiesof dimensionsL ~ c/ye, leadsto the sameresultsas the mode expansionresults.

When the cavity Q becomesvery high, the cavity dampingrate ceasesto dominatethe atomic
dynamics: the atom—field coupling constantg becomesthe largest coupling constantand the Born—
Markov approximationceasesto be valid. In this case,a moreusefulway to think of the problemis to
considerthecouplingof the atom to a single modeof the field selectedby the cavity, this modebeingin
turn weakly coupled to a Markovian reservoir. The responsefunction of the cavity has a finite
bandwidth,and it passesa filtered versionof the vacuumfluctuationsto the atom,whichthereforesees
them as a “colored” reservoir.As far as spontaneousemissionis concerned,the irreversibledecayis
now modulatedby a periodic exchangeof energybetweenthe atom andthe cavity mode.

For extremeQ’s, one reachesa regimewherespontaneousemissionceasesto be irreversible.As
Q—‘ one approachesthe situationwherethe Jaynes—Cummingsdescriptionof the atom—field system
becomesappropriateandwherespontaneousemissionis in the form of a perfectlyperiodic exchangeof
energybetweenthe atom and that field mode that is closestto resonancewith the atomictransition.

4. Coupled-modesapproach

We haveseenin section2 that the couplingof a single atom with a cavity modein the vacuumstate
leadsto the vacuumRabisplitting (2.12). However, this simple argumentassumesthatboth the cavity
andthe atom haveinfinitely narrowwidths. As a result, it is impossibleto determineif the splitting will
be observablein practiceor will be maskedby the broadeningmechanismsassociatedwith losses.
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We havealso mentionedthat the Weisskopf—Wignertheory of section3 is inadequatein the strong
coupling limit, asit implicitly assumesthat the electricdipole couplingconstantis smallcomparedto the
spontaneousdecayrate y and, in a cavity, to the cavity dampingrate K. For the closedcavitiesusedin
microwaveexperiments,theseare the only relevantrates,andwith Rydbergatoms,it is easyto reach
both the weak coupling (or “bad cavity”) regime g ~ K and the strong coupling(or “good cavity”)
regimeg ~ K. In contrast,the dynamicsof an atom inside an open-sidedopticalcavity is characterized
in generalby three coupling constants.They are the atom—field coupling constantg, the rate y’ of
spontaneousemissioninto free space,andthe cavity dampingrate K. Most optical cavitiesencompass
only a small fraction of the free space41T solid angle,so that y’ y~,andthe coherentcouplingrateg is
usuallyexceededby K and/or‘y’. Fortunately,thecollectiveenhancementof g—~ g~

1~= g\/7Nthat occurs
for N atomsinside a wavelength[Harocheand Raimond1985] offers a way out of this difficulty and
permitsto perform experimentsin the strong coupling regimeg~ ~‘ y > K [Raizenet al. 1989]. This
multi-atom enhancementhasbeenemployedsuccessfullyto observethe vacuumRabi splitting in the
optical regime [Kaluznyet al. 1983, Brechaet al. 1986, Raizenet al. 19891. The strongcouplingregime
can also be reachedby decreasingthe volume of the cavity, therebyincreasingthe electric field per
photon ~ = (hQ/r0V)”

2 and hencethe dipole coupling constant(2.4). This techniquehas recently
beenusedby Kimble’s groupto observeabsorptiveopticalbistability in the optical regimewith as few
as 10 atomsor so at a time in the cavity [Kimble 1990, see also Kimble’s contributionin this issue].

Thegeneralsituationwhereall threeratesg, y’ andK are importanthasbeeninvestigatedmostlyby
the groupsof Carmichael, Kimble and Savage.Theoretically, one considersa single two-level atom
coupledto a single cavity mode(note that this is differentfrom the degeneratemodessituationstudied
by Heinzen et al. [1987]).The cavity mode is in turn coupledto a reservoir that accountsfor cavity
losses,while the atom is coupledto the free spacemodesnot encompassedby the cavity, leadingto a
spontaneousdecayrate y’. The interactionbetweenthe atom anda single cavitymode can be modeled
by the masterequation[Carmichaelet al. 1989, Savage1990]

= (1/ih)[11, p1 + ~y’(2~pu~ — — pu~u)+ K(2apa — a~ap— pata), (4.1)

wherep is the atom—cavitymode density matrix, 2K is the photondecayrate of the cavity, and ~ is
given by eq. (2.3).

To describespontaneousemissionfor arbitraryvaluesof y ‘,i andg~,we solve the masterequation
(4.1) in the three-statebasis a,0), b, 1) and b,0), where 0) and 1) are the zero-and one-photon
Fock statesof the field. In this basis,p has eight independentmatrix elements.Writing the master
equation(4.1) formally as

p = (1 /ih)[~V, p1 + Lp, (4.2)

the evolutionof the expectationvalue of an operator0 is given by

~0)=(1/ih)([0,~])+Tr(OLp) (4.3)

andwe obtain readily the two setsof coupled equations[Carmichaelet al. 1989]

(4.4)
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(45)

and

(d/dt)~ava)=ig((at~) — (au~))—2K(ata), (4.6)

~ (4.7)

(4.8)

Equations(4.4) and(4.5) describethe decayof the amplitudesof two coupledharmonicamplitudes.
Specifically,if the atom—field systemis preparedin the statea~a,0)+ b~b,0)+ bjb, 1), wherea, b

0
and b1 are real constants,theneqs. (4.4) and (4.5) describethe decayof the meanfield and atomic
polarization amplitudes. In the strong coupling limit g>> K, y’, the mean “energy” Ka

2) +

oscillatesbetweenthe atom and the field as it decays.In the limiting case K = 0, and for the initial
condition ~a) =0, Ku) = ab

0, we have

E = (ab~~)
2exp(—y ‘t/2)[1 — (y ‘/4g) sin(2gt)] , (4.9)

that is, E decaysat the averagerate (2K + y’)/2 = y’/2. The reasonfor the averagebetweenthe
atomic and cavity decayratesis revealedby the decayrate —EIE= ~y’[1 + cos(2gt)],which oscillates
betweenthe maximumof y’ and the minimumvalue of 0 (=2K), so that the decayrate is averagedas
the energyoscillatesbetweenthe polarization andthe field [Carmichaelet al. 1989].

In this regime,the spontaneousemissionspectrumsplits into two lineswhich correspondpreciselyto
the normal-mode splitting of coupledharmonic oscillators. Specifically, the spontaneousemission
spectrumS(w) is given by the doublet

K/2+y’/4 ., + K/2+’/’/4 . (4.10)
(K/2+y’/4) +(Q—w—g) (K/2+y’/4)+(Q—w+g)2

It consistsof two peaksseparatedby the vacuumRabi frequency2g (seeeq. (2.12)) and their half
linewidth (K + y’) / 2 is less than the free spacelinewidth wheneverK < y’ /2.

In the “bad cavity” limit K > g ~‘ y‘/2, in contrast,the spontaneousemissionspectrumreducesto a
conventionalsingle-peakLorentzian

2~S(w) y’+2g2/K (4.11)
(y’/2+ g/K)2+ (w — li)2

which exhibits the increasedlinewidth (enhancedspontaneousemission)discussedin section 3 [Car-
michaelet a!. 1989].

The experimentalverification of the strong-couplingprediction was performedby Raizen et al.
[1989],who used the cooperativeresponseof N two-level atoms in a high-finessecavity to reachthe
conditiongaff = g\/~~ y’> K. Theseexperimentsverified that the transmissionspectrumwas split into
a doubletseparatedby the vacuumRabi frequency,andobservedsubnaturallinewidth averaging,with
linewidth reductionsof 25% relative to the free-spaceatomicdecay.
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5. The micromaser

In this and the following sections,we specializeto cavity quantumoptics in the microwaveregime,
and in particularto the micromaser.This work is characterizedby the use of closedsuperconducting
cavitieswith exceedinglysmall losses,so that y’ 0 andthe strong couplinglimit g ~‘ K, y’is realized.
In general, the calculation of the modes structureof these cavities near the cut-off frequency is
complicated,althoughexplicit calculationshavebeenperformedby Baltes,Muri and Kneubühl [19701
andby Baltes and Kneubflhl [1972](seealso BaltesandHilf [1976])in connectionwith the theoryand
calibrationof IR detectors.Fortunately,thetwo-level atomsusedto pump the micromaseraretypically
resonantor near-resonantwith one of thesemodesonly, so that a single-modedescriptionof the
resonatoris appropriate.In such situations,many of the resultsof the Jaynes—Cummingsmodel still
hold, andthe dynamicsof the systemis characterizedby a nearlyperiodicexchangeof energybetween
the atom and the cavity mode [Rempe,Waltherand Klein 1987].

Considerspecifically the situationof a micromaser,which is a devicewherea low densitybeamof
Rydbergatoms is injectedinside a single mode microwavecavity at such a low rate that at mostone
atom at a time is present inside the resonator.Micromaser cavities are manufacturedfrom pure
niobium and cooled down to a fraction of a kelvin, therebyachievingquality factorsQ up to 3 X lOb6.

The Max-PlanckInstitute experiments[Meschede,Walther and Muller 1985] considera micromaser
operatingon a single photontransition,while the Ecole Normale Superieureexperiments[Bruneet al.
1987] concentrateon two-photonmicromasers.

Rydberg atoms have enormouselectric dipole moments, scaling as the squareof the principal
quantumnumber n, so that the transition probability for single-photoninduced transitionsbetween
closely adjacentlevels scalesas n4. Their spontaneouslifetimes arealso very large,scalingas n3 andnt
for low and high angular momentum states, respectively [Haroche 1982]. This implies that the
saturation power fluxes for transitions betweenneighboring levels become extremely small. For
instance, for n = 30 and low angular momentum states, 100 photonsper squaredwavelength are
sufficient to saturate the transition, this number being reduced to I for high angularmomentum
transitions.The advantageof usingRydbergatomsis evenmoredramaticfor two-photontransitions,as
the two-photoncoupling constantscalesas n4.

One “drawback” of performing experimentsin the microwave regime is the lack of good photon
detectors.To investigatetheintracavity field, onestudiesinsteadthestateof the Rydbergatomsas they
exit the resonator.As such,the atomsplay the dual role of pump anddetectors.This detectionscheme,
which providesonly indirect information on the state of the cavity field, makes the micromasera
particularly attractivetest systemto investigatea numberof aspectsof quantummeasurementtheory
[Meystre 1987. Meystre and Wright 1988, Krause.Scully and Walther 1987].

Indeed, the interest in studying micromasersis manifold. In addition to the issues in quantum
measurementtheory just mentioned,theyare theoreticallyattractivein that the amplifying medium is
so simple that an accuratequantumtreatmentis possible[Filipowicz,JavanainenandMeystre 1986a,
Lugiato, Scully andWalther 1987, Davidovichet al. 1987]. Furthermore,quantumfluctuationsplay a
very importantrole in thesesystems,since the meanphoton numberin the cavity is extremelylow.
Moreover,micromaserscan be operatedin a regimewhere all causesof inhomogeneousline broad-
eninghavebeeneliminatedandirreversiblespontaneousemissioncan beignored.Hence,thesuccessive
atomsundergocoherent,quantumRabioscillations asthey interactwith the cavity field. (To reachthis
regime,it is important to ensurethat the interactiontime of the successiveatomswith the cavity mode
is constant.This is achievedby passingthe atomicbeamthrough a Fizeauvelocity selector.)
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The quantumtheory of the micromaser[Filipowicz,Javanainenand Meystre 1986a] relies on its
unique characteristics:Firstly, becausethe atom-field interaction takesplacein a closed,single-mode
cavity, the spontaneousemissionrate y’ into free-spacemodescan be neglected.Secondly,due to the
extremely high quality factors achieved in these superconductingcavities, the photon lifetime is
extremely long comparedto the transit time T of the successiveatomsthrough the resonator.This
meansthat cavity dampingcanpracticallybe ignoredwhile an atom interactswith the field [Barnett and
Knight 1985, Nayak, Bullough and Thompson1990]. Since the atomic flux needsto be kept small
enoughfor at mostone atom to bepresentinside thecavity at a time, the interval betweenatomsmust
be much larger than r, and hencethe cavity is empty most of the time, so that we neglect cavity
dampingonly during theserare instanceswherean atom interactswith the cavity mode.

The strategyto theoreticallydescribethe micromaseris thenstraightforward:while an atom is inside
the cavity, the coupledatom-fieldsystemis describedby the Jaynes—CummingsHamiltonian(2.1), and
during the intervalsbetweenatomsthe evolutionof the field densitymatrix p~is governedby themaster
equation[Louisell 1990]

dpf/dt~Lpf(t1) = ~K(nh + 1)(2ap~a
T— atapj. — pfaa)+ ~Knb(2apfa — aa~p~— ptaat), (5.1)

wherewe havegeneralizedthe expressionused in eq. (4.1) to includethe meannumbern
6 of thermal

photonspresentin the cavity mode.
At time t,, the ith atom entersthe cavitycontainingthefield describedby the densityoperatorp~(t1).

At this time, the densityoperatorp(t1) of the combinedatom—field systemis simply the tensorproduct
of pf(t1) and the initial atomic density operator. After the interaction time T, the atom exits the
resonatorand leavesthe field in the statedescribedby the reduceddensityoperator

+ T) = Tra[U(r)p(tj)U
t(r)] F(r)p~(t~), (5.2)

whereTra standsfor traceover the atomicvariables.Notethat this stepexplicitly assumesthat thestate
of the atom is not measuredas it exits the cavity. Otherwise,the theory hasto be modified accordingto
the discussionof the nextsection.Using eq. (5.1) for the field evolutionduringthe interval t~until the
time t~, whenthe nextatom is injected,and noting that t~= ~ — t, — r~t~

11— t, we havethen

p~(t~~1)= exp(Lt~)F(r)pf(t,). (5.3)

This equationcan be further simplified by assumingthat the atomsenter the cavity accordingto a
Poissonprocesswith meanspacing1/R betweenevents,where R is the atomic flux. Equation(5.3)
reducesthen to [Filipowicz,JavanainenandMeystre 1986a]

= (1 — L/R)’F(r)~(t1). (5.4)

In steadystate ~~(t~+~)= ~~(t~) = ~ and introducing the notation

Nex = R/K (5.5)

for the averagenumberof atomsthat traversethe cavity during the resonatordampingtime, one finds
the photonstatistics
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Fig. i. Normalizedsteady-statemeanphoton number/ asa function Fig. 2. Normalizedstandarddeviation o~of the steady-statephoton
of the pump parameter �1 for N,~=200 and n

1, = 0.1. (After distributionfor ~ = 200 and ~h = 0.1. (After Filipowicz. Javanainen
Filipowicz, Javanainenand Meystre [1986a]). and Meystre [1986a]).

= C(~~)“ ñ (i + N s~~k) (5.6)

Figure 1 showsthe normalizedaveragephoton number1 = K n) /N~~as a function of the dimension-

less pump parameter

(5.7)

for various valuesof Nex and for a meanthermalphoton numbern,, = 0.1. A commonfeature of all
casesis that I is nearlyzerofor small 0, but a finite value emergesat the thresholdvalue0 = 1. For 0
increasingpastthis point, 1 grows rapidly, but thendecreasesto reacha minimumat 0 2ir, wherethe
field jumps abruptlyto a high intensity.This generalbehaviorrecursroughly at integermultiplesof 2ir,
but becomesless pronouncedfor increasing0.

As illustrated in fig. 2, similar thresholdsare apparentin the behaviourof the normalizedstandard
deviation

2 2 l’2u=[(Kn )-(n) )/(n)] , (5.8)

where r
2 is often called the Fano factor and u2 — I is the Mandel parameter.Above the threshold

0 = 1 the photonstatisticsarefirst strongly superpoissonian(poissonianphotonstatisticscorrespondto
= 1), with further superpoissonianpeaks occurring for 0 roughly equal to multiples of 2ir. In the

remainingintervalsof 0, a- is typically of theorderof0.5, a signatureof the subpoissoniannatureof the
field. Experimentsverifying theseunique featuresof micromasers,which result from the coherent
natureof the atoms—fieldinteraction,havebeencarriedout by Meschede,WaltherandMuller [1985],
Rempe,Walther and Klein [1987]and Rempe,Schmidt-KalerandWalther [1990].

6. Quantum measurementson the micromaser field

In its mostwidely acceptedinterpretation,quantummechanicspredictsthe behaviourof an ensemble
of identically preparedsystems,and a naive useof the densitymatrix is not adequateto describethe
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dynamicsof a single quantumsystem. Instead,some conventionalwisdom must be revised,and new
quantummechanicaltools introducedto handlethesesituations.This has recentlybeen realizedby a
numberof authors,in particularin connectionwith the descriptionsof “quantum jumps” of isolated
ions and in micromasers[Dehmelt 1975, Cookand Kimble 1985, Nagourney,Sandbergand Dehmelt
1986, Javanainen1986, Schenzle,deVoe and Brewer 1986, Cohen-Tannoudjiand Dalibard 1986,
Meystre 1987, Meystre and Wright 1988, Brune et al. 1990].

To properlydescribethe dynamicsof singlequantumsystems,themeasurementsperformedmustbe
takenexplicitly into account.This requirescoupling the systemunderinvestigationto a metersystem.
The measurementprocesstypically producesa back-actionon the systemandinfluencesits subsequent
dynamics.Thus, the observeddynamicsareboth measurements-inducedandmeasurements-dependent.
This is quite different from the classicalsituation, whereany observationof the systemwould involve
some intervention from the outside, but the structure of the theory is such that the effects of
measurementscan easily be ignored [Lamb1985, 1986].

The micromaserrepresentsan almostideal test systemto studythe effectsof repeatedmeasurements
on a single, isolatedor nearly isolatedquantum system.As the successiveatoms used to pump the
maserexit the cavity, their statecan be measured,e.g. by the methodof state-selectivefield ionization
[Harocheand Raimond1984,Meschede,WaltherandMuller 1985,Rempe,Schmidt-KalerandWalther
1990]. As such,the atomsplay the dual role of pumpsand detectors,and their final state is used to
extractinformationaboutthe stateof thecavity mode.If we merelyverify that the atomsexit the cavity
as in the precedingsection(so-called“non-selectivemeasurements”),the micromasernormallyreaches
a uniquesteadystate. In contrast,monitoring the stateof the atomsas theyexit the cavity (“selective
measurements”)typically leadsto complexdynamics,such as e.g. quantumrelaxation-oscillationsand
measurements-inducedquantumdiffusion [Meystreand Wright 1988].

To illustrate this discussion,we analyzerepeatedmeasurementson the field of alosslessmicromaser
[Meystre 1987]. Although this simplified model is only a caricatureof the micromaser,it permits to
explicitly discuss the essential steps required to describe the associateddynamics: preparation,
Schrödingerevolution, measurement,reductionof the wave packet,andrenormalizationof the density
matrix.

In the absenceof cavity damping,the micromaseris describedby the Jaynes—CummingsHamil-
tonian (2.1) while an atom is inside the cavity and by a dampedharmonicoscillatorwhen no atom is
present.We assumein the presentdiscussionthat the successiveatomsare injectedin their upperstate
and that the field densitymatrix is initially diagonalin the energyrepresentation.

If no measurementis performedon the ith atom as it exits the cavity, or more preciselyif we just
makesure that it leavesthe cavity at time t, + r, then the reduceddensitymatrix for the field aloneis
given by eq. (5.2). The correspondingphotonstatisticsare

p~(t~+ T) = p~_1(t1)sin
2 ~~r/2 + pn(tj) cos2 ~ r/2, (6.1)

wherep~(t,)is the field photonstatisticsjust before injection of the ith atom.
The resultsarequite different if a measurementof the stateof the atom is performedas it exits the

cavity. Specifically, if the atom is found in its state s), wheres = a, b is either the upperor the lower
state,the field densitymatrix after measurementbecomes

p~(t,+ T) =Tr~[~s)(s~U(r)p(tj)Ut(r)] (6.2)
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with correspondingphotonstatistics

+ T) = Xapn(ti)cos2~~+
1r/2 (6.3)

or

p~(t1+ T) = ~hpflt(tI) sin
2 ~~r/2. (6.4)

HereXa and .N’b are normalizationconstantsthat mustbeintroducedto guaranteethat the field density
matrix remainsnormalizedafter the measurement.

Under the Jaynes—Cummingsevolution, the probability that an atom initially in the excited state
exits the cavity in that samestate is given by

Pa(ti + r) = p,, cos2~ln+lr, (6.5)

and the outcomeof a given measurementwill yield eqs. (6.3) or (6.4) with probabilitiesPa and 1 — Pa’
respectively.

It is importantto realizethat measuringthe atom in its upperstateas it exitsthe resonatordoesnot
imply that the field, or even the meanphoton number, remainsunchanged.Rather, the photon
statisticsare reshuffledaccordingto eq. (6.3), and the meanphotonnumber (n) becomes

~ flPn(tj)~~aPn(tj)cos2~n+tT/2 (6.6)

This resultis not surprising:beforethe measurement,the meanphotonnumber(n) is known only to
within its standarddeviationo.2, and not conservingK n) doesnot violateany law of physics.It is only if
the field happensto be in a numberstate n

0), with p,, = ~ at the time of injection of the ith atom,
that the exact conservationof (n) is guaranteedwhen the atom exits the cavity in its upper state.
Similar considerationsapply if the atom exits in its lower state,andin this case,K n) can likewise either
increaseor decreasewithin the limits permittedby the varianceof the photonstatistics.

To numericallysimulatea possiblesequenceof measurements,we can proceedby choosingan initial
field density matrix, typically a thermal field with averagephoton number Knh), so that p,,(O)~”
1/(1+ nb)[nb/(l + n6)]. This permitsto computefrom eq. (6.5) the probabilityp~for the first atom to
leave the cavity in the upperstate.A randomgeneratorreturnsa uniform randomvariate r between0
and 1. We say that the atom is measuredin the upperstateif r > Pa andin the lower stateif r <p~.The
field density matrix just after the measurementis completedis then given by either (6.3) or (6.4),
dependingon the outcomeof the measurement.The sameprocedureis then repeatedfor the next
atom,starting from this new field initial condition. Meystre [1987]showshow this procedurecombined
with the useof trappingstatesof the electromagneticfield [Filipowicz,Javanainenand Meystre1986b],
can be usedto generatenumberstatesor mixturesof few numberstatesof the electromagneticfield in a
losslessmicromaser(see also Meystre [1989]).Meystre and Wright [1989]havecarried out a similar
analysis to study the effects of measurementson the dynamics of a micromaserwith damping.
Alternative schemesusingstatereductionto generatenumberstatesin a micromasercavity havealso
been proposedand analyzedby Krause,Scully and Walther [1987],Krauseet al. [19891.
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A description similar to that just given, but that does not make any assumptionabout the
microscopicnatureof the photodetector,was given by Srinivas andDavies [1981,1982], and explicitly
developedby Imoto, Hausand Yamamoto[1985],Imoto, Watkinsand Sasaki[1987],Imoto andSaito
[1989],Ueda[1989],Ueda,Imoto and OgawaL1990], andOgawa,UedaandImoto [1991]for the case
of single-modefields in a variety of initial states.In this model, it is assumedthat the probability of
more thanone photonbeing detectedduring an infinitesimal time interval is negligible,and that the
detectorhasunit quantumefficiency, so that the detectionprocesscan be decomposedinto a sequence
of “no-count processes”and “one-countprocesses”.

7. QND measurementsin micromaser cavities

Equation(6.6) clearly evidencesthe back-actionof the measurementson the meanphotonnumber
K n). Recently,Brune et a!. [1990]haveproposedand analyzeda quantumnon-demolition(QND)
scheme[Braginsky,VorontsovandKhalili 1977,Thorneet a!. 1979,Caves1983,Unruh 1987,Caveset
al. 1980, Caves1983] that permitsto measureKn) in a back-action-evadingmanner.(For a review of
QND in optical systemsand a completelist of references,see the paperby Collett and Walls in this
issue.) Their techniquerelieson the nonresonantcoupling of the field to two-level atoms,and infers

K n) by measuringthe phaseshift of the atomic wave-functionat the exit of the resonator.Becauseof
the strongatom—fieldcouplingthat can be achievedwith Rydbergatoms,the proposedmethodpresents
the advantageof being applicabledown to K n) —~ 0.

To understandhow this techniqueworks, considera three-levelRydbergatom with levels a), b)
and i), where a) and b) label the upperandlower levelsas beforeand i) labelsan intermediatelevel
which can be reachedfrom level a) by absorptionof onephoton.We assumethe frequency11 of the
cavity mode under considerationto be nearly resonantwith the transition frequency betweenthe
excitedandintermediatelevels, with detuning

6=Wia~Q~ (7.1)

Fromeqs. (2.5) and (2.6),we find readily that for an intracavity field in the Fock state n), the upper
level a) undergoesa dynamicStark shift. Subtractingthe bareenergiesof the uncoupledatom—field
systemfrom the correspondingdressedenergieswe find

zl(r, n) = ~n-t — 6) = ~[\/62 + 4d2(r)n — 6], (7.2)

wherewe haveslightly generalizedthe form of the Rabi frequencyto allow for a spatially dependent
atom field couplingconstant,that we call d insteadof g to avoid confusionbetweenthe a)—~ b) and
the a) —~ i) transition.For sufficiently large detunings,this expressioncan be expandedto give

zl(r, n) = d2(r)n/6 . (7.3)

We see,then, that the Stark shift experiencedby the excitedstatewith respectto the ground stateis
proportionalto the photonnumberin the cavity. (Theground stateis not notably shiftedif 11 — Wab

muchlargerthan 6.) The accumulatedphase-shiftper photonis (L1(r, n = 1))L~/v
0where K ) denotesa

spatialaveragealongthe atom path throughthe cavity. Largesingle-photonshiftscan be obtainedby
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choosingdetunings6 that are relatively small, yet large enough that no significant absorptiontakes
place.

The shift (7.3) altersthe probability amplitudefor the atom to be in the excitedstate a) relativeto
that for being in theground state,achangethat can be detectedby aphase-sensitivemeasurement.The
setupof theproposedexperimentis basedon Ramsey’smethodof separatedfields [Ramsey1985]. The
micromasercavity is placedbetweentwo field zones R1 and R2 driving the a)—~b)transition.This
transition is thendetectedbehindR2 by state-selectivefield ionization.

Consideran atom moving at the nominal velocity U)) acrossthe lengthL~of the cavity. In the absence
of signal field, the phaseshift betweenthe atom and the Ramseyfield referenceis

= (I2~— w,h)LC/v() , (7.4)

whereli,. is the frequencyof the fieldsR~andR2. Assumingthat eachRamseyfield actsas a ir/2 pulse
on the atomictransition a)—~b)for atomsmovingat the nominal velocity U)), then the probability that
atoms at velocity v exit the secondRamseyfield in the excited state is

P~,(v,0) = sin
2(~v

0/2V)cos
2(4~)V~/2v), (7.5)

while in the presenceof (exactly) n photonsin the cavity it becomes

P,(V, n) = sin2(lrv))/2V)cos2[(~()— nr)v
0/2v1, (7.6)

that is, the Ramseyfringesareshiftedby an amountnr with respectto their positionwhen thecavity is
empty. In practice, the atomic responsemust be averagedover the atomicvelocity distribution ~(v)
and the field photon statisticsp(N).

We assumethat the field is initially describedby the photonstatisticsp~(N)andperformthe analysis
of a sequenceof experimentsalong lines following exactly the discussionof the precedingsection.
Dependingupon whetherthe first atom is measuredin the upper or the lower state, the field density
operatoris “reduced” to

p~(N)=p~1(N)~(a,Vt, N)/~ p0(My~(a,Vt, M) (7.7)

or

p1(N) =p))(N)~P(b,v1, N)/~ p~~(M)~(b,v1, M) (7.8)

where~/1
t(b,v

1, n) is the probability that an atom at velocity c1 andinteractingwith the Fock state n)
exits the cavity in the upperstate.Assumingthat a sequenceof N measurementsyields as a result the
sequence{sk, Vk}, by which we meanthat the atom usedfor the kth measurementhasvelocity Uk and
exits the secondRamseyfield in the state s) (s = aor b), we find theconditionalprobability of having
n photonsin the field as

p~(N)=p0(N) U ~(sk, Uk, N)/~ p0(M) fl ~(sk, Vk, M). (7.9)
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Fig. 3. Evolutionof thephotonnumberdistributionp~in asimulationof ameasuringsequence.(a) Initial distribution(coherentstatewith a mean
photonnumber,~= 10; (b)—(d) photonstatisticsafter3. 5 and20 detectedatoms.Thecollapseinto a Fock stateis clearlyobservable(after Bruneet
al. [1990]).

Figure3 showsthe resultof a numericalsimulationof sucha measurementsequence.This simulationis
carried out very much in the same way as the simulationsdiscussedin section 6, except that a
supplementaryrandomnumbermustbe chosento selectthe velocity of the kth atom.Quite generally,
Bruneet a!. [1990]notethatp~(N)convergesto the Kroneckerdeltafunction representingaFock state
somewherewithin the width of the original distribution. This “collapse” requiresa certainnumberof
atoms (about 20 for the exampleof the figure) which theseauthorscall an “elementarymeasuring
sequence”.This showsthat a single atom is not sufficient to provide a completemeasurementof n,
which is “pinned down” to a precisevalue only by gatheringenoughinformation through repeated
atom detections.Eachone resultsin multiplying the photonstatisticsp,, by a function of n presenting
peaksand minima, thusdecimatingefficiently somephotonnumbersin the distribution, until only one
is left. From then on the field statisticscannotchangeany longer, and a number state has been
effectively preparedandcan be repeatedlymeasured.Notethat contraryto the situationencounteredin
the resonantdetectionschemes,undetectedatomsdo not changethe photonstatisticshere.

The argumentleading to eq. (7.9) does not include field dissipation betweenatoms. For weak
enoughlosses,this problemcan be treatedalongthe lines of micromasertheory,neglectingdissipation
while atoms are inside the cavity [Filipowicz et a!. 1986a]. Brune et a!. [1990]performed such
simulations, and were able to demonstrate“quantum jumps” of the field as its energyis dissipated.

8. Macroscopicsuperpositions

The generationof macroscopicquantumsuperpositionsis a questionof considerableimportancein
the studyof the relationshipbetweenquantumandclassicalphysics[Leggett1980]. While evidencefor
quantum tunneling has been established[Martinis, Devoret and Clarke 1988], the observationof
quantumcoherencesis more difficult. A majorproblemis that macroscopicobjectsarenot isolatedbut
arecoupledto their environment,which causesquantumcoherencesto be destroyedon a very fasttime
scale.Examplesshowing the influenceof dissipationon macroscopicsuperpositionsand the concomi-
tant destructionof quantum-mechanicalinterferencephenomenahavebeendiscussedby Caldeiraand
Leggett [1985],Walls and Milburn [1985]and Savageand Walls [1985].

Optically, a methodto generatea superpositionof macroscopical!yseparatedquantumstatesby
propagatinga coherentstatethrougha Kerr nonlinearmediumhasbeenproposedby Yurke andStoler
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[1986],but this schemesuffersthe same difficulties with dissipation.From this point of view, cavity
QED experimentsin the microwave regime, with the associatedhigh-Q resonators,provide an
interestingalternative.Two explicit schemeshavebeendiscussedby S!osserand co-workers[S!osser,
Meystre and Braunstein1989, S!osser,Meystre andWright 1990, Meystre,Slosserand Wilkens 1990],
andby Bruneeta!. [1992].Both methodsrely on injecting a monokineticbeamof polarizedatoms,i.e.
atomspreparedin the coherentsuperposition

~i)=a~a)+/3~b) (8.1)

insidea micromasercavity. The main differencebetweenthe two schemesis that the first one relieson
a resonant interaction betweenthe successiveatoms and the field mode, while the second one is
nonresonant.

In the schemeof Slosserandco-workers,the atom—field interactiontime is chosensuchthat thereis
a numberstate N) for which the successiveatomsundergoa 6~rnutationas theytraversethe cavity.
Such a stateis calleda trappingstate [Filipowicz,JavanainenandMeystre 1986b, Meystre,Rempeand
Walther 1988]. Also, it is assumedthat the initial field densitymatrix is confinedbetweenthe vacuum
state and N).

Slosser, Meystre and Wright [1990] numerically solved the micromaserfield master equation
[Filipowicz,Javanainenand Meystre 1986a, Bergouet al. 1989]

ape/at = Lp~+ R[F(T) — I]p~, (8.2)

where I is the identity operator,under theseconditions. They showedthat for high enoughrelative
injection ratesNex~the field evolvesto an excellentdegreeof approximationtoward apure statewith
the characterof a macroscopicsuperpositionof quantumstates.Their resultsaresummarizedin figs. 4
and 5, which demonstratehow the quantitativenature of the steady-statesolution changesas Nex is
increased.Figure 4 gives the meanphotonnumber(solid line) as well as the Fanofactor of the field
(dashed line) as a function of Nex~We observe a distinct transition betweentwo final states of

8

o~Li;’i’;’i4

LOG 0(Nex)

Fig. 4. Mean photonnumber (n) (solid curve) and Fanofactor 0.2 (dashedcurve) asa function of log ~ for ~ = 15, a = 0.53. (After Slosser.
Meystre and Wright 1990].)
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Fig. 5. Moduli of thefield densitymatrix elements(n~pjm)for (a) Ne, = 15, (b) N~,= 106 and(c) N~,= iOu. HereN~= 15, a = 0.53. (After Slosser,
Meystre and Wright [1990].)

complete!y different nature, the transition region being characterizedby a strong peak in field
fluctuations suggestive of a phase-transition-likephenomenon.Below the transition the fie!d is
essentiallypoissonian(vacuumfield), while it is superpoissonianabovethe transitionregion.

Figure5 showsthe moduli of the field densitymatrix elements K n p~m) in the low- Nex regime, in
the transitionregion andin the high-N~~regime.This figure clearly illustratesthe transitionto an almost
pure “macroscopic superposition”, which is given to an excellent approximation by a so-called
cotangentstateof the electromagneticfield [Slosser,Meystreand Braunstein1989,SlosserandMeystre
1990].

Wilkens andMeystre [1991]haveproposeda schemeto detectthesemacroscopicsuperpositions
using a nonlinearversion of a single-atomhomodynedetector[Yuen and Shapiro1978, Yurke 1985,
Mandel 1982, Schumaker1984, Yuen and Chan 1983, Yuen 1982, Braunstein19901.

The nonresonantmethodof Bruneet a!. [1992]is obtainedfrom a specializationof the QND scheme
discussedin the precedingsectionto the caseof a monokineticatomicbeam.Theseauthorsshowthat
when applied to an initial coherentfield, the measurementsequenceout!ined in section6 produces
quantumsuperpositionsof coherentstatesof the form
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(8.3)

providedthat the atomsundergoexactly a ir/2 phaseshift in the two Ramseyfield zonesR~and R2.
Here, the “±“ holds for exciting atomsmeasuredin their lower or upperstate,respectively.(More
details are given in Haroche’scontributionin this issue.) A remarkablefeatureof this nonresonant
schemeis that if the first atom is detected,say, in theupperlevel a), thenthe atomsthat follow will all
be detectedin that samestatewith unit probability, providedthat dissipationis neglected.The stateof
the field thus remainsunchangedin the secondand all subsequentmeasurementprocesses.In other
words, a beam of atoms with appropriatevelocity producesa stable Schrodingercat of parity
determinedby the outcome of the first measurement.From this point of view, the non-resonant
generationof macroscopicsuperpositionsis similar to the resonantone,as the cotangentstatesobtained
in that caseleave the atom-field densitymatrix in a factorizedform (disentangledstate)at the times
when the successiveatomsexit the cavity [Slosser,Meystreand Braunstein1989].

It is well-known that dissipationcausesquantumcoherencesto be destroyedon a fast time scale.
However,both the resonantlyandthe nonresonantlygeneratedcats can survive the effectsof coupling
to the environment,provided that they are“fed” by furtherpolarizedatomsat a sufficiently high rate.
In the caseof resonantexcitation, this leadsto true steady-statecats, evenif the stateof the exiting
atoms is not measured.This is due to the fact that the pump atomsprovide both quantumcoherence
and energyto the field mode, as we!! as to the disentanglementof the atom—field state.

In contrast,thepolarizedatomsdo feedquantumcoherence,but no energy,in the nonresonantcase.
Hence,the monitoredcatsdisappearafter the classicalfield relaxationtime. Note that in this case,the
parity of the cat can abruptly change,as dissipationhas the effect of reducingthe probability that
subsequentatoms are detectedin the samestate to slightly less than unity [Brune et a!. 1992].

9. Outlook — mechanicaleffects

In this paper,we havesketchedrecentdevelopmentsin cavity QED and discussedhow they have
and will impact our fundamentalunderstandingof light—matter interactions in particular, and of
quantummechanicsin general.Experimentalprogressis happeningat afastpace,andthereis no doubt
that manyof the effectswhichhavebeenproposedandreviewedherewill soonbe demonstrated.The
question, then, is where do we go from there. We believe that an exciting new direction, which
combinescavity quantumopticsand“atom optics,” showsconsiderablepromiseas a future theoretical
and experimentalplayground.

Togetherwith cavity QED, the manipulationof atomic trajectoriesby electromagneticfields is one
of the mostexciting recentdevelopmentsin quantumoptics and laserspectroscopy.Here, oneexploits
the fact that every time an atom exchangesenergywith the field, the momentumof the absorbedor
emittedlight must be compensatedby a mechanicalmotion of the atom.This leadsto atomictrapping
andcooling, state-selectiveatomicreflection anddiffraction by light fields, atom interferometry,etc. In
thesesituations,it is usually sufficient to describethe fields classically,while spontaneousemissionis
treatedas a stochasticprocess.In cavity QED, in contrast,the modestructureof the field as well as its
quantumnature areessential.

Recently, there has been a growing effort to merge these two areas of research[Meystre,
Schumacherand Stenhoim 1989, Englert et al. 1991, Haroche,Brune and Raimond 1991, Wilkens,
Bialynicka—Birula andMeystre 1992]. Questionsof particular interestare relatedto the effects of the
internaldegreesof freedomof the field (photonstatistics)and of the atomson the mechanicalmotion,
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and also to the confinementof an atom inside a high-Q cavity, possiblyin a statecloseto the vacuum
state.

If this can be achieved,it will then be possible to investigatea fundamentalquantumsystem
consistingof asingle atom coupledto a single mode of the electromagneticfield by just onequantumof
excitation andbound in spaceby the quantumcorrelationsbetweenthesetwo subsystems.
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