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A blind image deconvolution algorithm in the frequency domain is proposed which uses the edge-preserving
method and generic bandwidth of optical system. Generic bandwidth of optical system is analyzed. With the
benefits of bandwidth and edge-preserving method as compelling constraints, the algorithm cannot only
suppress noise effectively but also restrict the bandwidth of point-spread function (PSF), so high-quality result
can be obtained. The new algorithm is superior in handling unregistered channels. The performance of this
approach is investigated with simulated data. As shown in our investigation, the algorithm can significantly
alleviate the artifacts produced by the deconvolution process.
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1. Introduction

The performance of high-resolution imaging with ground-based
telescope is severely limited by atmospheric turbulence. A number
of methods have been proposed to obtain high resolution images [1].
Speckle imaging [2–4] relying on post detection computer processing
of large numbers of the short exposure images is the first attempt
to overcome the effects of turbulence. Adaptive optics [5–7], another
crucial technique, can only partly overcome the limitation of atmo-
spheric turbulence because of measurement error. In addition, it is
expensive to build and maintain adaptive optics systems. Blind decon-
volution [8–29] is an important post-processing technique in which the
complete knowledge of both the point spread function (PSF) and the
original image is not available. The aim of blind deconvolution is to
gain an estimate of the original high-resolution image based on the
blurred observations.

One of the most widely used blind deconvolution is the multiframe
blind deconvolution (MBD) [14–29] which is applied to sequences of
images of a target obtained over time scales such that the target can
be considered stationary but the PSFs are changing. It is common for
the objects observation through the atmosphere. In general, the fidelity
and resolution of the restoration is directly related to the amount and
quality of prior information employed to constrain the resolution.
At present, almost all of the MBD algorithms use the constraints of
non-negativity, finite support and normalization. With regard to the
PSFs estimation generated in iteration, the frequency is variable. Con-
sidered the optical imaging system, the frequency spectrum of a PSF
turns zero when it is beyond the cutoff frequency in blind deconvolu-
tion [16]. The relationship between the parameters of the telescope's
optical systemand the bandwidth constraint in the pixel spatial domain
is reported [17], but it is only applied in special situationwhere the CCD
is square. In this paper, the bandwidth of generic situation is analyzed
and applied as constraint in the blind deconvolution problem. Because
the approach in this article is implemented in the frequency domain,
the bandwidth constraint can be directly employed. The image, gotten
from iteration, is stained by noise. However, the nonuniqueness and
sensitivity of the solution to noise are still serious problems. Somemea-
sures have been taken to suppress noise as reported [8,19], but details of
image are blurred at the same time. In order to solve this problem, an
eximious method [30] is used for image denoising in iteration, which
can effectively preserve the details of image. Even so, the image is still
slightly blurred. So the principal objective of sharpening spatial filters
[31] is introduced to enhance the details that have been blurred.
Using image sharpening after image denoising can overcome this
shortcoming.

The space object identification involves tracking and imaging from
ground-based telescopes in attempt to identify and catalog the objects.
But the object cannot be accurately tracked by a telescope. As a result,
the position of the same object in the images obtained at different
time will shift. In this situation, two stages are contained in image
restoration: image registration which brings the channels into spa-
tial alignment; multichannel blind deconvolution. Hundreds of image
registration methods have been published, such as [32,33], but perfect
registration accuracy can rarely be achieved. The registration error
results in a slight shift of up to a few pixels between-channels and the
channel misregistrations would lead to strong artifacts in the restored
image [20]. Alternating minimization maximum a posterior (AM-
MAP) [20] is the first method explicitly dealing with unregistration of
the images in the multichannel framework. In this paper, our method
provides a successful solution to this problem.

The rest of this paper is arranged as follows. Section 2 provides an
overview of the multiframe blind deconvolution. In Section 3, generic
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bandwidth of optical imaging system and edge-preserving method
are explained. In Section 4, we apply the image reconstruction tech-
nique to reconstructing the simulated images, and conclusions are
given in Section 5.

2. Multiframe blind deconvolution

Within the isoplanatic angle, the short-exposure image gj(x,y) at
the focal plane of the optical imaging system considering the effect
of atmosphere is given by

gj x; yð Þ ¼ hjatm⁎hopt⁎f
� �

x; yð Þ þ nj x; yð Þ; j ¼ 1;…;M; ð1Þ

where gj(x,y), f(x,y) and nj(x,y) represent the observed images, the
original image and the observation noise, respectively, M is the num-
ber of the frames, and j refers to the j-th data frame. The images are
blurred by both the atmospheric turbulence and the optical imaging
system represented by the point spread functions hatm

j (x,y) and hopt
(x,y), respectively. The operator (⁎) denotes two-dimensional convo-
lution. In this paper, hj(x,y)=(hatmj

⁎hopt)(x,y) is introduced. First,
consider the least squares likelihood function:

Edata f ;hð Þ ¼ ∑
M

j¼1
gj x; yð Þ− hj⁎f

� �
x; yð Þ

��� ���2 ð2Þ

Here, ‖·‖ denotes the standard L2 norm and h=(h1,…,hM). As the
blind deconvolution is an ill-posed problem, we add regularization
terms. Thikhonov regularization is used, and Eq. (2) is replaced by

E f ; hð Þ ¼ ∑
M

j¼1
gj x; yð Þ− hj⁎f

� �
x; yð Þ

��� ���2 þ γ1 f x; yð Þk k2 þ γ2 ∑
M

j¼1
hj x; yð Þ
��� ���2

ð3Þ

Here, γ1 and γ2 are the positive regularization parameters.
According to the convolution theorem and the fact that Fourier trans-
forms [34] preserve L2 norm, we can express Eq. (3) in terms of Fou-
rier transforms:

E F;Hð Þ ¼ ∑
M

j¼1
Gj u; vð Þ− HjF

� �
u; vð Þ

��� ���2þγ1 F u; vð Þk k2 þ γ2 ∑
M

j¼1
Hj u; vð Þ
��� ���2

ð4Þ

Here, Gj(u,v)=F {gj(x,y)}, Hj (u,v)=F {hj (x,y)}, F (u,v)=F {f (x,y)},
H=F {h} and F denotes the 2-D Fourier transform. The u,v are the
coordinates in the frequency domain.

An alternating minimization method is applied to obtain a mini-
mizer of the objective function E(F,H). For any starting values F(0)

and H(0), the values F(n+1) and H(n+1) can be procured through
approaching cycle between the image and PSFs estimation steps. In
the image estimation step the image F(n+1) is estimated assuming
that the PSFs are fixed to ⌢H nð Þ which are the latest estimate from
the PSFs estimation step and subjected to the bandwidth constraint,
and the image is fixed to

⌢
F nð Þ which is the latest estimate from the

image estimation step and processed by the edge-preserving method.
The bandwidth constraint and the edge-preserving method will be
introduced in the next section. The image estimation step uses the
following equation:

F nþ1ð Þ ¼ ⌢F nð Þ−α∂F�E
⌢F nð Þ

;
⌢
H

nð Þ� �
=∂F∂F� E:

⇔F nþ1ð Þ ¼ 1−αð Þ⌢F nð Þ þα∑
M

j¼1
Gj
⌢
H

� nð Þ
j

,
∑
M

j¼1

⌢
H

� nð Þ
j

��� ���2 þ γ1

 !
:

In the PSFs estimation step the PSFs H(n+1) are estimated assum-
ing that the image is fixed to

⌢
F nþ1ð Þ which is estimated from the
above image estimation step and processed by the edge-preserving
method. The estimated value H(n+1) can be achieved by the following
equation:

H nþ1ð Þ
j ¼ ⌢

H
nð Þ
j −β∂ ⌢

H
�
j
E

⌢
F

nþ1ð Þ
;
⌢
H

nð Þ
j

� �.
∂⌢Hj

∂⌢H �
j
E:

⇔H nþ1ð Þ
j ¼ 1−βð Þ⌢H nð Þ

j þ βGj
⌢
F

nþ1ð Þ. ⌢
F

nþ1ð Þ��� ���2 þ γ2

� �
; j ¼ 1;…;M:

Here, the parameters α, β are the step sizes in the recursions.
The constraints of non-negativity, finite support and normalization
are effective andwidely used. Thinking over the optical imaging system,
the bandwidth of optical imaging system is limited. The PSFs in frequen-
cy domain acquired from the step of iteration are variable, and the
values which exceed the cutoff frequency of optical transfer function
(OTF) are invalid. For the sake of solving this problem, constraint of
bandwidth is employed [16]. The authors [17] have referred the rela-
tionship between the parameters of optical imaging system in special
situation where the CCD is square and the bandwidth constraint in
pixel spatial domain. Here, bandwidth of generic optical imaging sys-
tem is analyzed and introduced as the constraint in the blind deconvo-
lution. The image from iteration is stained by noise. Inasmuch as the
nonuniqueness and the sensitivity of the solution to the noise are still
serious problems, measures are needed to be taken to restrain noise.
The edge-preserving method cannot only suppress noise effectively
but also preserve the details of the image.

3. Generic bandwidth ofoptical imaging systemandedge-preserving
method

3.1. Generic bandwidth of optical imaging system

The bandwidth of the PSFs in the frequency domain is variable, and
possibly exceeds the cutoff frequency of optical transfer function
(OTF) so it produces the trivial estimation. To overcome the disadvan-
tage, generic bandwidth of optical imaging system is obtained, which
can prevent the bandwidth of the PSFs from exceeding the cutoff fre-
quency of the OTF. Suppose the size of CCD is Nx×Ny. We will analyze
the generic situation where Nx is not equal to Ny. If the size of pixel is
Np, the number of pixels along the diameter of Airy disk for an ideal
optical system is

NA ¼ 2:44λl
D

� �
1
Np

;

where λ,D and l are the wavelength, the aperture diameter and the
distance from the exit pupil to the imaging plane, respectively.

The frequency of the diameter of Airy disk can be expressed as 1/
NA and considered as the cutoff frequency. According to Fourier opti-
cal theory [34], the bandwidth of the OTF is twice the cutoff frequen-
cy. In order to obtain the bandwidth constraint, we have to make sure
that the diffraction spots, which are produced by the optical system
and the effective aperture pupil in the frequency domain, have the
same size. According to this relationship, the effective aperture
pupil of generic optical imaging system is

P u; vð Þ ¼
1; 2 u−u0ð Þ=Ncxð Þ2 þ 2 v−v0ð Þ=Ncy

� �2≤1

0; 2 u−u0ð Þ=Ncxð Þ2 þ 2 v−v0ð Þ=Ncy

� �2
N1

;

8><
>:

where u0=Nx /2,v0=Ny /2, Ncx and Ncy are the number of pixels of
bandwidth in the u direction and v direction, respectively, defined by

Ncx ¼ 2Nx=NA ¼ D
1:22λl

� �
NpNx; Ncy ¼ 2Ny=NA ¼ D

1:22λl

� �
NpNy:
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The bandwidth of the estimated PSFs at every iteration should be
constrained to avoid the trivial estimation, which can be expressed as

⌢
H

nð Þ
j ¼ H nð Þ

j P u; vð Þ;

where Hj
(n) is the estimate from the PSFs estimation step in the n-th

iteration. In the next iteration, the value
⌢
H

ðnÞ
j is employed. If Nx=Ny,

P(u,v) will become the constraint in special situation where the size
of CCD is square [17].

3.2. Edge-preserving method

In addition, the image from iteration is stained by noise. Because the
solution of the MBD is sensitive to the noise, the quality of the result
may be poor. In order to solve the problem, measures are needed to
be taken to restrain noise. General filters can be used to suppress
noise, but details of image are blurred at the same time. In this paper,
we utilize the data-adaptive filters to filter the image for denoising.
Data-adaptive filter [30] is an effective tool for denoising. It can preserve
details and reduce noise effect in high SNR case. By defining KI(xi−x),
xi=[xi,yi]T,x=[x,y]T as the data-adaptive kernel function, z(x) as the
true pixel value which we wish to reconstruct at the position x, and
fi
(n) the recovered image from the image estimation step in the n-th
iteration in the spatial domain as the ith sample at the position xi
within a local neighborhood of which the center is x, we can express
z(x) as

z xð Þ ¼ ∑iKI xi−xð Þf nð Þ
i =∑iKI xi−xð Þ;

where the KI(xi−x) can be written as

KI xi−xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Cið Þp
2πh2

exp − xi−xð ÞTCi xi−xð Þ
2h2

( )
;

where h is the global smoothing parameter and Ci is the covariance
matrix [30] which can be expressed as

Ci ¼ γiUθiΛiU
T
θi ;

Uθi ¼
cosθi sinθi
− sinθi cosθi

	 

;Λi ¼

σi 0
0 σ−1

i

	 

;

where Uθi is the rotation matrix and Λi is the elongation matrix. The
parameters γi, θi and σi are the scaling, rotation, and elongation pa-
rameter, respectively. The details of estimating these parameters are
described as follow.

G ¼
⋮

f nð Þ
i;x
⋮

⋮
f nð Þ
i;y

⋮

2
4

3
5 ¼ UiSiVi

T
;

where fi, x
(n) and fi, y

(n) are the first derivatives along x and y directions.
The second column of the 2×2 orthogonal matrix Vi, v2=[v1,v2]T, de-
fines the dominant orientation angle θi

θi ¼ arctan
v1
v2

� �
:

The diagonal 2×2 matrix Si represents the energy in the dominant
directions. The elongation parameter σi and the scaling parameter γi

can be defined by

σi ¼
s1 þ λ′

s2 þ λ′
;γi ¼

s1s2 þ λ″

M

 !1=2

;

where λ′ and λ″ are the regularization parameters, andM is the number
of samples. Similar to the paper [30], λ′=1.0 and λ″=0.01 are chosen.

This method can preserve edge, but slightly blurs it. Moreover
Thikhonov regularization in Eq. (3) often yields results that are
oversmoothed and compromises image contrast when applied uni-
formly to all object features. To solve this problem, image sharpening
[31] is employed which can be defined as

⌢
f

nð Þ ¼ z xð Þ−κzlp xð Þ;

here, the image zlp(x) is acquired by filtering z(x) using the Laplacian
filter and κ is the tuning parameter. The Laplacian filter adopted can
be described as

L ¼ 1 1 1 ; 1 −8 1 ; 1 1 1½ �⋅

Edge-preserving method includes two parts: z(x) is obtained by
the data-adaptive filters to filter the recovered image f(n), and then
image sharpening is employed to enhance the details of z(x). In the
next iteration, the value

⌢
F nð Þ is employed which is the Fourier trans-

form of the
⌢
f nð Þ.

4. Numerical examples

In this sectionwe describe some numerical experiments to illustrate
the potential advantages of the approach proposed in this paper.
Random phase screens are generated according to the Kolmogorov
spectrum [1]. These images, which are presented by 320×240 pixel
array, represent the short-exposure turbulence degraded images
recorded by a 1-m telescope with the atmospheric seeing parameter
r0, the nominal wavelength λ=650 nm, l=20 m, and Np=6.5 μm.
According to these parameters, we can get Ncx=131.15, Ncy=98.36.
The regularization parameters γ1, γ2 actually hardly influence the
results and they are taken as 10−4. The step sizes in the recursions
arefixed toα=0.8,β=0.6which give good quality of the reconstructed
images in a variety of scenarios. We introduce root mean square error
(RMSE) as the recovered image quality evaluation criterion. The

equation is expressed as follows: RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ ft−frð Þ2=N

q
, where ft

is the true image, fr is the restored image andN is the number of samples
in fr,ft. In all experiments, the parameters for the edge-preserving
method are manually optimized to produce the best RMSE values.

In the experiment, the image “Satellite” Fig. 1(A) is employed. The
image is blurred at atmospheric seeing parameter r0=10 cm and
then white Gaussian noise (SNR=50 dB) is added. Fig. 1(B) is one of
the three blurred and noisy imageswhich are the input images in algo-
rithms. The support size of PSF is 35 pixels. The multichannel alternat-
ing minimization (MCAM) [18] introduces total variation (TV), and
the result Fig. 1(C) after 300 iterations appears many artifacts, such
as noise and ringing, inside the shapes and near their edges. Ourmethod
produces relatively high-quality result Fig. 1(D)with h=1, κ=0.05after
120 iterations. Via the bandwidth constraint of the PSF and with edge-
preserving method to restrain noise in our algorithm, the ringing and
noise artifacts are well suppressed in Fig. 1(D) compared to Fig. 1(C).
Fig. 1(C) is a result with ringing and noise artifacts. However, more
details are restored in Fig. 1(D). The RMSE values of the images of
Fig. 1(C–D) are 18.54, and 9.59, respectively. Similarly, we manually
change the parameters of MCAM to find the restored images with
best RMSE value. Moreover, it could take about two days for the
MCAM method to reach 300 iterations, but our method reached
120 iterations using about thirty minutes (CPU E5300 2.60 GHz, 2 G
EMS memory using MatLab 7.0.4).

Next, we modify the previous experiment by atmospheric turbu-
lence r0=13 cm and adding white Gaussian noise SNR=40 dB. One
of the three resulting images is shown in Fig. 2(B) which is one of the
input images in algorithms. The support size of PSF is 29 pixels. The



Fig. 1. Restorations of the simulated astronomy images (r0=10 cm): (A) original image, (B) one of the three blurred and noisy images, (C) image restored with MCAM, and (D) image
restored with our approach.
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results of applying MCAM [18] with TV (200 iterations), and our
approach (h=0.9, κ=0.01 after 50 iterations) are given in Fig. 2
(C) and (D), respectively. Fig. 2(C) is a result with noise artifacts.
The noise artifacts are well suppressed in Fig. 2(D). Relatively high-
quality result can be obtained through our method as seen from com-
paring Fig. 2(D) with Fig. 2(C). The corresponding RMSE values are
15.23(C), and 6.97(D). For the sake of comparison, a line plot is made
to demonstrate the improvement in contrast and resolution. This is
shown in Fig. 3 and it can be also found that Fig. 2(D) is of high res-
olution. In this experiment, the MCAM method takes about four
Fig. 2. Restorations of the simulated astronomy images (r0=13 cm): (A) original image, (B) o
restored with our approach.
hours to reach 200 iterations, and our method reached 50 iterations
using about seven minutes. We note that execution time of MCAM
method is influenced seriously by the support size of the PSF. When
the support size of the PSF is big, execution time of MCAM method
will be very long. However, execution time of our method hardly influ-
enced by the support size of the PSF. Our method will become an effi-
cient online scheme that models the multiframe problem more
realistically through using the accelerated method [26].

Another advantage of the new algorithm is the ability to handle
channelswhich are not registered.Wewill illustrate it in the subsequent
ne of the three blurred and noisy images, (C) image restored with MCAM, and (D) image

image of Fig.�2


Fig. 3. This is a line plot taken across the horizontal axis of original image, Image restored
with MCAM, Image restored with our approach.
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experiment. The image “Satellite” is degraded with the same PSFs
(r0=13cm) and noise of SNR=50 dB. The second and the third blurred
images are shifted by [8 5] and [−3–8] pixels, respectively, as shown
Fig. 4. Unregistered blurred noisy images: (A) first channel (B) second channel (shifted
by [8 5] pixels), and (C) third channel (shifted by [-3 -8] pixels).

Fig. 5. (A) Original image, (B) image restored with MCAM, (C) recovered image from
channel unregistered.
in Fig. 4. The support size of PSF is 37 pixels. The results of applying
AM-MAP [20] with TV (500 iterations), and our approach (h=0.9,
κ=0.01 after 150 iterations) are shown in Fig. 5(B–C), respectively,
with RMSE values of (B) 15.29 and (C) 8.36. Our method resulted in
an image with a better RMSE value. Comparing Fig. 5(B) with Fig. 5
(C), it can be found that the noise artifacts on the surface of the Satellite
are apparently reduced and sharper edge is shown in Fig. 5(C). In this
experiment, the AM-MAP method to reach 500 iterations takes about
four days, and our method reached 150 iterations using about twenty
minutes. Although the images are unregistered, the high-quality result
can be obtained. Again, we also manually change the parameters of
AM-MAP to find the restored images with best RMSE value.
5. Conclusions

A blind image deconvolution algorithm in the frequency domain is
presented which uses the edge-preserving method and generic band-
width of optical system. Data-adaptive filters are employed for image
denoising and then sharpening spatial filters are adopted to highlight
fine details in the image. Considering the restriction of the optical sys-
tem diffraction limit, constrain of limited frequency-domain bandwidth
is applied to the blind deconvolution. The quality of images restored by
the proposed algorithm is higher. It possesses the predominance in the
wide application of the real astronomical image, because the observed
imagesmisalignment occurs very frequently and the point spread func-
tions are unknown.

image of Fig.�4
image of Fig.�3
image of Fig.�5
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