

Home Search Collections Journals About Contact us My IOPscience

Temperature Dependence of Atmospheric NO_3 Loss Frequency

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 Chin. J. Chem. Phys. 24 145

(http://iopscience.iop.org/1674-0068/24/2/05)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 202.127.206.196

The article was downloaded on 05/07/2012 at 06:12

Please note that terms and conditions apply.

ARTICLE

Temperature Dependence of Atmospheric NO₃ Loss Frequency

Su-wen Lia*, Pin-hua Xieb, De-bao Chena, En-hua Jianga, Xu-de Wanga

a. School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China b. Key Laboratory of Environmental Optical and Technology, Chinese Academy of Sciences, Hefei 230031, China

(Dated: Received on November 19, 2010; Accepted on February 14, 2011)

A new indicator with temperature dependence of the NO_3 loss frequency, was developed to study the contribution of NO_3 to the oxidation of monoterpenes and NO_x removal in the atmosphere. The new indicator arises from the temperature dependence of kinetic constant. The new indicator was applied to data of observation based on differential optical absorption spectroscopy system on the outskirts of Hefei, China. According to the findings, the contribution of monoterpenes to the loss of NO_3 was 70%-80%.

Key words: NO₃, Differential optical absorption spectroscopy, Indicator, Loss frequency, Oxidation capacity

I. INTRODUCTION

The quality of environment has a close relationship with its self-cleaning capacity. NO_3 serves as the cleaners of the nighttime atmosphere. NO_3 is not only the primary oxidizing agent for volatile organic compounds (VOCs), but also plays a vital role in transforming the NO_x to HNO_3 and forming nitrate particulate [1–3]. The oxidizing capacity of NO_3 on VOCs and removal of NO_x in that NO_3 can change the ratio of VOC/NO_x , which has a direct role on producing the ozone of the day [2].

Since the first measurement of NO_3 in tropospheric layer in 1980 by Noxon et al. and Platt et al. [4, 5], environmental scientists have begun to measure NO_3 under different atmosphere modes (in polluted and clean atmosphere, land and seaside atmosphere) to have a better understanding on the role of NO_3 to forming ozone and to photochemical reaction. The findings show that in polluted districts the NO_3 is removed mostly through the reaction with NO_3 and that in suburbs and countryside the loss of NO_3 is mainly through the reaction with NO_3 and N_2O_5 [8–14].

The current approaches to studying the NO_3 sinks can be mainly classified into three parts: (i) using models to investigate the oxidation of NO_3 on VOC and NO_x . (ii) through correlation analysis to predict the oxidation of NO_3 on VOCs and removal of NO_x . (iii) measuring not only the concentration of NO_3 , but also all the VOCs components related to reaction [6, 7].

In this work, we use a new method to calculate the contribution of NO_3 to VOCs and NO_x in the atmo-

II. RELATIONSHIP BETWEEN NO₃ LOSS FREQUENCY AND TEMPERATURE

 NO_3 concentration is very low for the rapid photolysis and the reaction with NO during the day, whereas NO_3 is accumulated quickly after the sunset and becomes the essential oxidizing agent in the nighttime. In the boundary layer, the primary source of NO_3 is from the oxidizing reaction of NO_2 and O_3 .

$$NO_2 + O_3 \xrightarrow{k_1} NO_3 + O_2$$
 (1)

The primary chemical rate constant of NO_3 is listed in Table I. The productivity of NO_3 is calculated with the concentrations of NO_2 and O_3 :

$$P_{\text{NO}_3} = [\text{NO}_2] [\text{O}_3] k_1$$
 (2)

Another source of NO_3 is the thermal analysis of N_2O_5 :

$$NO_2 + NO_3 + M \stackrel{K_{eq}}{\longleftrightarrow} N_2O_5 + M$$
 (3)

Because the Eq.(3) reaches dynamic balance in a few minutes, thermal analysis of N_2O_5 is not the major

145

sphere by analysis of the relationship between loss rate of NO_3 and temperature. The new indicator is used to investigate the loss process of NO_3 through analyzing the relationship of dynamics constants and the relationship of monoterpene emission rate and temperature. This method is simple, the concentration of NO_3 , NO_2 , O_3 and temperature in the atmosphere are only needed. Then, this indicator was applied to investigate the contribution of NO_3 to VOCs and removal of NO_x in the field campaign of Hefei.

^{*}Author to whom correspondence should be addressed. E-mail: suwen_li@yahoo.cn

TABLE I kinetic data of the reactions in NO₃ chemistry $k(T) = A \exp(B/T)$ [2, 5, 16].

Reaction	$A/(\mathrm{cm}^3/\mathrm{s}^{-1})$	B/K^{-1}	$k(298 \text{ K})/(\text{cm}^3/\text{s})$
$NO_2+O_3\rightarrow NO_3+O_2$	1.4×10^{-13}	-2470 ± 150	3.5×10^{-17}
$NO_3+NO\rightarrow 2NO_2$	1.8×10^{-11}	-110 ± 100	2.6×10^{-11}
$O_3+NO\rightarrow NO_2+O_2$	1.4×10^{-12}	-1310 ± 200	1.8×10^{-14}
$NO_3+\alpha$ -pinene \rightarrow pinon aldehyde	1.19×10^{-12}	490	6.2×10^{-12}
$NO_2+NO_3+M \leftrightarrow N_2O_5+M$	5.5×10^{-27}	10724 ± 75	2.3×10^{-11}

source of NO_3 . Therefore, the contribution of N_2O_5 to the productivity of NO_3 is negligible [1, 2].

Suppose the local stabilization of NO₃, the production and loss of NO₃ reach dynamic balance. Then its loss frequency $f_{\rm NO_3}$ could be reached through the measured concentration of NO₃ and its production $P_{\rm NO_3}$ [5–11]:

$$\frac{d}{dt} [NO_3] = P_{NO_3} - [NO_3] f_{NO_3} = 0$$

$$f_{NO_3} = \frac{[NO_2] [O_3] k_1}{[NO_3]}$$

$$= \frac{1}{\tau_{NO_3}}$$
(4)

here, τ_{NO_3} is lifetimes of NO₃.

A. NO₃ direct sinks

1. Reaction of NO₃ with NO

A rapid loss mechanism is gas phase reactions of NO_3 and NO:

$$NO_3 + NO \rightarrow NO_2 + NO_2$$
 (5)

When NO reaches $0.5-2.5~\mu mol/L$, the typical loss frequency of NO₃ is $0.5-0.1~s^{-1}$. The reaction rate is 5% higher at 298 K than that at 273 K (Table I), which indicates that the temperature has minor influence on the gas phase reactions of NO₃ and NO [1, 2]. In nighttime, due to missing photolysis NO₂ and the rapid reaction of NO with O₃, with typical lifetimes of NO of the order 1 min (298 K, O₃ at 40 μ mol/L), this loss mechanism can be neglected, except in the vicinity of NO sources.

$$O_3 + NO \rightarrow NO_2 + O_2$$
 (6)

No prominent temperature dependence of anthropogenic NO emission is known. Compared with NO_3 loss caused by other reactions, Eq.(5) has a loose connection with temperature. When the loss of NO_3 is mainly through the reaction with NO, the influence of surrounding temperature on the loss frequency of NO_3 can be neglected.

2. Reaction of NO₃ with VOCs

In land boundary layer, NO₃ reacts rapidly with VOCs released by organic compounds, in particular with monoterpenes released by biosphere. A recent comparison of reaction rates of NO₃ with hydrocarbons at Pabstthum, yielded a partitioning of 90%, 5%, and 5% for monoterpenes, isoprene, and anthropogenic VOCs, respectively [5].

The reaction of NO₃ with α -pinene will decrease by 13% when the temperature varies from 273 K to 298 K. Whereas the emission flux F of monoterpenes increases with the temperature [14, 15]:

$$F \sim \exp[\beta(T - T_s)] \tag{7}$$

 β is an empirical constant in the range of $0.06-0.14~\mathrm{K}^{-1}$, which is related to plants type. The maximum of monoterpene emission is observed at temperatures T_s around from 310 K to 320 K [5, 16]. Supposing when $\beta = 0.09~\mathrm{K}^{-1}$, $T_s = 315~\mathrm{K}$, and the variation of temperature is 273–298 K, the total emission of monoterpenes is increased by 8.6 times. In fact, it is the monoterpenes in the environment that controls the loss frequency $f_{\mathrm{NO_3MT}}(T)$ of NO₃. When the primary removal path is through reaction with monoterpenes, the loss frequency of NO₃ increases with temperature index:

$$f_{\text{NO}_3\text{MT}}(T) \sim \exp(0.09T)$$
 (8)

Eq.(8) indicates that the reaction of NO₃ and monoterpenes is of great importance in hot season. Based on Eq.(8), we can research the whole loss contribution of the reaction of NO₃ and monoterpenes on NO₃ at any temperature. In the rural areas, even the temperature is 285 K, NO₃ mainly reacts with monoterpenes. In the city, anthropogenic discharge of VOCs influences the emission of NO₃, while, in the presence of NO, it is not the natural or man-made VOCs that plays a great role but NO that is the foremost capture [6, 9, 14].

B. NO₃ indirect sinks

 N_2O_5 is generated in the reaction of NO_3 and NO_2 . In a few minutes the Eq.(3) reaches a dynamic balance. The loss process of N_2O_5 is also the indirect removal process, in which $f_{\rm N_2O_5}$ denotes the total loss of N₂O₅ and $f_{\rm NO_3indir}$ denotes the indirect loss:

$$f_{\text{NO}_3 \text{indir}} = K_{\text{eq}}(T) \left[\text{NO}_2 \right] f_{\text{N}_2 \text{O}_5} \tag{9}$$

 $K_{\rm eq}$ is strongly temperature dependant, and the value of $K_{\rm eq}$ exponentially decreases with increasing temperature. Because of a higher factor of 24 at 273 K compared with 298 K, indirect sinks play an important role in winter [5]:

$$f_{\text{NO}_3 \text{indir}} \sim \exp\left(\frac{10724}{T}\right)$$
 (10)

The possible sinks of N_2O_5 are homogeneous reaction with moisture or inhomogeneous reaction in aerosols surface to generate nitrate:

$$N_2O_5 + 2H_2O \rightarrow 2HNO_3$$
 (11)

With auxiliary meteorological data, calculation of the loss frequency of N_2O_5 caused by the homogeneous reaction of N_2O_5 and moisture is a minor reaction in atmosphere. Though the relation of temperature with this reaction is still under question, Eq.(11) indicates that the hydrolysis of N_2O_5 should has a positive temperature coefficient.

In the liquid layer of aerosols surface, N_2O_5 can make a rapid hydrolysis reaction. The absorption coefficient $\gamma_{N_2O_5}$ on N_2O_5 varies with different aerosols components and particle diameters [1, 6, 16], which would affect the indirect NO_3 sinks. According to the findings, absorption coefficient decreases with temperature rise, but the variation is slight. For example, absorption coefficient is 13.9% at 247 K while it is 10% at 293 K [5]. Therefore, the variation of attrition rate of N_2O_5 in aerosols surface with temperature can be disregard.

C. The temperature dependence of NO₃ loss frequency

In land boundary layer, without the discharge of NO, the losses of NO_3 are mainly through two paths: one is the direct reaction with monoterpenes, the other is inhomogeneous hydrolysis of N_2O_5 . The temperature dependence of the NO_3 loss frequency is consequently given by:

$$f_{\text{NO}_3} = f_{\text{NO}_3\text{MT}}(T) + f_{\text{NO}_3\text{indir}}(T)$$

= $A_0 \exp(0.09T) + B_0 \exp\frac{10724}{T}$ (12)

So far, the parameters related to temperature are primarily the emission rate of monoterpenes and the dynamic equilibrium factor of N_2O_5 . Coefficients of A_0 and B_0 in Eq.(12) have no connection with temperature. The contributions of monoterpenes reaction to the total NO_3 sinks (TC) is given by:

$$\mathrm{TC} = \frac{100 f_{\mathrm{NO_{3}MT}}(298\mathrm{K})}{f_{\mathrm{NO_{3}MT}}(298\mathrm{K}) + f_{\mathrm{NO_{3}indir}}(298\mathrm{K})} \times 100\% \ (13)$$

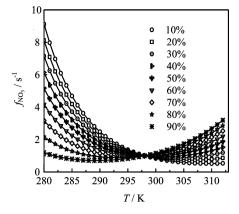


FIG. 1 Calculated temperature dependence of the NO_3 loss frequency at different TC (all frequency are calibrated to unity at 298 K).

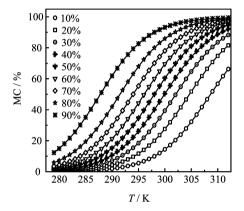


FIG. 2 Variation of the contribution of NO_3 -monoterpene reaction to the total NO_3 removal (MC) with temperatures at different TC.

To correlational study, the absolute value of $f_{\rm NO_3}$ is not important, so the loss frequency of NO₃ is normalized at 298 K as $f_{\rm NO_3}(298~{\rm K}){\approx}1$. The relationship between $f_{\rm NO_3}$ and temperature variation is simulated in Fig.1, in which the loss contribution of monoterpenes on NO₃ known as TC ranges from 10% to 90%. Figure 2 shows the influence of monoterpenes obviously increases at higher temperature.

Figure 3 is the calculated contribution of NO_3 and momoterpene reactions to the total NO_3 removal as a function of the derivative of $f_{NO_3}(T)$. The clear linear dependence indicates that temperature dependence of the NO_3 loss frequency can be used as a new indicator for NO_3 sinks. TC is obviously linear as function of:

$$TC = 57.3 + 474.5 \frac{1}{f_{NO_3}} \frac{df_{NO_3}}{dT} \times 100\%$$
 (14)

Based on the acquired connection between $f_{\rm NO_3}$ and temperature above, NO₃ loss under different temperatures can be calculated through Eq.(14). When



FIG. 3 The calculated contribution (TC) of NO_3 -momoterpene reactions to the total NO_3 removal at 298 K as a function of the derivative of f_{NO_3} toward temperature.

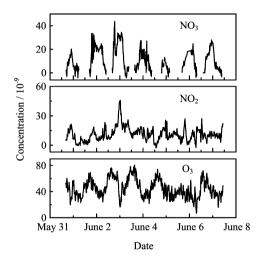


FIG. 4 Time series of NO₃, NO₂, and O₃ by DOAS system.

 $\frac{1}{f_{\rm NO_3}}\frac{{\rm d}f_{\rm NO_3}}{{\rm d}T}$ at 298 K is zero, the reaction contribution of monoterpenes is 57%. Uncertainty of monoterpenes emission factor β in Eq.(7) causes error of 30% about NO₃ loss contribution in the reaction of NO₃ with monoterpenes.

III. APPLICATION IN FIELD CAMPAIGN

Observation of nighttime NO₃, NO₂, and O₃ have been performed using long path-differential optical absorption spectroscopy (LP-DOAS) on the outskirts of Hefei (117°23′E, 31°86′N), China. The time series of NO₃ and supporting parameters were simultaneously measured for 31 May-8 June. Figure 4 is time series of NO₃, NO₂, and O₃ concentrations. Correlation analysis shows that NO₃ loss path is removed directly through the reaction with monoterpenes. For a detailed system

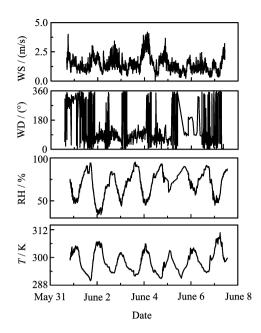


FIG. 5 Time series of the meteorological parameters. RH: relative humidity, WD: wind direction, and WS: wind speed.

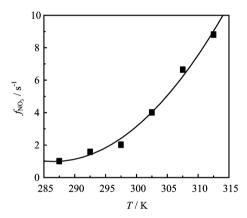


FIG. 6 Temperature dependence of the NO₃ loss frequency during the field campaign of NO₃ in Hefei.

analysis and calculation, see Ref.[3].

The new indicator is applied to analyze observed data, combined with the concentrations of NO₃, NO₂ and O₃ measured by DOAS (Fig.4). Figure 5 shows time series of the meteorological parameters with the temperature dependence of the NO₃ loss frequency at interval of 5 K, showing that $f_{\rm NO_3}$ increases with temperature obviously. The loss frequency at 310 K is about 4 times higher than at 298 K. Quadratic polynomial fitting is adopted in Fig.6, in which the correlation coefficient is 0.99. At 298 K, $f_{\rm NO_3}$ about temperature derivative is 0.037±0.011 (with 30% error factor). The contribution of the reaction of NO₃ and monoterpenes on the temperature loss is 70%–80%. The function curves are identical in Fig.6 and Fig.1, in which the

contributions of monoterpenes are both 80%.

In the same observation time, the conclusion is identical with Geyer's, in which the settlement of NO_3 is through the reaction with monoterpenes [5]. The analysis on the correlation of NO_2 and the life of NO_3 only show the qualitative result, while the quantitative information on settlement distribution can be obtained through temperature indicator.

IV. CONCLUSION

A new indicator for the sink distributions of NO_3 , which is achieved from the relationship between dynamics constant and release rate of monoterpenes and temperature, is presented in this work. The new indicator can show the oxidation of NO_3 on VOCs and the contribution rate of the removal of NO_x quantitatively. The contribution NO_3 on the removal of NO_x and monoterpenes oxidization can be obtained directly through the temperature derivative in f_{NO_3} . This work also analyzes the field data on the outskirts of Hefei. The findings show that the loss path of NO_3 is mainly through monoterpenes reaction of plants, the contribution rate is 70%-80%.

V. ACKNOWLEDGMENTS

We acknowledged to DOAS groups. This work was supported by the Key Project of Chinese Ministry of Education (No.209057), the Anhui Provincial Natural Science Foundation (No.090412028), and the Natural Science Foundation of Anhui Province Colleges and University (No.KJ2008A114).

 A. Geyer, B. Alicke, S. Konrad, T. Schmitz, J. Stutz, and U. Platt, J. Geophys. Res. 106, 8013 (2001).

- [2] R. Atkinson, Atmos. Environ. **34**, 2063 (2000).
- [3] S. W. Li, W. Q. Liu, P. H. Xie, A. Li, M. Qin, F. M. Peng, and Y. W. Zhu, J. Environ. Sci. 20, 45 (2008).
- [4] J. F. Noxon, R. B. Norton, and E. Marovich, Geophys. Res. Lett. 7, 125 (1980).
- [5] U. Platt, D. Perner, G. W. Harris, A. M. Winer, and J. M. Pitts, Geophys. Res. Lett. 7, 89 (1980).
- [6] M. Winer, R. Atkinson, and J. N. Pitts, Science 224, 156 (1984).
- [7] A. Geyer, *Ph. D. Dissertation*, Heidelberg: Institute of Environmental Physics, University of Heidelberg (2000).
- [8] S. S. Brown, J. A. Neuman, T. B. Ryerson, M. Trainer, W. P. Dubé, J. S. Holloway, and C. Warneke, Geophys. Res. Lett. 33, LO8801 (2006).
- [9] B. J. Allan, N. Carslaw, H. Coe, R. A. Burgess, and J. M. C. Plane, J. Atmos. Chem. 33, 129 (1999).
- [10] J. Stutz, B. Alicke, and R. Ackermann, J. Geophys. Res. 109, D12306 (2004).
- [11] E. C. Wood, P. J. Wooldridge, J. H. Freese, T. Albrecht, and R. C. Cohen, Environ. Sci. Technol. 37, 5732 (2003).
- [12] S. W. Li, W. Q. Liu, P. H. Xie, Y. Y. Jun, D. B. Chen, and Z. Li, J. Chem. Phys. 21, 433 (2008).
- [13] M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, Atmos. Chem. Phys. Discuss. 5, 3491 (2005).
- [14] A. Geyer and J. Stutz, J. Geophys. Res. 109, D12307 (2004).
- [15] E. C. Wood, T. H. Bertram, P. J. Wooldbrige, and R. C. Cohen, Atmos. Chem. Phys. 5, 483 (2005).
- [16] A. Geyer and U. Platt, J. Geophys. Res. 107, D204431 (2002).
- [17] M. J. Evans and D. J. Jacob, Geophys. Res. Lett. 32, L09813 (2005).