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a b s t r a c t

Molecular simulations of a series of simple melts, including Al, Cu, Ni, Pt, Ti, Si and Ge, are used to study

the scaling laws of diffusion coefficients proposed by Rosenfeld and Dzugutov. Our simulation results

give strong support to the result that the scaling laws of diffusion coefficients hold true for simple

liquids with isotropic many-body interactions but fail for systems with anisotropic interatomic

interaction. The failure of the scaling laws in application liquid Si (l-Si) and liquid Ge (l-Ge) is

connected to the fact that the excess entropy of them cannot be calculated approximately in terms of

the two-body contribution and the original reduction parameters are no longer appropriate. In

particular, since the ratio between the positions of the second and first peaks in structure factor

(Q2=Q1) is a direct measure of the structural deviation from the hard-sphere-like case, the temperature

dependence of Q2=Q1 was analyzed. Moreover, in comparison with 1.86, the value of Q2=Q1 for the

hard-sphere-like case, we modified the scaling laws of diffusion coefficients proposed by Rosenfeld and

Dzugutov. The modified scaling relations are appropriate not only for simple liquid metals, but also for

l-Si and l-Ge with anisotropic interatomic interaction.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Diffusion phenomena play a very important role in various
disciplines of applied science and considerable attention has been
paid to the self-diffusivity in simple liquids resulting into various
experimental and theoretical developments [1]. It has been
demonstrated that the self-diffusivity D of several equilibrium
simple fluids, when cast in an appropriately reduced form, shows
an approximate scaling with Sex, the excess entropy per particle of
the fluid [2–10,12]. As summarized by Rosenfeld [3], the excess
entropy scaling relation is a semi-quantitative model, rather than
a theory. However, this type of empirical scaling behavior has
great practical significance because it relates the dynamic quan-
tity, D, that can be difficult to predict or measure to an experi-
mentally accessible thermodynamic quantity, Sex, which can be
calculated directly from a computer simulation or estimated on
the basis of knowledge of the pair correlation function.

Entropy scaling relation for the transport coefficients of liquids
was first proposed by Rosenfeld [2,3]. Based on the success of
variational hard-sphere thermodynamic perturbation theory and
corresponding states arguments, he defined the reduced coefficient
of self-diffusion, DR, which is scaled by macroscopic reduction
ll rights reserved.
parameters (density and temperature), namely a mean interparticle
distance, d¼ r�1=3 and thermal velocity, v¼ ðkBT=mÞ1=2:

DR ¼D
r1=3

ðkBT=mÞ1=2
, ð1Þ

where r is the number density, kB is the Boltzmann constant, T is the
temperature, and m is the particle mass. The reduced diffusion
coefficient was shown to be correlated to the excess entropy in a
quasi-universal behavior:

DR � 0:6e0:8Sex , ð2Þ

where Sex is in units of kB. This form of the reduced self-diffusivity is
suggested by an elementary kinetic theory for a dense medium of
particles with thermal velocities but with a mean free path between
collisions which is of the order of the average interparticle distance.
Note that the reduction parameter of the diffusion coefficient by
Rosenfeld is

DR0 ¼
ðkBT=mÞ1=2

r1=3
: ð3Þ

Recognizing that the relevant effects of the collisional events are
mainly due to the harsh repulsion prevailing at small separations.
Dzugutov [4] proposed another universal relation linking the diffu-
sion coefficient and the excess entropy, from molecular dynamics
calculations. The diffusion coefficient is expressed in dimensionless
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units via

DD ¼
D

s2G
, ð4Þ

that is, the reduction parameter of the diffusion coefficient is

DD0 ¼ s2G: ð5Þ

Here, s is the hard-sphere diameter that corresponds practically to
the position of the first peak of the pair correlation function gðrÞ, and
G is the collision frequency, according to the Enskog theory of atomic
transition, G¼ 4ps2rgðsÞðkBT=mpÞ1=2, where gðrÞ is the pair corre-
lation function evaluated at the separation distance s. Dzugutov
demonstrated that the universal scaling law of the diffusion coeffi-
cient is expressed by

DD ¼ 0:049eSex : ð6Þ

In the original Dzugutov work, Sex was approximated by the two-
body contribution which is denoted by S2 and is given by

S2 ¼�2pr
Z 1

0
fgðrÞlngðrÞ�½gðr�1Þ�gr2 dr: ð7Þ

Because of the choice of macroscopic reduction parameters for the
transport coefficient rather than microscopic potential parameters,
the Rosenfeld scaling can be applied directly to real materials. From
this point of view it can be even a more effective recipe than the
Dzugutov scaling [3]. The Rosenfeld approach, where the exponential
scaling is more general and holds for a wider range of liquids, even
though the scaling parameters will depend on the functional form of
the interaction potential and will be identical only for conformal
potentials [11].

It is well known that most simple liquids with isotropic potentials
obey these two scaling laws [2–10]. But at the same time, unlike the
behavior of the simple metals, the data for liquid Si (l-Si) with
anisotropic interatomic interactions significantly deviates from the
excess entropy scaling laws of Rosenfeld and Dzugutov [5,6,13].
These systematic deviations are partly related to the fact that the
excess entropy could be calculated approximately in terms of the
two-body contribution for liquid metals with isotropic many-body
interactions, but the two-body approximation is not accurate for the
case of system with anisotropic interatomic interaction due to
the complicated local structures [6]. Furthermore, Hoyt et al. [5]
proposed that the collision frequency developed for hard-sphere
systems is no longer appropriate for l-Si since the liquid structure
observed in l-Si is very different from that in the metallic liquids: in
l-Si, besides the first peak in gðrÞ there exists a small peak in the
high-r side while in liquids characterized by central force potentials
the first peak in gðrÞ is very sharp. Therefore, in l-Si, the first neighbor
shell actually consists of two closely spaces shells. They replaced the
quantity s2gðsÞ with the sum s2

1gðs1Þþs2
2gðs2Þ, where the sub-

scripts 1 and 2 refer to the positions of the two closely spaced peaks
in gðrÞ. This two-shell model was applied to a representative l-Si data
point and the corrected data point is in quite good agreement with
the embedded atom method potentials data. However, as mentioned
by Hoyt et al. The two-shell model could not be applied to every data
point because at high temperatures the two peaks in gðrÞ merge to
such an extent that the second position could not be defined.

In this general context it is desirable to construct an alter-
native reduction parameter of the diffusion coefficient which is
appropriate for both simple liquids with isotropic interactions
and systems with anisotropic interatomic interaction, such as l-Si
and liquid Ge (l-Ge). For this purpose, we carry out Monte Carlo
simulations and molecular dynamic simulations for several sim-
ple melts, including Al, Cu, Ni, Pt, Ti and Si as well as Ge, over wide
range of equilibrium conditions, thereby obtaining information
about the temperature dependence of structural properties and
dynamic properties in the liquid state. Furthermore, we give two
modified reduction parameters of the diffusion coefficient using
these structural properties.

The rest of the paper is organized as follows: in Section 2, the
computational methods and details are described; in Section 3,
the results are presented and discussed; finally, the conclusions
are given in Section 4.
2. Computational method and details

The interparticle interactions of simple metals including Al, Cu,
Ni, Pt and Ti were described by the second-moment approxima-
tion of the tight-binding scheme [14], which has been widely
used in numerical simulation studies in metals and alloys
[6,14–16]. According to this formalism, the potential energy U

of a system can be written as

U ¼
X

i

X
j

Ae�pðrij=r0�1Þ
�

X
j

x2e�2qðrij=r0�1Þ

0
@

1
A

1=2
8><
>:

9>=
>;, ð8Þ

where the sum is over all atoms in the system, rij represents the
distance between atom i and j, and r0 is the first-neigh-
bors distance of the bulk crystal. The repulsive portion is a
Born–Mayer pair-wise interaction. The attractive term mimics
the form of the square root of the second moment of local density
of states, and hence has a many-body character. In this paper, we
use the value of parameters A, x, p and q as given by Cleri and
Rosato [14]. The Stillinger–Weber (SW) potential [17] is
employed to model l-Si and l-Ge atomic interaction. The SW
potential has been widely used in studies of the liquid phase
[17–20]. The calculated pair correlation function and its Fourier
transform are in good agreement with experiments [20]. It takes
the following form:

F¼
X
io j

ef2ðrij=sÞþ
X

io jok

lf3ð r
!

i =s, r
!

j =s, r
!

k=sÞ: ð9Þ

Here f2 is the pair interaction term, f3 is the three-body interac-
tion term which stabilized the tetrahedral structure of bulk Si, e is
the potential well depth, s is the length parameter, and l is the
scaling factor which reflects the relative strength of the two- and
three-body interactions. The functional forms and the associated
parameter values of f2 and f3 can be found in Ref. [17]. The
potential parameters we chose are: e¼ 3:315 eV, s¼ 2:095 Å and
l¼ 21 for l-Si as in Ref. [17], and e¼ 1:925 eV, s¼ 2:181 Å and
l¼ 19:5 for l-Ge as in Ref. [19].

As we know, the entropy can be calculated from the density of
states as

SðN,E,VÞ ¼ kBlnOðN,E,VÞ, ð10Þ

where kB is the Boltzmann constant, and OðN,E,VÞ is the density of
states. A novel Monte Carlo method has been proposed by Wang
and Landau [21] for direct calculation of the density of states of
systems as a function of one or more macroscopic observables like
energy, temperature and volume. This method has drawn wide
attention of researchers due to its straightforward implementa-
tion and wide applicability. Also it has been generalized for
off-lattice simulations [22]. In the Wang–Landau algorithm the
probability of observing a particular atomic configuration is
inversely proportional to the density of states corresponding to
the given state, that is to say, the new state is accepted with
probability:

pðEI ,VI-EJ ,VJÞ ¼min
VJ

VI

� �N OðEI ,VIÞ

OðEJ ,VJÞ
,1

" #
, ð11Þ

where EI and EJ are the energies of the initial and final states, VI

and VJ are the volumes of the initial and final states, respectively.
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Fig. 1. The reduced diffusion coefficients as a function of the pair correlation

entropy S2. DR and DD are scaled by Eqs. (3) and (5), respectively. Entropy is

expressed in units of kB. The solid lines, being the best fit to the data of simple

liquid metals including Al, Cu, Ni, Pt and Ti, represent the present scaling law of

equations given in the figure.
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The density of states is initially set so OðE,VÞ ¼ 1, and the density
of states is modified at every simulation step. For each visited
states, the corresponding OðE,VÞ is updated according to
OðE,VÞ ¼ f �OðE,VÞ, where f is an arbitrary convergence factor
which tend to unity as the calculation proceeds. We also keep
track of the histogram HðE,VÞ, counting the number of times each
energy is visited. Once the histogram is sufficiently flat, f is
reduced and HðE,VÞ is reset to zero. These steps are repeated until
f has become close to unity. With an accurate density of states,
the partition function or the averages of other important thermo-
dynamic quantities can be calculated directly, for example
entropy can be computed by Eq. (10). Reweighing techniques
[23] is employed for transforming SðN,V ,EÞ as a function of
temperature. Since the density of states is modified every time
the state is visited, a relative density of states and relative entropy
are obtained only at the end of the simulation [21]. The difference
between the relative entropy and the absolute entropy is a
constant. In order to get the value of the constant, we select the
Lennard–Jones (LJ) system as a reference system whose equation
of states is known and then the absolute entropy is easy to obtain
[24]. For the studied system at the state point ðN0,V0,T0Þ, the
entropy of system of interest, denoted by SðN0,V0,T0Þ, is evaluated
by

SðN0,V0,T0Þ ¼ SLJðN0,V0,T0Þþ
1

T
½DUðN0,V0,T0Þ�DFðN0,V0,T0Þ�, ð12Þ

where SLJðN0,V0,T0Þ is the entropy of LJ system at the same state,
DUðN0,V0,T0Þ is the difference of internal energy between LJ
system and the system of interest at the same state, and
DFðN0,V0,T0Þ is the difference of free energy between LJ system
and the system of interest. According to the thermodynamic
integration method it can be written as

DFðN0,V0,T0Þ ¼ FðN0,V0,T0Þ�FLJðN0,V0,T0Þ ¼

Z 1

0
dl

@Ul

@l

� �
l
, ð13Þ

where l is the coupling parameter, which interpolates between
the potential function ULJ and U such that: Ul ¼ ð1�lÞULJþlU.
Once SðN0,V0,T0Þ has been obtained, using Eq. (10) with Eq. (12)
we can obtain the absolute entropy. Then the excess entropy is
calculated by subtracting the entropy of an equivalent ideal gas
from the absolute entropy of the system.

Monte Carlo simulations for all the systems are carried out in
the isobaric-isothermal (NPT) ensemble under cubic periodic
boundary conditions at ambient pressure, with the systems
consisting of 4000 particles. First we run short simulations in
the canonical ensemble for both the low temperature and high
temperature phases to get the energy range. Then the energy
range is divided into a number of bins and we run the WL
algorithm for 1� 108 MC steps. We reduce the modification
factor lnf-0:1lnf . The system is run for 100 000 steps at the
given temperature to guarantee an equilibrium liquid state, and
gðrÞ are obtained by averaging 50 configurations sampled during
another run of 30 000 steps. To study the atomic self-diffusion
coefficient DðTÞ in liquids, we first follow the time-dependent
mean-square displacement in the liquids. We start from the
equilibrium liquid configuration generated by classical molecular
dynamics. According to the Einstein formula, for sufficiently long
time interval, DðTÞ can be extracted from the equation:

DðTÞ ¼ lim
t-1

jrðtÞ�rð0Þj2
� �

6t
, ð14Þ

where r(t) denotes an atom position at time t. The angular
brackets denote an average over all the particles and also over
all time origins.
3. Result and discussions

Since the pair correlation entropy can be obtained from the
integral of the experimentally accessible pair distribution func-
tion. It is very attractive to obtain estimates of transport proper-
ties of liquids from the pair correlation entropy. The first step is
evaluating the numerical validity of the pair correlation approx-
imation for entropy scaling relation for the transport coefficients
of liquids. Fig. 1 shows the reduced diffusion coefficients as a
function of the pair correlation entropy for different choices of
reduced parameters and the results are compared to the original
best fit determined by Rosenfeld and Dzugutov, respectively. We
find that the slopes of simple liquid metals are about �0.74 and
�1.08, which are very close to the ideal values �0.8 and �1.0 for
different choice of reduced parameters as defined by Eqs. (3) and
(5), respectively. The slopes of the lines of l-Si and l-Ge are much
larger than the ideal values. In other words, based on different
choices of the reduction parameters, the scaling laws of diffusion
coefficients hold for all simulated liquids except l-Si and l-Ge.
Fig. 2 shows the scaled diffusion coefficients vs the excess entropy
for different choices of reduced parameters. The slopes of the lines
of l-Si and l-Ge are closer to the ideal values, although the scaling
laws of diffusion coefficients are also valid for simple liquid
metals and fails for l-Si and l-Ge. That is to say, the pair
correlation approximation has little effect on the entropy scaling
laws for the case of simple liquid metals, but has significant effect
on that of l-Si and l-Ge. We plot SRMPE=Se% as a function of
temperature in Fig. 3, where SRMPE ¼ Se�S2 is the residual multi-
particle entropy. From this figure, we can find that the error of the
excess entropy caused by the pair correlation approximation is of
the order of 30 % or less for simple liquid metals, but it is larger
for l-Si and l-Ge. The results presented above reinforce the notion,
that the excess entropy could be calculated approximately in
terms of the two-body contribution for liquid metals, but the
two-body approximation is not accurate for the case of l-Si and l-Ge.

The above results suggest that the deviations of l-Si and l-Ge
from the scaling laws are partly due to the fact that the two-body
approximation is not accurate for the case of them. However, the
two-body approximation is not the only reason. It is helpful to
recall the basic arguments originally made in justifying these
semi-empirical relationships. For the scaling law of Rosenfeld, the
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kinetic coefficients are expressed in reduces units based on a
mean free path between collisions which is of the order of the
average interparticle distance and thermal velocities [2]. That is to
say, the scaling law of Rosenfeld was based on the approximation
that the structure of liquid can be adequately described by an
effective hard-sphere system. Similarly, the Dzugutov scheme is
based on two main propositions [4]. First, the transfer of energy
and momentum in the liquid is mainly governed by the uncorre-
lated binary collisions described by the Enskog theory, and the
Enskog parameter, G, provides the relevant microscopic informa-
tion about the collision processes that mediate self-diffusion in
the fluid. The second ideal central to the entropy scaling law is
that the frequency of local structural relaxations in the liquid
dictates cage diffusion and is proportional to the number of
accessible configurations in the system. In other words, the
Enskog approach is intrinsically a hard sphere collision theory
that focuses on the first peak in gðrÞ. Thus, it is expected that the
scaling laws without modification might only works on the hard-
sphere-like fluid.

Concerning atomic structures in the liquid phase, Si and Ge
are known to have several unusual features when compared to
hard-sphere-like fluid. As shown in Fig. 4(a), the pair distribution
function gðrÞ has a distinct shoulder on the immediate right-hand
side of the first peak at 1600 K, which evolves into a plateau
with increasing temperature. It is thought that this shoulder is
probably a residue of angular (covalent bonding) interactions in l-
Si and l-Ge [25,26]. In addition to the gðrÞ, bond angle distribu-
tions provide valuable information on the local structural units
and their connectivity in the liquid. In liquid simple metals, the
angle distribution function gðy,rmÞ peaks at around y� 603 and
1201, which are close to those expected for a local icosahedra
arrangement. The gðy,rmÞ of l-Si and l-Ge are plotted in Fig. 4(b),
where we see two maxima at 601 and about 90–1101. The former
corresponds to contribution from metallic bonds, while the latter
represents the covalent-bond nature favoring the tetrahedral
symmetry. The two-peak structure of gðy,rmÞ clearly shows that
the bonding in l-Si and l-Ge is a mixture of covalent and metallic
bonds [27,28]. In addition, from Fig. 4(b), we can observe
significant changes in the distribution of the bond angles accord-
ing to the increase of temperature. The former peak becomes
higher with increasing temperature but the latter becomes lower.
The behavior of gðy,rmÞ and gðrÞ indicates that (i) the bonding in l-
Si and l-Ge is a mixture of covalent and metallic bonds, (ii) the
degree of metallic nature in the l-Si and l-Ge increases as
temperatures increases, and (iii) covalent bonds still exist at
temperature as high as 2800 K. We note that an analogous
breakdown of Rosenfeld scaling for silica was associated with
significant departures from the Gaussian diffusive behavior
[29,30]. Fig. 5 shows the mean square displacement (MSD) as a
function of time for several temperatures. Using a logarithmic
scale in both axes, inflexion point can be observed on the MSD
plots, and the inflexion point is marked by arrow in the figure. The
inset shows a closeup of the area, where the transition between
logarithmic and diffusional motion takes places. But there is no
evidence of a well-defined plateau region, a characterization of
local caging effects, which can be seen in the case of liquid silica.

The features of the shoulder on the immediate right-hand side
of the first peak of gðrÞ and the two-peak structure of gðy,rmÞ give
solid illustrations of the deviation from hard-sphere-like struc-
ture. But it is difficult to quantitatively analyze the deviation
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using their temperature dependence. According to the criterion of
the classification of the structure of liquid melts, proposed by
Waseda [25,31], the ratio of the positions of the second and first
peaks of the structure factor Q2=Q1 reflects the structure of liquids
in the following way. For isotropic liquids, Q2=Q1 typically takes a
value of 1.86. As the anisotropy of the local structures increases,
this quantity increases. In Fig. 6, we plotted this quantity of
several simple liquid metals, l-Si and l-Ge against temperature.
The static structure factor is calculated from the Fourier transform
of gðrÞ. We find that the values of Q2=Q1 for liquid Al, Cu, Ni, Pt and
Ti are very close to 1.86 and remain to be unchanged even at high
temperatures, which indicates that their local structures are
isotropic. On the other hand, different temperature dependence
of the values of Q2=Q1 was observed for l-Si and l-Ge. For l-Si and
l-Ge, Q2=Q1 at low temperature has highly anisotropic values of
2.23 and 2.07, respectively, and decreases as temperature
increases. In other words, at fixed temperatures, l-Si is more
anisotropy than l-Ge and they become closer to isotropic liquids
upon increasing temperature. However, this does not mean that
anisotropy completely disappears at high temperature, because
the values of Q2=Q1 for l-Si and l-Ge are still much larger than
isotropic value 1.86 even at the highest temperature investigated.
Generally speaking, it is expected that metallic bonds are
isotropic and covalent bonds are anisotropic. Thus, it is natural
to assume that isotropic structures originate from metallic bonds,
while anisotropic structures originate from covalent bonds. In this
respect, the behavior of Q2=Q1 in Fig. 6 indicates that as tempera-
ture increases, the system becomes more metallic, although the
covalent bonds persist even at temperature as high as 2800 K,
the highest temperature investigated. Above all, we can get the
conclusion that the deviation of the value of Q2=Q1 from the value
1.86 may be a key parameter to describe the deviation of local
structures of liquid from hard-sphere-like structure.

Although the structures of l-Si and l-Ge cannot be modeled
with a simple hard-sphere model, Ashcroft et al. [26] proved that
they could be obtained assuming the existence of transient
clusters with fast atomic exchange. The first maximum of SðQ Þ

reflects intercluster correlation, while the shoulder on the high-Q

side of the first peak and the remaining oscillations in SðQ Þ are
due to the atom–atom contribution. From the viewpoint of the
cluster model, one can expect that the diffusion must result from
a superposition of the single atom- and cluster-translational
motion in the liquid contains covalent structures. The latter is
derived from the microscopic cage effect (covalently bound atoms
in clusters are oscillating around their equilibrium positions), and
this contribution seem to be subject to relatively slow diffusion
while the single atom motion is more rapidly. In other words, the
collision frequency (or mean free path) in the liquid contains
covalent structures will be smaller (or larger) than that directly
calculated by Enskog theory which was developed for hard-
sphere systems under otherwise equal conditions, and the colli-
sion frequency (or mean free path) become smaller (or larger) as
the ratio of the covalent part increases. As mentioned above, Q2=Q1

can be used to reflect the structure of liquids. For hard-sphere-like
liquid it takes the value of 1.86, and this quantity increases as the
anisotropy of the local structures increases. This suggests that one
can establish a quantity to represent the anisotropy of the local
structures and use this quantity to modify the reduction para-
meters of the diffusion coefficient in Eqs. (3) and (5) in the
following way:

DM
R0 ¼DR0

1:86

Q2=Q1

� �n

, ð15Þ

DM
D0 ¼DD0

1:86

Q2=Q1

� �n

, ð16Þ

where 1.86 is a typical value of Q2=Q1 of hard-sphere-like liquid,
n is the positive integer. Therefore, the diffusion coefficients can be
scaled by the simple modified reduction parameters via

DM
R ¼

D

DM
R0

¼
D

DR0

Q2=Q1

1:86

� �n

, ð17Þ

DM
D ¼

D

DM
D0

¼
D

DD0

Q2=Q1

1:86

� �n

: ð18Þ

We have chosen n¼2 in this work, and the choice of the value of n

may be related to the fact that the coordination number of simple
liquid metals is twice as much as that in l-Si and l-Ge. The new
scaled diffusion coefficients DM

R and DM
D are plotted in Fig. 7. From

this figure, we find that, based on the two different choices of the
modified reduction parameters defined by Eqs. (15) and (16),
the scaling laws of diffusion coefficient hold well not only for the
simple liquid metals but also for l-Si and l-Ge.
4. Conclusion

In this work, molecular simulations of a series of melts are
used to study the scaling laws of diffusion coefficients proposed
by Rosenfeld and Dzugutov. Simulation results show that the
failure of the scaling laws in application of l-Si and l-Ge is closely
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related to that fact that the excess entropy cannot be calculated
approximately in terms of the two-body contribution and the
original reduction parameters are no longer appropriate for l-Si
and l-Ge, which is itself tied to the fact that the structure of l-Si
and l-Ge strongly differs from that in the hard-sphere-like liquids.
Moreover, the pair distribution function gðrÞ, the angle distribu-
tion function gðy,rmÞ, and the ratio between the positions of the
second and the first peak in the structure factor Q2=Q1 are used to
study the local structural change of l-Si and l-Ge induced by
increasing temperature. We find that (i) l-Si and l-Ge become
closer to hard-sphere-like liquids as temperature increases,
(ii) Q2=Q1 is a direct measure of the structural deviation from
hard-sphere-like case. Based on the temperature dependence of
Q2=Q1, we construct modified reduction parameters of the diffu-
sion coefficient. Furthermore, we show that the modified Rosen-
feld scaling law and the modified Dzugutov scaling law are
appropriate for all the studied systems, while the original scaling
laws fail to describe the diffusivity of l-Si and l-Ge. However, we
also identify some limitations of the approach. For example, the
final scaling suggested by us in Eqs. (15) and (16) is somewhat
arbitrary in the way the exponent n is chosen. The present work
may also be informative to develop generalized excess entropy
scaling law of diffusion coefficient in future.
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