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Abstract – The influences of intense coherent laser fields on the transport properties of a single-
layer graphene are investigated by solving the time-dependent Dirac equation numerically. Under
an intense laser field, the valence band and conduction band states mix via the optical Stark
effect. The chiral symmetry of Dirac electrons is broken and the perfect chiral tunneling is strongly
suppressed. These properties might be useful in the fabrication of an optically controlled field-effect
transistor.

Copyright c© EPLA, 2011

Graphene has attracted much attention due to its
remarkable electronic properties [1–3]. The low-energy
quasiparticles, which have linear dispersion and nontriv-
ial topological structure in their wave function, can be
described by using a Dirac-like equation. This unique band
structure of graphene leads to many important potential
applications in nanoelectronics [4–9].
One of the peculiar transport phenomena in graphene

is the chiral tunneling [4,5,10]. In single-layer graphene
a perfect transmission through a potential barrier in
the normal direction is expected. This unique tunneling
effect can be explained by the chirality of the Dirac
electrons within each valley, which prevents backscatter-
ing in general. This kind of reflectionless transmission
is independent of the strength of the potential, which
limits the development of graphene-based field-effect
transistors (FET) [4]. The perfect transmission can be
suppressed effectively when the chiral symmetry of the
Dirac electrons is broken. For instance, in a magnetic field,
a quantized transmission can be observed in graphene
p-n junctions [11]. Recently, Elias et al. proposed that
the hydrogenation could convert the semimetal graphene
into an insulator material [12].

(a)E-mail: jtliu@semi.ac.cn

The intense optical field can also break the chiral
symmetry of Dirac electrons in graphene, e.g., Fistul
and Efetov have shown that when the n-p junctions in
graphene are irradiated by an electromagnetic field in
the resonant condition, the quasiparticle transmission is
suppressed [13]. The optical field control on carrier trans-
port offers several advantages. Optical fields can control
not only the charge carriers but also the spin carriers,
especially which can be performed over femtosecond time
scale. Another fundamental method of optical control
is the optical Stark effect (OSE) [14–18]. The OSE in
traditional semiconductors is due to a dynamical coupling
of excitonic states by an intense laser field. The OSE have
shown many useful applications in optoelectronics and
spintronics [19–23].
In graphene, the valence band and conduction band

states can also mix strongly via OSE. Thus the chirality
of Dirac electrons will be completely changed, or even
disappear. Unlike the resonant case [13], in OSE the
coherent excitons are virtual excitons, which exist only
when the optical field is present. Thus the light-induced
shift lasts only for the duration of the pump pulse,
which allows for optical gates that might only exist
for femtoseconds. Furthermore, since there is no real
absorption in the nonresonant case, the absorption of
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Fig. 1: (Color online) (a) Schematic of the spectrum of Dirac
electrons in single-layer graphene. The optical field is propa-
gated perpendicular to the layer surface and and is linearly
polarized along the Y -direction. The dashed lines represent
the Fermi energy levels Ek. V0 is the height of the poten-
tial barrier and Eb = V0−Ek (b) Schematic of the scat-
tering of Dirac electrons by a square potential. Ba, Bin,
and Bout denote the absorbing boundary, incident bound-
ary, and output boundary, respectively. (c) Schematic of the
one-dimensional Yee lattice in graphene.

photons is quite small and low power consumption is
expected.
In this letter, we study the tunneling probality of

Dirac electrons in graphene through a barrier with an
intense electromagnetic field. We consider a rectangular
potential barrier with height V0, width D in the X-
direction, and infinite length in the Y -direction (see
fig. 1(a) and fig. 1(b)). The Fermi level Ek (dashed
lines) lies in the valence band in the barrier region and
in the conduction band outside the barrier. The gray
filled areas indicate the occupied states. The optical field
is propagated perpendicular to the layer surface and is
linearly polarized along the Y -direction with a detuning
∆0 = 2Eb− �ω. We choose ∆0 > 0 to ensure that there
is no interband absorption inside the barrier. Meanwhile,
�ω� 2Ek is used to guarantee that the influence of the
optical field outside the barrier can be neglected.
Since the Coulomb interaction between electrons

and holes in OSE is negligible when the detuning is
large [17,19], we did not take into account the electron-
hole Coulomb interaction or many-body effect in our
calculation. Thus, neglecting the scattering between
different valleys, the scattering process of Dirac electrons
in the K point is described by the time-dependent Dirac
equation

i�
∂

∂t
Ψ (r, t) = [H0+V(x)I+Hint]Ψ (r, t) , (1)

where Ψ(r, t) = [CA(r, t), CB(r, t)] is the wave function,
H0 =−i�vFσ •∇ is the unperturbed Dirac Hamiltonian,
σ= (σx, σy) are the Pauli matrices, vF ≈ 106m/s is the
Fermi velocity, in the barrier V(x) = V0 and V(x) = 0 for
outside the barrier, I is the unit matrix, and Hint is the

interaction Hamiltonian. Hint can write as [24]

Hint =−�evF [A(x, t)σx+A(y, t)σy]= �
(
0 V12(t)

V21(t) 0

)
,

(2)
where e is the electron charge, [A(x, t), A(y, t)] =
[Axe

iωt, Aye
iωt] are the vector potentials of the electro-

magnetic field, V12(t) = V
∗
21(t) =−evF [A(x, t)− iA(y, t)].

When the Dirac electron is incident on the barrier
perdenicularly, we can rewrite eq. (1) as a set of partial
differential equations

i∂CA(x, t)/∂t = −ivF∂CB(x, t)/∂x+V(x)CA(x, t)
+V12(t)CB(x, t), (3)

i∂CB(x, t)/∂t = −ivF∂CA(x, t)/∂x+V(x)CB(x, t)
+V21(t)CA(x, t). (4)

Since the tunneling time is sub-picosecond and the
potential V12(t) and V21(t) vary as fast as the frequency
of incident light beams, this scattering process is strongly
time-dependent. In order to study such a strongly
time-dependent scattering process, we employ the finite-
difference time-domain (FDTD) method to solve eq. (3)
and eq. (4) numerically in the time-domain [25]. In the
traditional FDTD method, the Maxwell’s equations are
discretized by using central-difference approximations of
the space and time partial derivatives. As a time-domain
technique, the FDTD method can demonstrate the
propagation of electromagnetic fields through a model
in real time. Similar to the discretization of Maxwell’s
equations in FDTD, we denote a grid point of the space
and time as (i, k) = (i∆x, k∆t) (see fig. 1(c)), and for any
function of space and time F (i∆x, k∆t) = F k(i). The first
order in time or space partial differential can be expressed
as

∂F (x, t)

∂x
|x=i∆x ≈ F k (i+1/2)−F k (i− 1/2)

∆x
, (5)

∂F (x, t)

∂t
|t=k∆t ≈ F k+1/2 (i)−F k−1/2 (i)

∆t
. (6)

Thus the eq. (3) and eq. (4) can be replaced by a finite set
of finite differential equations:

C
k+1/2
A (i)

[
1

∆t
− V(i)
2i

]
=

[
1

∆t
+
V(i)

2i

]
C
k−1/2
A (i)

−
[
vF

∆x
− V k12(i+1/2)

2i

]
CkB(i+1/2)

+

[
vF

∆x
+
V k12(i− 1/2)

2i

]
CkB(i− 1/2), (7a)

Ck+1B (i+1/2)

[
1

∆t
− V(i+1/2)

2i

]
=

[
1

∆t
+
V(i+1/2)

2i

]

×CkB(i+1/2)−
[
vF

∆x
− V

k+1/2
21 (i+1)

2i

]
C
k+1/2
A (i+1)

+

[
vF

∆x
+
V
k+1/2
21 (i)

2i

]
C
k+1/2
A (i), (7b)
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Fig. 2: (Color online). (a) numerical simulations of a wave
packet tunneling through a barrier without pump beams.
(b)–(d) Time sequence of a wave packet tunneling through
a barrier with pump intensity Iω = 3MW/cm

2, ∆0 = 5meV,
D= 300 nm, and V0 = 400meV. The light grey shows the
barrier area.

For computational stability, the space increment ∆x and
the time increment ∆t need to satisfy the relation ∆x>
vF∆t [25]. Furthermore, the space increment ∆x must be
far smaller than the wavelength of electrons ∆x< λe/8,
and the time increment ∆t must be far smaller than the
period of the electromagnetic field Tl.
At the boundary Ba (see fig. 1(b)), an absorbing

boundary condition (ABC) must be used to avoid the
reflection [26]. The perfectly matched layer (PML) ABC
can produce orders-of-magnitude lower reflections in two
and three dimension even considering dispersion. But for
one-dimensional case, the Mur ABC can also absorb the
incoming waves perfectly, and it is relatively simpler than
the PML ABC. We used the Mur ABC in the absorbing
boundary Ba. At the input boundary Bin (see fig. 1(b)),
a Gaussian electronic wave packet is injected. Thus, the
wave function at the input boundary Bin is set as

CA =CB =
1√
2
exp

[
−4π(t− t0)

2

τ2

]
eiEkt/�, (8)

where t0 and τ denote the peak position and the pulse
width, respectively.
Thus, by solving eq. (7a) and eq. (7b) directly in the

time domain we can demonstrate the propagation of a
wave packet through a barrier in real time. Numerical
simulations are shown in fig. 2. The following parameters
are used in our calculation: the peak position t0 = 1.5 ps,
the pulse width τ = 1.0 ps, the space increment ∆x=
0.1 nm, the time increment ∆t= 5× 10−5 ps, and the
height of the potential barrier V0 = 400meV. When there
is no pump beams, a perfect chiral tunneling can be
found (see fig. 2(a)). This result is consistent with that
of Katsnelson et al. [4]. But when the sample is irradiated
by an intense nonresonant laser beam, a reflected wave

packet appears (see fig. 2(d)). The perfect transmission
is suppressed. By analyzing the transmitted wave packet
and the reflected wave packet, we can obtain the tunneling
probality.
To explain the suppression of chiral tunneling, We first

investigate the OSE in the barrier within a rotating-wave
approximation [15,22,23]. For noninteracting electron and
hole pairs, the dressed conduction band is

Ec (k) =
1

2

[
�ω+ ξ

√
[εc (k)− εv (k)]2+4 |Ωk|2

]
, (9)

while the dressed valence band is

Ev (k) =
1

2

[
−�ω− ξ

√
[εc (k)− εv (k)]2+4 |Ωk|2

]
, (10)

where ω is the frequency of light, Ωk = µ(k)Ξp is the Rabi
frequency with zero detuning, Ξp the electric field ampli-
tude, µ(k) the interband dipole matrix element, εc(k) =
−�ω/2+ �vF k and εv(k) = �ω/2− �vF k are the unper-
turbed conduction and valence band energies, respec-
tively, ξ = 1 for εc(k)� εv(k) and ξ =−1 for εc(k)� εv(k).
And the fermion distribution function nc(k) = 1−nv(k)
becomes [15]

nc(k) =
1

2
− |εc (k)− εv (k)|
2

√
[εc (k)− εv (k)]2+4 |Ωk|2

. (11)

If the Coulomb interactions between the virtual excita-
tions and electron-hole pairs are considered, the energies
and the Rabi frequency are renormalized, εi(k)→
εi(k)+ 2Vq=0

∑
j,k nj(k

′)−∑k′ Vk,k′nj(k′) and Ωk→
Ωk+

∑
k Vk,k′ψk′ , where (i, j = c, v) Vk,k′ = Vq=k−k′ is

the screened Coulomb interaction, ψk′ is the polarization
induced by the pump field. Figure 3(a) shows the renor-
malized band as a function of momentum k with intensity
Iω = 30MW/cm

2. In the case of nonresonant excitation,
�ω < 2Eb and the dressed states are blue shifted. With
increasing detuning, the light-induced shift decreases,
and the dressed states asymptotically approach the
unperturbed states. The intense electromagnetic field can
also induce a strong band mixing. Near the absorption
edge, a maximum fermion distribution function nk ≈ 0.44
can be observed (see fig. 3(b)).
Under intense light beams, the dressed states are

strongly mixed with valence states and conduction states.
Therefore, the chiral symmetry of Dirac electrons in
graphene can be broken. For instance, at very small
detuning, the wave functions of these dressed states
can be approximately written as the superposition of
unperturbed conduction and valence wave function,
Ψ= (Ψ++Ψ−)/

√
2 = (1, 0). These dressed states are not

the eigenstates of the helicity operator. The chiral symme-
try is broken and perfect chiral tunneling is strongly
suppressed. Numerical results are shown in fig. 3(c) with
pump intensity Iω = 30MW/cm

2 and D= 300 nm. From
fig. 3(c) we can find that the transmission is strongly
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Fig. 3: (Color online) (a) Sketch of the renormalized band ener-
gies (solid lines) and the unperturbed band energies (dashed
lines) as a function of momentum k in the range of |�vF k >Eb|.
The inset shows the band energies around the K point.
(b) Sketch of the fermion distribution function nk as a func-
tion of momentum k. (c) The reflectance (red circles) and the
transmittance (black squares) of the barrier as a function of
the detuning for Iω = 30MW/cm

2 and D= 300 nm. (d) The
transmittance as a function of pump intensity for ∆0 = 5meV
with different barrier width.

suppressed, even with lager detuning (e.g., ∆0 = 10meV,
the transmittance is about 0.025). When detuning
increases, the light-induced mixing becomes weak (see
fig. 3(b)), the reflectance decreases, and the transmit-
tance increases. Figure 3(d) shows the transmittance as a
function of pump intensity with different barrier widths.
The strong laser field can enhance band mixing and
reduce the transmittance. From fig. 3(d) we also see that
the wide barrier can prolong the interaction time between
electrons and photons, reduce the tunneling probality,
and lower the threshold of the pump laser power.
Now we turn to the discussion on the experimental real-

ization for our theory predication. For a pump detuning
∆0 = 5meV, the required pump intensity of the laser spot
is about 20MWcm−2, which is feasible by using current
laser techniques. And in a microcavity or on the surface
of photonic crystal [27,28], a large Rabi frequency can be
achieved even with a relatively weak laser field because
of the photon localization. But even with such a strong
pump laser beam, the heating effect can be ignored since
there is no real absorption in graphene. And for supported
graphene, an appropriate substrate with low absorption
must be chosen.
In conclusion, we have calculated the influence of the

OSE on the chiral tunneling in graphene by using the
FDTD method. We find that perfect tunneling can be
strongly suppressed by the optically induced band mixing,
even at large detuning. These properties might be useful
in device applications, such as the fabrication of an
optically controlled field-effect transistor that has ultrafast
switching times and low power consumption.
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