Contents lists available at ScienceDirect

ELSEVIER

Journal of Molecular Structure: THEOCHEM

journal homepage: www.elsevier.com/locate/theochem

Theoretical study of the reaction of CF₃O radicals with CO

Guohua Xu, Chengyin Shen, Haiyan Han, Jianquan Li, Hongmei Wang, Yannan Chu*

Laboratory of Environmental Spectroscopy, Anhui Institute of Optics and Fine Mechanism, Chinese Academy of Sciences, P.O. Box 1125, Hefei, 230031 Anhui, PR China

ARTICLE INFO

Article history: Received 4 February 2009 Received in revised form 10 June 2009 Accepted 10 June 2009 Available online 18 June 2009

Keywords: Radical reaction Potential energy surface Density functional theory *Ab initio* calculation Enthalpy of formation

ABSTRACT

The potential energy surface for the reaction of the CF₃O radicals with CO was investigated. The geometries and vibrational frequencies of the reactants, transition states, intermediates, and products were calculated at the UB3LYP/6-311+G(2d,p), UB3LYP/6-311+G(3df,2p) and UMP2/6-311+G(2d,p) levels of theory. The energies were improved by using the G2M(CC2) and G3B3 methods. The calculation suggests the reaction proceeds via either the fluorine abstraction of CF₃O by CO to produce FCO + CF₂O with a high energy barrier or the barrierless association of the reactants to form the *trans*-CF₃OCO intermediate. The *trans*-CF₃OCO is predicted to undergo subsequent isomerization to *cis*-CF₃OCO or dissociate directly to the products FCO + CF₂O and CF₃ + CO₂. The collisional stabilization of *trans*-CF₃OCO is dominant at room temperature, while *trans*-CF₃OCO isomerizing to *cis*-CF₃OCO followed by dissociating to CF₃ + CO₂ is accessible when temperature rises. The reason for only *trans*-CF₃OCO without *cis*-CF₃OCO observable in Ashen's experiment [S.V. Ahsen, J. Hufen, H. Willner, J.S. Francisco, Chem. Eur. J. 8 (2002) 1189] is *cis*-CF₃OCO can be produced only via the isomerization of *trans*-CF₃OCO, and its yield is inappreciable at a low experimental temperature. The enthalpies of formation for the two conformations of CF₃OCO have been deduced: $\Delta_f H_0^\circ$ (*trans*-CF₃OCO) = -196.25 kcal mol⁻¹, $\Delta_f H_{298,15}^\circ$ (*trans*-CF₃OCO) = -197.46 kcal mol⁻¹, $\Delta_f H_0^\circ$ (*cis*-CF₃OCO) = -193.64 kcal mol⁻¹, and $\Delta_f H_{298,15}^\circ$ (*cis*-CF₃OCO) = -194.90 kcal mol⁻¹.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

CF₃O -

CF₃O radicals are generated in the atmosphere as a result of the oxidation of hydrofluorocarbons such as CHF₃, CF₃CH₂F and CF₃CHF₂ [1–9]. In view of their high reactivity against hydrocarbons [10–12], the reactions of CF₃O with the atmospheric trace constituents NO, NO₂ [13] and CO [14–19] have aroused intense interest. Among them the reaction between CF₃O and CO is a non-negligible sink for CF₃O in the atmosphere [14] by the following three possible exothermic channels:

$$CF_3O + CO + M \rightarrow CF_3OCO + M \tag{1a}$$

$$+ \text{CO} \rightarrow \text{CF}_3 + \text{CO}_2 \quad \Delta H^{\circ}_{298,15} = -22.34 \text{ kcal mol}^{-1}$$
 (1b)

$$\rightarrow$$
 FCO + CF₂O $\Delta H_{298,15}^{\circ} = -10.58 \text{ kcal mol}^{-1}$ (1c)

In the above reactions, the $\Delta H^{\circ}_{298,15}$ values for reactions (1b) and (1c) were calculated according to the formation enthalpies of the reactants and products [20,21]. Due to lack of the formation enthalpy of CF₃OCO, the $\Delta H^{\circ}_{298,15}$ value for channel (1a) is unknown.

Over the past decades, the reaction of CF_3O radical with CO has been studied by means of various experimental methods, and these experiments focused on the reaction rate measurement and the reaction products investigation. For instance, Czarnowski and Schumacher [15] studied this reaction over 315-343 K and in the pressure range of 100-500 Torr. They suggested that the reaction proceeds via an addition mechanism to give CF₃OCO. Zellner [16] reported the rate constant at 298 K for the title reaction in 66 Torr He gas to be 4.4×10^{-14} cm³ molecule⁻¹ s⁻¹, but they did not give any information about the reaction products. Turnipseed et al. [14] studied the CF₃O + CO reaction using the pulsed laser photolysis/ pulsed laser induced fluorescence (PLP/PLIF) and discharge flow/ chemical ionization mass spectrometry (DF/CIMS). Their PLP/PLIF measurements gave the rate constants over 233-332 K in the Arrhenius form $k = (2.0 \pm 0.6) \times 10^{-13} \exp[-(320 \pm 100)/T] \text{ cm}^3$ molecule $^{-1}$ s $^{-1}$, which were considered as the high pressure limiting of the rate constants. The DF/CIMS experiments were also performed in a lower pressure range of 0.79-6.25 Torr, unfortunately no explicit products were detectable. According to the rate constant dependence on pressure, the authors considered channel (1a) to be the most feasible and reactions (1b) and (1c) to be minor at 298 K. Wallington and Ball [17] employed a relative rate technique to study the reaction of CF₃O with ¹³CO at 296 K. The rate constants of the $CF_3O + {}^{13}CO$ reaction in 100 and 700 Torr air were measured to be $(4.6 \pm 0.5) \times 10^{-14}$ and $(7.2 \pm 0.7) \times$ $10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, respectively. They speculated that the predominant product is CF₃OCO radical yielded via reaction (1a) at ambient condition; the channel (1c) to form FCO + CF₂O is petit, whereas the reaction (1b) to form $CF_3 + CO_2$ could not be excluded.

^{*} Corresponding author. Address: Laboratory of Environmental Spectroscopy, Anhui Institute of Optics and Fine Mechanism, Chinese Academy of Sciences, 350 Shushan hu Road, P.O. Box 1125, Hefei, 230031 Anhui, PR China. Tel.: +86 551 5591076; fax: +86 551 5591572.

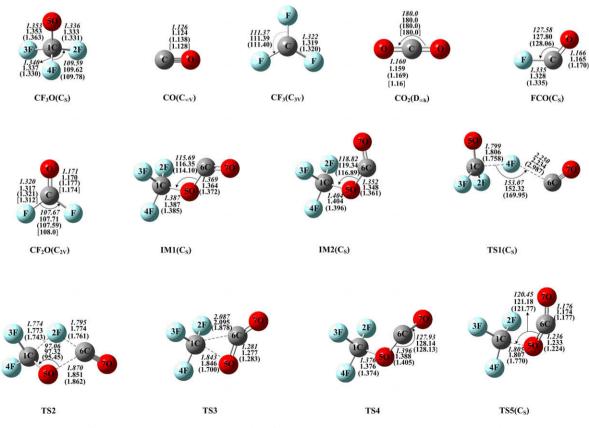
E-mail address: ychu@aiofm.ac.cn (Y. Chu).

^{0166-1280/\$ -} see front matter \circledcirc 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.theochem.2009.06.012

In Meller's experiment [18], the CF₃O radicals were produced by photolyzing CF₃O₂CF₃ in the presence of CO in a static reactor kept at 296 K and with 760 Torr N₂ or air. The CF₃O + CO reaction rate was measured to be $(5.0 \pm 0.9) \times 10^{-14}$ cm³ molecule⁻¹ s⁻¹. Since the infrared spectrum was observed from CF₃OC(O)C(O)OCF₃, a compound formed by the combination of two CF₃OCO radicals, the CF₃OCO is thought to be the main product through reaction (1a). However, the spectral observations did not find the products from reactions (1b) and (1c). Ahsen et al. [19] prepared CF₃O radicals from flash pyrolysis of CF₃OC(O)OOCF₃ or CF₃OC(O)OO-C(O)OCF₃ in a high excess CO. By comparing with the calculated infrared spectra, the product CF₃OCO, formed through the route (1a), was identified to be in the form of *trans*-conformation.

As mentioned above, different experiments were carried out to identify the products of the CF₃O + CO reaction, however, no study is reported to theoretically elucidate the possibility of reactions (1a)-(1c). Moreover, one wonders why only *trans*-CF₃OCO without *cis*-CF₃OCO was observed in Ahsen's experiment. The aim of this study is to reveal the mechanism of the title reaction and to explore the reasons for the absence of *cis*-CF₃OCO in the experiments by density functional theory as well as *ab initio* calculation method. In addition, the enthalpies of formation are estimated for *trans*-CF₃OCO and *cis*-CF₃OCO. It is expected that this study would shed further light on the experiments.

2. Computational methods


All calculations were performed with the Gaussian03 program packages [22]. Geometries of minima and transition states on the doublet potential energy surface were optimized by using the density functional theory (DFT) UB3LYP method in conjunction with the 6-311+G(2d,p) and 6-311+G(3df,2p) basis sets, and the unrestricted Møller–Plesset second-order perturbation UMP2 method with the 6-311+G(2d,p) basis set. Vibrational frequencies at the same levels of theory were used to characterize stationary points and provide zero-point energies. The reactants, products and intermediates have all real frequencies, whereas every transition state possesses only one imaginary frequency. To confirm that a transition state connects the right reactants and products, the intrinsic reaction coordinate (IRC) path was calculated at the UB3LYP/6-311+G(3df,2p) level of theory. Single-point energy computations were performed by using the G2M(CC2) [23] and G3B3 [24] methods to improve the accuracy of energies.

3. Results and discussion

The optimized geometries of various species involved in the title reaction are shown in Fig. 1, and their vibrational frequencies are collected in Table 1 together with some available experimental values. Table 2 lists the energies of various stationary points relative to the reactants. Fig. 2 is the potential energy surface labeled with the energies of all species obtained at the G2M(CC2) and G3B3 levels.

3.1. Assessment of the computational methods

Since UHF wave functions are not spin eigenfunctions, the expectation values of $\langle S^2 \rangle$ were monitored to check the spin contamination. For doublets, $\langle S^2 \rangle$ was found to be in the range of 0.751–0.767 at the UB3LYP/6-311+G(2d,p) and UB3LYP/6-311+G(3df,2p) levels, which is somewhat beyond its exact value of 0.750. In contrast, at the UMP2/6-311+G(2d,p) level, $\langle S^2 \rangle$

Fig. 1. The optimized geometries of the reactants, transition states and products for the $CF_3O + CO$ reaction. Bond lengths in angstrom and bond angles in degree. Numbers in italics, roman and parenthesis show the results calculated at the UB3LYP/6-311+G(2d,p), UB3LYP/6-311+G(3df,2p) and UMP2/6-311+G(2d,p) levels of theory respectively. Numbers in square brackets are available experimental values.

Table 1

Vibrational frequencies (cm⁻¹) for stationary points on the potential energy surface of the CF₃O + CO reaction along with available experimental values.

Spacias	Mathada	Fraguanci	iac.													
Species	Methods	Frequenci	les													
CF₃O	UB3LYP/6-311+G(2d,p) UB3LYP/6-311+G(3df,2p) UMP2/6-311+G(2d,p) Exp ^a	260 264 241	399 401 418	567 572 585 622	585 591 600	607 613 623 663	883 891 896 894	1130 1144 1219 1199	1174 1185 1229 1207	1234 1241 1289 1260						
со	UB3LYP/6-311+G(2d,p) UB3LYP/6-311+G(3df,2p) UMP2/6-311+G(2d,p) Exp ^b	2211 2217 2114 2169.52														
IM1	UB3LYP/6-311+G(2d,p) UB3LYP/6-311+G(3df,2p) UMP2/6-311+G(2d,p) Exp ^c	91 90 98	191 192 195	193 194 202	414 416 421 418	423 427 433	469 472 477 475	605 610 615 612	606 613 619 612	715 722 723 720	896 904 908 902	1017 1034 1050 997	1176 1180 1214 1203	1200 1214 1239 1236	1254 1265 1292 1280	1915 1924 1899 1857
IM2	UB3LYP/6-311+G(2d,p) UB3LYP/6-311+G(3df,2p) UMP2/6-311+G(2d,p)	74 76 89	176 176 184	264 266 269	369 372 377	439 443 449	549 554 558	575 579 590	608 614 622	805 809 810	838 844 852	1022 1034 1075	1133 1142 1167	1213 1226 1248	1252 1264 1291	1880 1889 1869
TS1	UB3LYP/6-311+G(2d,p) UB3LYP/6-311+G(3df,2p) UMP2/6-311+G(2d,p)	577i 570i 1186i	18 16 15	49 51 16	67 66 32	94 95 34	196 200 75	252 253 262	309 308 356	577 582 604	586 593 616	592 597 660	938 950 998	1243 1256 1299	1580 1601 1622	2213 2218 2113
TS2	UB3LYP/6-311+G(2d,p) UB3LYP/6-311+G(3df,2p) UMP2/6-311+G(2d,p)	583i 582i 540i	58 59 54	205 211 242	265 269 286	289 292 307	380 385 409	465 474 486	540 549 583	593 600 608	603 608 625	746 754 772	958 969 963	1267 1283 1279	1524 1540 1568	2072 2067 2037
TS3	UB3LYP/6-311+G(2d,p) UB3LYP/6-311+G(3df,2p) UMP2/6-311+G(2d,p)	896i 906i 1108i	18 23 48	167 166 211	181 184 291	331 332 432	409 408 491	501 506 538	556 561 580	683 689 738	706 711 758	946 955 918	1098 1109 1069	1237 1252 1226	1247 1264 1326	1955 1967 1983
TS4	UB3LYP/6-311+G(2d,p) UB3LYP/6-311+G(3df,2p) UMP2/6-311+G(2d,p)	203i 207i 216i	55 54 62	207 203 209	374 377 381	416 419 426	535 540 545	589 595 603	631 636 643	700 705 707	821 833 833	984 1003 992	1147 1152 1188	1172 1185 1212	1241 1253 1285	1913 1919 2127
TS5	UB3LYP/6-311+G(2d,p) UB3LYP/6-311+G(3df,2p) UMP2/6-311+G(2d,p)	669i 662i 1752i	32 30 23	122 121 112	209 212 220	254 256 257	503 508 518	517 522 523	550 555 536	567 573 617	742 746 768	983 994 977	1120 1129 1112	1264 1280 1280	1282 1298 1303	2019 2035 2058
CF ₂ O	UB3LYP/6-311+G(2d,p) UB3LYP/6-311+G(3df,2p) UMP2/6-311+G(2d,p) Exp ^d	574 578 584 584	614 617 620 626	777 780 782 774	956 967 955 965	1207 1221 1225 1249	1959 1966 1939 1928									
FCO	UB3LYP/6-311+G(2d,p) UB3LYP/6-311+G(3df,2p) UMP2/6-311+G(2d,p) Exp ^e	625 632 632 626	1011 1035 1039 1018	1915 1923 1957 1855												
CF ₃	UB3LYP/6-311+G(2d,p) UB3LYP/6-311+G(3df,2p) UMP2/6-311+G(2d,p) Exp ^f	500 504 511 500	500 504 511 500	690 698 705 701	1064 1076 1099 1090	1220 1235 1256 1259	1220 1235 1256 1259									
CO ₂	UB3LYP/6-311+G(2d,p) UB3LYP/6-311+G(3df,2p) UMP2/6-311+G(2d,p) Exp ^g	676 679 663 667.30	676 679 663 667.30	1364 1374 1317 1384.86	2400 2414 2398 2349.30											
^a Ref. [34]. in Ar-matrix.																

^a Ref. [34], in Ar-matrix.

^b Ref. [25].

^c Ref. [19].

^d Ref. [35].

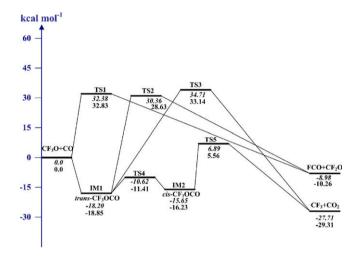
e Ref. [36].

f Ref. [37,38].

^g Ref. [26].

changes in the range of 0.754–0.880. Thus, spin contamination is ignorable for UB3LYP method, but severe in the UMP2 computation.

In all species listed in Fig. 1, the experimental geometry parameters are available only for CO, CO_2 and CF_2O . The experimental bond length of CO is 1.128 Å [25], and the theoretical values are 1.126, 1.124 and 1.138 Å, respectively, at the UB3LYP/6-311+G(2d,p), UB3LYP/6-311+G(3df,2p) and UMP2/6-311+G(2d,p) levels. The C–O bond length in CO_2 is 1.160 Å according to the experimental result [26], and the calculation values are 1.160, 1.159 and 1.169 Å, respectively, at the UB3LYP/6-311+G(2d,p), UB3LYP/6-311+G(3df,2p) and UMP2/6-311+G(2d,p) levels. One


can note that the UB3LYP method are superior to the UMP2, and the UB3LYP/6-311+G(2d,p) calculation gives better prediction for the structures of CO and CO_2 than the UB3LYP/6-311+G(3df,2p) level of theory.

For CF₂O, the experimental values of the C–F bond length and the FCF angle are 1.312 Å and 108.0°, respectively [27]. The UB3LYP/6-311+G(2d,p) method predicts a C–F bond of 1.320 Å and a FCF angle of 107.67°, while the UB3LYP/6-311+G(3df,2p) calculation results in a C–F bond length of 1.317 Å and a FCF angle of 107.71°. Thus, the UB3LYP/6-311+G(3df,2p) level can produce much better results for the C–F bond and the FCF angle in CF₂O. Considering the vibrational frequencies (Table 1) are also well

Table 2

Energies (kcal mol $^{-1})$ of products, intermediates, and transition states relative the CF_3O + CO reactants.

Species	UB3LYP/6-311+G(3df,2p)	G2(MCC2)	G3B3
CF ₃ O + CO	0.0	0.0	0.0
$FCO + CF_2O$	-15.29	-8.98	-10.26
$CF_3 + CO_2$	-34.40	-27.71	-29.31
IM1	-19.42	-18.20	-18.85
IM2	-16.44	-15.65	-16.23
TS1	22.15	32.38	32.83
TS2	23.07	30.36	28.63
TS3	27.43	34.71	33.14
TS4	-11.50	-10.62	-11.41
TS5	-2.61	6.89	5.56

Fig. 2. The doublet potential energy surface (PES) for the $CF_3O + CO$ reaction. The relative energies at G2M(CC2) and G3B3 levels of theory are shown in the italics and roman type respectively.

predicted at the UB3LYP/6-311+G(3df,2p) level for the species whose experimental values are available, in the following mechanism study we adopt the structural parameters and vibrational frequencies obtained at the UB3LYP/6-311+G(3df,2p) level of theory.

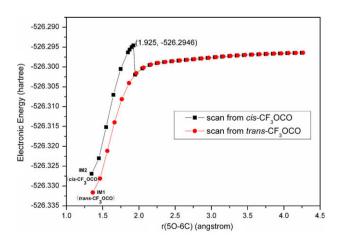
3.2. Direct abstraction mechanism

As shown in Figs. 1 and 2, the C atom of CO may abstract the F atom of CF_3O to form the products $FCO + CF_2O$ via the transition state TS1. The barrier heights of TS1 are estimated to be 32.38 and 32.83 kcal mol⁻¹ at G2M(CC2) and G3B3 levels, respectively. In TS1, the breaking 1C–4F bond is stretched to 1.806 Å, which is 0.469 Å longer than the 1C–4F bond in parent CF₃O. The forming 6C-4F bond has a length of 2.234 Å, and it is 0.906 Å longer than the C-F bond of the product FCO. The transition state TS1 has a Cs symmetry and is a first-order saddle point with an imaginary frequency of 570i cm^{-1} (Table 1). As shown in Table 2 and Fig. 2, the F atom abstraction reaction of CF₃O by CO is exothermic. The reaction enthalpies at 0 K for the products $FCO + CF_2O$ are -8.98and -10.26 kcal mol⁻¹, respectively, at the G2M(CC2) and G3B3 levels. The counterparts at 298.15 K are -9.14 and -10.43 kcal mol⁻¹. The predicted reaction enthalpy of -10.43 kcal mol⁻¹ at the G3B3 level is very close to an experimental value of -10.58 kcal mol⁻¹ [20,21].

3.3. Addition-elimination mechanism

3.3.1. Initial association

The O atom of CF_3O radical has an unpaired electron, and it may add firstly to either C or O atom of CO. It can be verified that the C site in CO would be more favorable by the Fukui function analysis. For a molecular system, the Fukui function [28] is defined as $f(\vec{r}) = [\partial \rho(\vec{r})/\partial N]_v$. The $f(\vec{r})$ characterizes the sensitivity of electron density $\rho(\vec{r})$ to a change in electron number *N* at constant external potential *v*. It is well-known that, the greater the Fukui function value, the greater the reactivity of a site [28]. Normally, the Fukui function has three different forms, $f^+(\vec{r})$, $f^-(\vec{r})$ and $f^0(\vec{r})$ [28], which govern nucleophilic, electrophilic and radical attacks, respectively. Yang and Mortier [29] proposed a condensed-to-atom form of the Fukui function, where the condensed Fukui functions of the atom, *k*, in a molecule with *N* electrons are expressed as


$$\begin{split} f_k^+ &= q_k(N+1) - q_k(N) & \text{ for nucleophilic attack} \\ f_k^- &= q_k(N) - q_k(N-1) & \text{ for electrophilic attack} \\ f_k^0 &= 1/2[q_k(N+1) - q_k(N-1)] & \text{ for radical attack} \end{split}$$

where $q_k(N + 1)$, $q_k(N)$ and $q_k(N - 1)$ are the electronic populations of atom k in the systems with N + 1, N and N - 1 electrons, respectively.

Since the CF₃O approaching CO is a radical attack, we choose f_k^0 to describe the reactivity of the carbon and oxygen atoms in CO. In the present work, the electronic populations were evaluated by natural population analysis (NPA). The f_k^0 values of C atom in CO are 0.792 and 0.795 at the UB3LYP/6-311+G(2d,p) and UB3LYP/6-311+G(3df,2p) levels, respectively, whereas the f_k^0 values of O atom are 0.208 and 0.205, respectively, at the same levels of theory. The f_k^0 value of C atom is much larger than that of O atom, thus the C atom in CO will be more easily attacked by the O atom of CF₃O radical.

When CF₃O attacks CO, the O atom of CF₃O can approach the C atom of CO in *trans*-manner or *cis*-manner. The former would lead to the formation of *trans*-CF₃OCO intermediate (IM1) whose dihedral angle τ (70,6C,50,1C) is -180° . The latter is expected to produce *cis*-CF₃OCO intermediate (IM2), whose dihedral angle τ (70,6C,50,1C) is 0° .

Fig. 3 shows the relaxed potential energy curves for *trans*-CF₃O-CO and *cis*-CF₃OCO calculated at the UB3LYP/6-311+G(3df,2p) level using the 5O–6C bond as the scanned coordinate. It can be found that the potential energy curve to form *trans*-CF₃OCO is barrierless, whereas the curve connecting *cis*-CF₃OCO with the reactants is discontinuous at r(5O-6C) = 1.925 Å. For illuminating the reason for this phenomena, a relaxed potential energy surface scan using both the 5O–6C bond and the dihedral angle $\tau(7O,6C,5O,1C)$ as scanned coordinates will be needed. Since such a potential energy surface

Fig. 3. Relaxed potential energy surface scan for the association reaction of CF_3O with CO using the 50–6C bond as scanned coordinate at UB3LYP/6-311+G(3df,2p) level of theory (\bigcirc) Scan starting from *trans*-CF₃OCO (\blacksquare) Scan starting from *cis*-CF₃OCO.

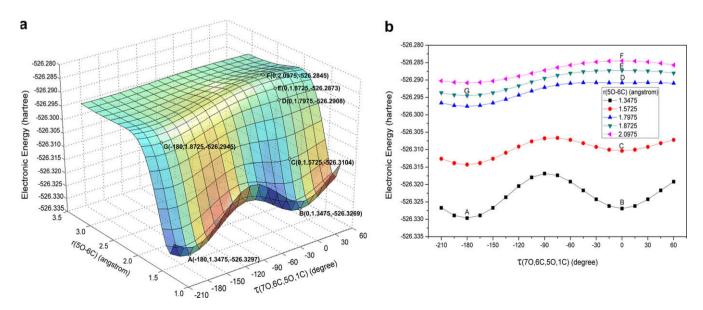
scan is computationally expensive, a two-dimensional rigid potential energy surface scan at the UB3LYP/6-311+G(3df,2p) level was performed to give a qualitative explanation.

In the two-dimensional rigid potential energy surface scan, the varied coordinates are the 50–6C bond and the dihedral angle τ (70,6C,50,1C). The increment of the 50–6C bond is 0.075 Å in the range of 1.2725–2.1725 Å, and 0.15 Å from 2.1725 to 3.0725 Å, while the step size of dihedral angle τ (70,6C,50,1C) is 15° over a range from –210° to 60°. The other geometrical parameters are fixed at the optimized values of *cis*-CF₃OCO at UB3LYP/6-311+G(3df,2p) level of theory. The resulting rigid potential energy surface is shown in Fig. 4(a), in which A point at r(50–6C) = 1.3475 Å and τ (70,6C,50,1C) = -180° , and B point at r(50–6C) = 1.3475 Å and τ (70,6C,50,1C) = 0° correspond to *trans*-CF₃OCO and *cis*-CF₃OCO, respectively.

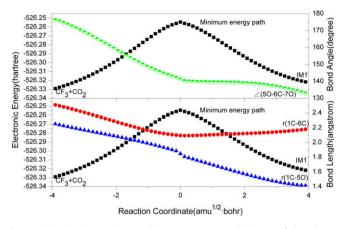
Fig. 4(b) represents the energy variation versus τ (70,6C,50,1C) at the five fixed r(50-6C) values. At a small r(50-6C), the curves have two minima located at τ (70,6C,50,1C) = 0° and -180°, respectively. However, when r(50-6C) increases to a specific value between 1.7975 Å (D point) and 1.8725 Å (E point), the minimum at τ (70,6C,50,1C) = 0° changes into a maximum, while the potential well at τ (70,6C,50,1C) = -180° becomes shallow. Thus, if one uses r(50-6C) as the unique scanned coordinate and starts the scan from the equilibrium geometry of *cis*-CF₃OCO, the optimized geometry would converge to the structure with τ (70,6C,50,1C) = 0° provided that r(50-6C) is less than the specific value between 1.7975 and 1.8725 Å, but would go to the lower energy structure with τ (70,6C,50,1C) = -180° once *r*(50–6C) exceeds this specific value. This shows that the relaxed potential energy curve starting from cis-CF₃OCO actually converges to the potential energy curve scanning from *tans*-CF₃OCO when r(50-6C) increases over the specific value, thereby resulting in a discontinuity as shown in Fig. 3.

In Fig. 4(a) and (b), the r(50-6C) value for the discontinuity on the relaxed potential energy curve should be between 1.7975 and 1.8725 Å. However, Fig. 3 shows that the discontinuity locates at r(50-6C) = 1.925 Å. This discrepancy may be owing to the approximate treatment using the rigid scan instead of the relaxed scan.

In fact, the discontinuity of the relaxed potential energy curve is due to the existence of a second-order saddle point between the reactants and *cis*-CF₃OCO. This second-order saddle point is repre-


sented by the F point in Fig. 4(a) at r(50-6C) = 2.0975 Å and $\tau(70,6C,50,1C) = 0^{\circ}$. At the UB3LYP/6-311+G(3df,2p) level of theory, a fully optimization leads to r(50-6C) = 2.0622 at the second-order saddle point, which is consistent with the 50–6C bond length of 2.0975 Å of F point. The second-order saddle point prevents the CF₃O + CO reaction from directly forming *cis*-CF₃OCO. Thus, in the potential energy surface (Fig. 2), we do not connect the reactants with *cis*-CF₃OCO.

3.3.2. Isomerization and dissociation


trans-CF₃OCO lies -18.20 and -18.85 kcal mol⁻¹ below the reactants at the G2M(CC2) and G3B3 levels, respectively, and the reaction enthalpy at 298.15 K for *trans*-CF₃OCO formation is -19.06 and -19.67 kcal mol⁻¹, respectively, at the same levels. As shown in Fig. 2, there are three primary pathways following the *trans*-CF₃O-CO intermediate IM1. The first is the decomposition to the products FCO + CF₂O. This process may take place via a four-center transition state TS2 that results from the cleavage of the 1C–2F and 6C–5O bonds, and the formation of the 6C–2F bond. The broken 1C–2F and 50–6C bond lengths in TS2 increase to 1.773 and 1.851 Å, respectively, the forming 2F–6C bond length decreases to 1.774 Å. The relevant energy barriers are 48.56 and 47.48 kcal mol⁻¹, respectively, by using the G2M(CC2) and G3B3 methods.

The second pathway involves the rupture of the 1C–50 bond through the transition state TS3, leading directly to the products CF₃ + CO₂. The 1C–50 bond undergoes substantial elongation by 0.459 Å compared with that in *trans*-CF₃OCO. The calculated imaginary frequency of 906i cm⁻¹ characterizes this structure as a first-order saddle point, and the corresponding energy barrier is 52.91 and 51.99 kcal mol⁻¹, respectively, at the G2M(CC2) and G3B3 levels of theory. Fig. 5 shows the intrinsic reaction coordinate (IRC) scan curve of TS3 and the geometrical parameter changes along the reaction coordinate. It can be found that *r*(1C–50), *r*(1C–6C) and 50–6C–7O angle all increase along the route from *trans*-CF₃O-CO to CF₃ + CO₂. The gradually increase of 50–6C–7O angle to almost 180° brings the 50–6C–7O moiety to approach the linear configuration of CO₂. This process is comparable to an analogous reaction *trans*-CH₃OCO \rightarrow CH₃ + CO₂ as reported by Francisco [30].

Another reaction channel proceeds first by an isomerization of *trans*-CF₃OCO via transition state TS4 to *cis*-CF₃OCO, which is

Fig. 4. (a) Potential energy surface for the association reaction of CF₃O with CO obtained by two-dimensional rigid scan at UB3LYP/6-311+G(3df,2p) level of theory. The scanned coordinates are the 50–6C bond and the dihedral angle τ (70,6C,50,1C). (b) Potential energy curves representing the energy variation versus τ (70,6C,50,1C) at fixed r(50–6C) values: (**■**) 1.3475 Å, (**●**) 1.5725 Å, (**▲**) 1.7975 Å, (**▼**) 1.8725 Å, and (**∢**) 2.0975 Å.

Fig. 5. The intrinsic reaction coordinate scan curve and changes of the relevant geometrical parameters along the reaction coordinate of transition state TS3.

2.55 and 2.62 kcal mol⁻¹ higher in energy than *trans*-CF₃OCO at the G2M(CC2) and G3B3 levels, respectively. The isomerization energy barriers are 7.58 and 7.44 kcal mol⁻¹, respectively, at the G2M(CC2) and G3B3 levels of theory. *cis*-CF₃OCO further decomposes to the products CF₃ + CO₂ through the transition state TS5. The breaking 1C–50 bond in TS5 is elongated to 1.807 Å, which is 0.403 Å longer than that in *cis*-CF₃OCO. The barrier heights of TS5 are estimated to be 22.54 and 21.79 kcal mol⁻¹, respectively, at the G2M(CC2) and G3B3 levels of theory. And TS5 locates 6.89 and 5.56 kcal mol⁻¹ above the reactants at the same levels. Compared with other reaction pathways aforementioned, this pathway has lower energy barriers at the transition states TS4 and TS5, and it should be available in the case of high experimental temperature.

3.4. The formation enthalpy of CF₃OCO

Though the CF₃OCO radicals were observed by Ahsen et al. [19] and confirmed as the main product of the reaction between CF₃O and CO at room temperature [18]. As far as we know, neither experimental nor theoretical data was reported about the formation enthalpy of CF₃OCO. In this work, the formation enthalpies of CF₃OCO are estimated by using the atomization reaction method [31,32].

The formation enthalpy of molecule M at 0 K is given by

$$\Delta_{\rm f} H_0^{\circ}(M) = \sum_i^{\rm atoms} \Delta_{\rm f} H_0^{\circ}(X_i) - \sum D_0 \tag{2a}$$

where $\Delta_{\rm f} H_0^\circ(X_i)$ is the experimental formation enthalpy of the isolated atom X_i [20], and ΣD_0 is the calculated atomization energy of the molecule *M*. In addition, the enthalpies of formation at 298.15 K can also be computed according the following equation.

$$\Delta_{\rm f} H^{\circ}_{298.15}(M) = \Delta_{\rm f} H^{\circ}_0(M) + [H^{\circ}_{298.15}(M) - H^{\circ}_0(M)] - \sum_{i}^{\rm atoms} [H^{\circ}_{298.15}(X_i) - H^{\circ}_0(X_i)]_{\rm ref}$$
(2b)

where $[H_{298.15}^{\circ}(M) - H_{0}^{\circ}(M)]$ is the calculated heat capacity correction for the molecule [31], and $[H_{298.15}^{\circ}(X_{i}) - H_{0}^{\circ}(X_{i})]_{ref}$ is the heat capacity correction for the reference state of the atom X_{i} [20], which is 0.25, 1.04 and 1.05 kcal mol⁻¹ for carbon , oxygen and fluorine atom, respectively.

The formation enthalpies of *trans*-CF₃OCO are deduced to be $\Delta_{\rm f} H_0^\circ = -201.60$ and $\Delta_{\rm f} H_{298.15}^\circ = -202.91$ kcal mol⁻¹ at the G2M(CC2) level, and $\Delta_{\rm f} H_0^\circ = -196.25$ and $\Delta_{\rm f} H_{298.15}^\circ = -197.46$ kcal mol⁻¹ at the G3B3 level. For *cis*-CF₃OCO, the formation enthalpies are $\Delta_{\rm f} H_0^\circ = -199.06$ and $\Delta_{\rm f} H_{298.15}^\circ = -200.42$ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ kcal mol⁻¹ at the G2M(CC2) level, while $\Delta_{\rm f} H_0^\circ = -200.42$ kcal mol⁻¹ kcal mol⁻¹

-193.64 and $\Delta_f H^{\circ}_{298.15} = -194.90$ kcal mol⁻¹ at the G3B3 level. Since the average deviation in the formation enthalpies was found to be 1.65 kcal mol⁻¹ when using the G3B3 method [24], whereas no deviation data was reported for the G2M(CC2) method, the formation enthalpies calculated at G3B3 level of theory are more reliable.

3.5. Comparison with experiments

In Turnipseed's DF/CIMS experiments about the CF₃O + CO reaction [14], to determine the product CF₃, they added excess O₂ so as to convert CF₃ to CF₃O₂, whose anion CF₃O₂⁻ can be formed by the charge transfer reaction with SF₆⁻. However, the addition of excess O₂ did not produce the CF₃O₂⁻ signal. The second method to detect CF₃ was carried out by using the charge transfer reaction of CF₃ with O₂⁻ to produce CF₃⁻, but there were no CF₃⁻ signals detectable yet. In the FCO product investigation, Turnipseed et al. observed an ion signal at m/z = 98 when excess O₂ was added to the CF₃O + CO system. They speculated that the ions at m/ez = 98 correspond to F₂CO₃⁻, which may be an indication of the FCO production. However, this presumption was no confirmed.

According to the potential energy surface in Fig. 2, the products $CF_3 + CO_2$ can yield via two pathways through *trans*- CF_3OCO , in which the pathway $CF_{3}O + CO \rightarrow trans-CF_{3}OCO \rightarrow TS4 \rightarrow cis-CF_{3}O CO \rightarrow TS5 \rightarrow CF_3 + CO_2$ would occur at a high temperature because TS5 lies only 6.89 and 5.56 kcal mol^{-1} , respectively, above the reactants at the G2M(CC2) and (G3B3) levels of theory, and the energy barrier of 22.54 and 21.79 kcal mol⁻¹ at the same levels is moderate. In fact, Czarnowski and Schumacher [33] reported the evidence for CF₃ formation over 458–503 K, supporting the present calculation results. For the formation of FCO + CF₂O, it can proceed via either decomposition of trans-CF₃OCO or direct F atom abstraction of CF₃O by CO. However, the two pathways go through the transition states TS2 and TS1 which have rather high energy barriers of 47.48 and 32.83 kcal mol⁻¹, respectively, at the G3B3 level of theory, making the FCO + CF₂O products formation very difficult even at a comparative high temperature.

The rate constant dependence on pressure were also measured for the CF₃O + CO reaction [14,17], and the rate constant was found to increase with pressure at room temperature. This could be explained by the potential energy surface presented in this work. Due to the high energy barrier of TS1, the formation of FCO + CF₂O via direct fluorine abstraction reaction can be excluded first. The reaction has to start via the association of CF₃O with CO to form the *trans*-CF₃OCO intermediate. At room temperature, further decompositions of the *trans*-CF₃OCO intermediate are hindered by the high energy barriers of TS2, TS3 and TS5, thus the collisional stabilization of *trans*-CF₃OCO is dominant. When the pressure increases, the stabilization of *trans*-CF₃OCO by colliding with bath gas will be easier, thereby resulting in a larger rate constant.

As discussed in Section 3.3.1, the CF₃O + CO reaction cannot directly form *cis*-CF₃OCO due to the second-order saddle point between the reactants and *cis*-CF₃OCO. The sole path to produce *cis*-CF₃OCO is the isomerization of *trans*-CF₃OCO via the transition state TS4. The *cis*-CF₃OCO can dissociate to CF₃ + CO₂ through the transition state TS5. Because the energy barrier for *cis*-CF₃OCO decomposition is 21.79 kcal mol⁻¹ at the G3B3 level of theory, which is much higher than the isomerization energy barriers of 7.44 kcal mol⁻¹ from *trans*-CF₃OCO to *cis*-CF₃OCO and 4.82 kcal mol⁻¹ in the reverse direction at the G3B3 level, the transformation between the two conformations is considered to be at equilibrium according to the equilibrium state approximation and the relative population of *cis*-CF₃OCO and *trans*-CF₃OCO can be estimated based on the following equation

$$K_{eq} = \frac{C_{cis}}{C_{trans}} = \frac{q_{cis}}{q_{trans}} e^{-\frac{AE}{k_b T}}$$
(3)

where K_{eq} is the equilibrium constant, C and q are the molecular density and partition function for the two isomers of CF₃OCO, and ΔE is the energy difference between *cis*-CF₃OCO and *trans*-CF₃OCO, which is 2.62 kcal mol⁻¹ at the G3B3 level of theory. T and $k_{\rm b}$ are temperature and Boltzmann constant respectively. In Ahsen's experiment [19], the matrix mixtures containing CF₃OCO were kept at 16 K during the experiments, and the proportion of *cis*-CF₃OCO relative to trans-CF₃OCO is only 1.40×10^{-36} according to Eq. (3). Thus cis-CF₃OCO could not be observed in Ahsen's experiment due to the extremely low temperature.

In Meller's experiment [18], the CF₃O radicals were produced by photolyzing CF₃O₂CF₃ in the presence of CO. The pressure of the static reactor was kept at 760 Torr, and the experimental temperature was 296 K. Under such circumstance, the proportion of *cis*-CF₃OCO relative to *trans*-CF₃OCO is estimated to be 0.01 by using Eq. (3). Therefore, for the bis-perfluoromethyl-oxalate CF₃OC(0)- $C(O)OCF_3$ observed in the infrared spectrum, it is likely from the combination of two trans-CF₃OCO.

4. Conclusions

The mechanism of the CF₃O + CO reaction was studied by density functional theory as well as ab initio method. Four reaction pathways were identified including the fluorine atom abstraction reaction and the association reaction followed by isomerization and decomposition.

$$CF_3O + CO \rightarrow TS1 \rightarrow FCO + CF_2O \tag{4a}$$

$$CF_{3}O + CO \rightarrow \textit{trans-}CF_{3}OCO \rightarrow TS2 \rightarrow FCO + CF_{2}O \tag{4b}$$

$$CF_{3}O + CO \rightarrow \textit{trans-}CF_{3}OCO \rightarrow TS3 \rightarrow CF_{3} + CO_{2} \tag{4c}$$

$$CF_3O + CO \rightarrow trans-CF_3OCO \rightarrow TS4 \rightarrow cis-CF_3OCO$$

$$\rightarrow \ TS5 \ \rightarrow \ CF_3 + CO_2 \eqno(4d)$$

The title reaction proceeds mainly via the barrierless association reaction between CF₃O and CO to form the intermediate trans-CF₃OCO which is experimentally accessible after collision stabilization. cis-CF₃OCO can only form via the isomerization of trans-CF₃OCO, and the low temperature result in much lower proportion of cis-CF₃OCO than trans-CF₃OCO.

The pathway (4d) can lead to the formation of $CF_3 + CO_2$ when temperature is enough high, whereas the reactions (4a)/(4b) and (4c) will be very difficult to yield the products $FCO + CF_2O$ and $CF_3 + CO_2$ even at a high temperature owing to quite high energy barriers of TS1, TS2 and TS3.

The formation enthalpies of trans-CF₃OCO were calculated to be $\Delta_{\rm f} H_0^{\circ} = -196.25$ and $\Delta_{\rm f} H_{298.15}^{\circ} = -197.46~{\rm kcal~mol}^{-1}$ at the G3B3 level of theory. For cis-CF₃OCO, the counterparts were -193.64 and -194.90 kcal mol⁻¹.

Acknowledgements

Partial financial support by the National Natural Science Found of China (20577049, 20707025) and the Natural Science Foundation of Anhui (070411026) are greatly acknowledged.

References

- [1] O.J. Nielsen, T. Ellermann, J. Sehested, E. Bartkiewicz, T.J. Wallington, M.D. Hurley, Int. J. Chem. Kinet. 24 (1992) 1009.
- E.O. Edney, D.J. Driscoll, Int. J. Chem. Kinet. 24 (1992) 1067.
- J. Sehested, T. Ellermann, O.J. Nielsen, T.J. Wallington, M.D. Hurley, Int. J. Chem. Kinet. 25 (1993) 701.
- [4] E.C. Tuazon, R. Átkinson, J. Atmos. Chem. 16 (1993) 301.
- E.C. Tuazon, R. Atkinson, J. Atmos. Chem. 17 (1993) 179.
- [6] T.J. Wallington, M.D. Hurley, J.C. Ball, E.W. Kaiser, Environ. Sci. Technol. 26 (1992) 1318.
- [7] F. Caralp, R. Lesclaux, A.M. Dognon, Chem. Phys. Lett. 129 (1986) 433.
- [8] P.D. Lightfoot, R.A. Cox, J.N. Crowley, M. Destriau, G.D. Hayman, M.E. Jenkin, G.K. Moortgat, Atmos. Environ, A 26 (1992) 1805.
- [9] T.J. Wallington, P. Dagaut, M.J. Kurylo, Chem. Rev. 92 (1992) 667.
- [10] H. Saathoff, R. Zellner, Chem. Phys. Lett. 206 (1993) 349.
- S.B. Barone, A.A. Turnipseed, A.R. Ravishanankara, J. Phys. Chem. 98 (1994) [11] 4602.
- [12] C. Bourbon, C. Fittschen, J.P. Sawerysyn, P. Devolder, J. Phys. Chem. 99 (1995) 15102
- [13] C. Fockenberg, H. Somniz, G. Bednarek, R. Zellner, Ber. Bunsen. Phys. Chem. 101 (1997) 1411
- [14] A.A. Turnipseed, S.B. Barone, N.R. Jensen, D.R. Hanson, C.J. Howard, A.R. Ravishankara, J. Phys. Chem. 99 (1995) 6000.
- [15] J. Czarnowski, H.J. Schumacher, Int. J. Chem. Kinet. 13 (1981) 639.
- [16] H. Saathoff, R. Zellner, Presented at the 12th International Symposium on Gas Kinetics, July 1992, University of Reading,
- [17] T.J. Wallington, J.C. Ball, J. Phys. Chem. 99 (1995) 3201.
- [18] R. Meller, G.K. Moortgat, Int. J. Chem. Kinet. 29 (1996) 579.
- [19] S.V. Ahsen, J. Hufen, H. Willner, J.S. Francisco, Chem. Eur. J. 8 (2002) 1189
- [20] M.W. Chase Jr., NIST-JANAF Thermochemical Tables, fourth ed., J. Phys. Chem. Ref. Data Monograph No. 9 NIST, Gaithersburg, 1998.
- [21] R. Atkinson, D.L. Baulch, R.A. Cox, R.F. Hampson Jr., J.A. Kerr, M.J. Rossi, J. Troe, J. Phys. Chem. Ref. Data 29 (2000) 167.
- [22] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 03 (Revision B.05), Gaussian Inc., Pittsburgh, PA, 2003.
- [23] M. Mebel, K. Morokuma, M.C. Lin, J. Chem. Phys. 103 (1995) 7414.
- [24] A.G. Baboul, L.A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys. 110 (1999) 7650.
- [25] G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules, D. Van Nostrand Company Inc., New York, 1950.
- [26] G. Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra, D. Van Nostrand Company Inc., New York, 1945.
- [27] V.W. Laurie, D.T. Pence, R.H. Jackson, J. Chem. Phys. 37 (1962) 2995.
- [28] R.G. Parr, W. Yang, J. Am. Chem. Soc. 106 (1984) 4049.
- [29] W. Yang, W.J. Mortier, J. Am. Chem. Soc. 108 (1986) 5708.
- [30] J.S. Francisco, Chem. Phys. 237 (1998) 1.
- [31] L.A. Curtiss, K. Raghavachari, P.C. Redfern, J.A. Pople, J. Chem. Phys. 106 (1997) 1063
- [32] R. Asatryan, J.W. Bozzelli, J.M. Simmie, J. Phys. Chem. A 112 (2008) 3172.
- [33] J. Czarnowski, H.J. Schumacher, Z. Phys. Chem. Neue Fol. 92 (1974)
- , 329. [34] G.A. Arguello, H. Willner, J. Phys. Chem. A 105 (2001) 3466.
- [35] M.J. Hopper, J.W. Russell, J. Overend, J. Chem. Phys. 48 (1968) 3765. [36] D.E. Milligan, M.E. Jacox, A.M. Bass, J.J. Comeford, D.E. Mann, J. Chem. Phys. 42
- (1965) 3187.
- [37] G.A. Carlson, G.C. Pimentel, J. Chem. Phys. 44 (1966) 4053.
- [38] D.E. Milligan, M.E. Jacox, J.J. Comeford, J. Chem. Phys. 44 (1966) 4058.