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A modified Wang-Landau density-of-states sampling approach has been performed to calculate the
excess entropy of liquid metals, Lennard-Jones (LJ) system and liquid Si under NVT conditions; and
it is then the residual multiparticle entropy (SRMPE) is obtained by subtraction of the pair correlation
entropy. The temperature dependence of SRMPE has been investigated along with the temperature
dependence of the local atomic-level pressure and the pair correlation functions. Our results suggest
that the temperature dependence of the pair correlation entropy is well described by T−1 scaling
while T−0.4 scaling well describes the relationship between the excess entropy and temperature. For
liquid metals and LJ system, the -SRMPE versus temperature curves show positive correlations and
the -SRMPE of liquid Si is shown to have a negative correlation with temperature, the phase-ordering
criterion (based on the SRMPE) for predicting freezing transition works in liquid metals and LJ but
fails in liquid Si. The local atomic-level pressure scaled with the virial pressure (σal/σav ) exhibits the
much similar temperature dependence as -SRMPE for all studied systems, even though simple liquid
metals and liquid Si exhibit opposite temperature dependence in both σal/σav and -SRMPE. The further
analysis shows that the competing properties of the two effects due to localization and free volume
on the SRMPE exist in simple liquid metals and LJ system but disappear in liquid Si, which may be the
critical reason of the failure of the phase-ordering criterion in liquid Si. © 2011 American Institute
of Physics. [doi:10.1063/1.3524206]

I. INTRODUCTION

The phase transition from a disordered liquid into an
ordered solid is a widely studied phenomenon. But even
for some simple model systems it still represents a major
challenge locating the phase boundaries accurately. Molec-
ular simulations can be effectively used to this end and
the accuracy of the estimated fluid-solid coexistence bound-
aries has significantly improved with the advent of advanced
numerical-simulation methods for the calculation of free en-
ergies. However, calculating the free energy of either a dense
liquid or a hot solid still remains a demanding computational
task that requires intensive simulations to be carried out at
several state points as well as some preliminary selection
of the most likely candidate solid structures. For such rea-
sons, several semiempirical rules have been proposed with
the aim of locating the liquid-solid transition, without resort-
ing to the knowledge of the free energy of liquid and solid
phases. The first famous proposals of melting criterion was
made by Lindemann,1 which states that the ratio of the root-
mean-square displacement of a particle to the average nearest
neighbor distance is about 0.15 when the crystal melts. The
second freezing criterion was due to Hansen and Verlet2 who
observed that the peak value of the first maximum of the struc-
ture factor, Smax(Q), is about 2.85 along the freezing curve

a)Author to whom correspondence should be addressed. Electronic mail:
csliu@mail.issp.ac.cn.

of simple fluids. Indeed, it has been found that the value of
Smax(Q) at freezing depends on the softness of the potential
as well as on the dimensionality of the hosting space.3 An-
other empirical rule proposed by Raveché et al.4 states that
the ratio between the values of the pair correlation function at
distances corresponding to the first nonzero minimum and to
the largest maximum is around 0.20 ± 0.02 at freezing. More
recently, based on the observation that the residual multipar-
ticle entropy (SRMPE) of the fluid changes sign when the fluid
is close to the thermodynamic freezing transition, Giaquinta
and Giunta5 proposed a phase-ordering rule on the SRMPE, i.e.,
the zero residual multiparticle entropy (zero-SRMPE) freezing
criterion. Here, the SRMPE is defined as the contribution to the
entropy of a fluid due to three-body and higher order correla-
tions, and is thus the difference between the excess entropy
per particle (Se) and the pair correlation entropy (S2). The
zero-SRMPE freezing criterion provides a quasiuniversal “one-
phase” rule for the location of the liquid-solid transition and
has been argued to be more general than other phenomeno-
logical freezing rules because the criterion does not hinge on
system-dependent parameters. This criterion has been exam-
ined extensively and found to be valid for a number of phase
transitions where a disordered or partially ordered fluid trans-
forms to a more structured phase, such as freezing, fluid-fluid
phase separation, isotropic-nematic transition and the infinite-
order Kosterlitz and Thouless phase transition.6–9 However,
some results suggest that a change in sign of the SRMPE

of the fluid is not always a reliable locator of the freezing
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transition. For example, the zero-SRMPE criterion is a less ac-
curate predictor of freezing for systems with a finite short-
range repulsion than for systems with a strong short-range
repulsive core.10 The zero-SRMPE criterion works in two and
three-dimensions fluids but it fails in other spatial dimensions
for d-dimensional hard-sphere (d = 1–5).11 For the majority
of the isochors studied in a two-dimension square-shoulder
fluid by Singh et al.12 the zero-SRMPE prediction and the ther-
modynamic evidence for a phase transition were consistent,
but this criterion fails along isochors that are in regions of
two coexisting ordered phases, thus they concluded that the
zero-SRMPE rule may be only likely to be approximately pre-
dictive in systems with small phase coexistence regimes, e.g.,
in the case of liquid crystal forming systems.

As mentioned above, although there have been a number
of tests of the zero-SRMPE freezing criterion, it has not been
clarified how universal this criterion is or what is the condition
for it, i.e., establishing the range of validity of the zero-SRMPE

criterion remains an open question. So it needs us to perform
further studies in order to confidently label the zero-SRMPE

freezing criterion and use it. In the present work, simple liquid
metals characterized by central force potentials with isotropic
many-body interactions and liquid Si with anisotropic inter-
atomic interactions are studied under NVT conditions to crit-
ically examine the usefulness of the zero-SRMPE criterion. It is
important to point out that the structure of Si strongly differs
from that in the examined metallic liquids: the coordination
number of simple liquid metals is about 12 while in liquid Si
it is about 6, indicating that liquid Si appears not to be a “free-
electron” metal but contains “covalent character”. In liquid
Si, besides the first peak in g(r) (the pair correlation function)
there exists a small peak on the high-r side; in simple liquid
metals characterized by central force potentials the first peak
in g(r) is very sharp. Thus, for simple liquid metals the pair
correlation entropy contribute ∼85% to excess entropy,13 im-
plying the SRMPE makes very less contribution to the excess
entropy; while in liquid Si the pair correlation entropy con-
tributes less to excess entropy compared to liquid metals, the
contribution of the SRMPE to excess entropy turns out to be
very important. These are why in the present work simple liq-
uid metals and liquid Si are selected to be the studied systems
for further studying the zero-SRMPE criterion through explor-
ing the correlation among SRMPE, the atomic-level pressure,
the free volume of a atom and the zero-SRMPE criterion.

The SRMPE is a cumulative “measure” of the statistical
weight associated with correlations involving at least three
particles, and it can be obtained by subtraction of the pair cor-
relation entropy from the excess entropy of the fluid. The pair
correlation entropy is expressed as

S2 = −2πρ

∫ ∞

0
{g(r ) ln g(r ) − [g(r ) − 1]}r2 dr, (1)

where ρ is number density. So the precision in calculation
of SRMPE is mainly dependent on the accurate calculation of
excess entropy.

As a well known fact, the entropy, the number of acces-
sible configurations, is calculated by

S(N,V,E) = −kB ln �(N,V,E), (2)

where kB is the Boltzmann constant and �(N, V, E) is the den-
sity of states. A novel Monte Carlo method (WL method) has
been proposed by Wang and Landau14 for direct calculation of
the density of states of systems as a function of one or more
macroscopic observables like energy, temperature and vol-
ume. This method has drawn wide attention of researchers due
to its straightforward implementation and wide applicabil-
ity. Also, it has been generalized for off-lattice simulations.15

Shell et al.,16 in 2003, proposed a modified Wang-Landau
density-of-states sampling approach (WLTM) which com-
bines the good statistical accuracy of Transition Matrix Monte
Carlo algorithm (TM) with the rapid broad sampling of space
generated by the WL method. With this method, the entropy
over a significant range of temperatures can be obtained eas-
ily. In the present work, the WLTM method is used to accu-
rately calculate the excess entropy of LJ system, liquid metals
and liquid Si under NVT conditions.

The rest of the paper is organized as follows: in Sec. II,
the computational methods and details are described; in
Sec. III, the results are presented and discussed; finally, the
conclusions are given in Sec. IV.

II. COMPUTATIONAL METHODS AND DETAILS

The interparticle interactions of simple metals including
Al, Cu, Ti and Pb were described by the second-moment ap-
proximation of the tight-binding scheme,17 which has been
widely used in numerical simulation studies in metals and
alloys.17–20 According to this formalism, the potential energy
U of a system can be written as

U =
∑

i

⎧⎪⎨
⎪⎩

∑
j

Ae−p(ri j /r0−1) −
⎛
⎝∑

j

ξ 2e−2q(ri j /r0−1)

⎞
⎠

1/2
⎫⎪⎬
⎪⎭,

(3)

where the sum is over all atoms in the system, rij represents
the distance between atom i and j, and r0 is the first-neighbors
distance of the bulk crystal. The repulsive portion is a Born-
Mayer pair-wise interaction. The attractive term mimics the
form of the square root of the second moment of local density
of states, and hence has a many-body character. In this paper,
we use the value of parameters A, ξ , p and q as given by Cleri
and Rosato.17 The Tersoff potential21 is employed to model
the Si atomic interaction. It is found that this potential is very
useful for the structural analysis of liquid Si though it overes-
timates greatly the melting temperature.22, 23 Tersoff gives his
potential as

VTersoff = (1/2)
∑
i �= j

fc(ri j )
(

Ae−λri j − bi j Be−μri j
)
, (4)

where rij represents the distance between atom i and j; fc is
a smooth cutoff function; A, B, λ, μ are parameters; and bij

is the bond-order term, which depends on the local environ-
ment and gives the many-body character to the potential. The
potential was described in detail in Ref. 21 and the parameter
values were taken from this paper.

In the standard WL algorithm the probability of observ-
ing a particular atomic configuration is inversely proportional
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to the density of states (�(E)) corresponding to the given en-
ergy, that is to say, the new state is accepted with probability:

p(EI → E J ) = min

[
�(EI )

�(E J )
, 1

]
, (5)

where EI and EJ are the energies of the initial and final states,
respectively. The density of states is initially set so �(E)
= 1, and is modified at every simulation step. For each of
the visited states, the corresponding �(E) is updated accord-
ing to �(E) = f × �(E), where f is an arbitrary convergence
factor which can be as large as f = f0 = e1 ≈ 2.71828 initially
and tends to unify as the calculation proceeds. We also keep
track of the histogram H(E), counting the number of times
each energy is visited. Once the histogram is sufficiently flat,
f is reduced and H(E) is reset to zero. These steps are repeated
until f has become close to unity. However, it has been noted
that the WL algorithm reaches a limiting accuracy, after which
the statistical quality of data no longer improves, no matter
how much additional computer time is invested. Hence, Shell
et al.16 propose to measure the transition matrix (TM) ele-
ments C(EI→EJ). From the TM elements one can estimate
the probability T(EI→EJ) that being in state with energy EI, a
move to a state with energy EJ is proposed,

T (EI → E J ) = C(EI → E J )∑
K C(EI → EK )

, (6)

and this is related to the density of states via

�(EI )

�(E J )
= T (E J → EI )

T (EI → E J )
. (7)

Hence, by recording TM elements, the density of states can
also be constructed. In the present work (following Ref. 16)
we combine WL sampling with the TM method. With an
accurate density of states, the partition function or the av-
erages of other important thermodynamic quantities can be
calculated directly; for example entropy can be computed by
Eq. (2). Reweighing techniques24 is employed for transform-
ing S(N,V,E) as function of temperature. Since the density of
states is modified every time the state is visited, a relative den-
sity of states and a relative entropy are obtained only at the
end of the simulation.14 The difference between the relative
entropy and the absolute entropy is a constant. In order to get
the value of the constant, we select the LJ system as a refer-
ence system whose equation of states is known and then the
absolute entropy is easy to obtain. Once the constant has been
obtained, we can obtain the absolute entropy over the range
of studied temperatures. Then the excess entropy is calculated
by subtracting the entropy of an equivalent ideal gas from the
absolute entropy of the system.

Monte Carlo simulations for all the systems are carried
out in the canonical (NVT) ensemble under cubic periodic
boundary conditions. First, we run short simulations in the
canonical ensemble for both the low temperature and high
temperature phases to get the energy range. The energy range
is then divided into a number of bins and in which we then
run the WLTM algorithm for 1 × 108 MC steps. We re-
duce the modification factor ln f → 0.1 ln f, and finally post-
pone the refreshing of the density of states using the transi-

FIG. 1. The temperature dependences of the excess entropy obtained
with WLTM method (SWLTM) and calculated by the LJ equation of state
(SJOHNSON) as well as the pair correlation entropy (S2) of LJ liquid.

tion matrix until the first few stages of the modification factor
schedule have passed, during which f � 1. The system is run
for 500 000 cycles at the given temperature to guarantee an
equilibrium liquid state; a cycle consisted of one attempt to
change all particle positions. The maximum displacement of
a particle was adjusted along the run so as to keep the ac-
ceptance ratio of the MC moves as close to 0.5 as possible.
After achieving equilibrium in the system, 50 000 MC steps
were applied to calculate thermodynamic averages. The g(r)
are obtained by averaging 50 configurations sampled during
another run of 25 000 steps, the integral in the Eq. (1) was
evaluated using g(r) data with a cutoff distance equal to the
half of the box length.

In our simulation we have used systems consisting of
1000 particles for liquid Si, and of 1372 particle for simple
liquid metals and LJ system. We have conducted test to es-
tablish the sensitivity of the calculated excess entropy, pair
correlation entropy and pair distribution function on the size
of the system and found that the sizes of the systems used
in our work are sufficient for the present purpose. In order to
judge the accuracy of the WLTM method used in the present
paper, the excess entropy obtained with WLTM method were
compared with that calculated by the LJ equation of state.25

Both methods give results that are very close to each other, as
shown in Fig. 1.

III. RESULTS AND DISCUSSIONS

Figure 2 shows the temperature dependences of the pair
correlation entropy (S2) and the excess entropy (Se) under
NVT conditions, for several simple liquid metals, liquid Si
and LJ system. Note that S2 and Se are in the units of KB per
atom. We also use the reduced temperature T* = kBT/ε and
density ρ* = ρσ 3 for LJ system. As expected, both S2 and Se

increase with increasing temperature for all studied systems.
S2 is always larger than Se, indicating that the residual mul-
tiparticle entropy SRMPE is negative. The SRMPE contributes
about 20% or less to the Se for LJ system and liquid met-
als, while for liquid Si the contribution of the SRMPE to the
Se can be as large as 50% which is evidenced by the large
distances between solid and open pentacles shown in this fig-
ure. So it is unreasonable the estimation of excess entropy
by pair correlation entropy for liquid Si. In addition, this fig-
ure tells us that S2 increases more strongly than Se for liquid
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FIG. 2. The pair correlation entropy (S2) and excess entropy (Se) as functions
of temperature (T) for several simple liquid metals and liquid Si. The inset
shows the S2 and Se of LJ liquid also plotted as a function of the reduced
temperature (T*). Lines are guides for the eyes.

metals and LJ system, emphasizing that the difference be-
tween S2 and Se is not a constant, thus the best fit expression
to the temperature dependence of S2 is different from that of
Se. Earlier density functional studies on inverse power and re-
pulsive Yukawa potentials26 suggest that the excess entropy
Se can be well represented by the form

Se ∝ T −0.4, (8)

as it happens in many cases. A few years ago, employing re-
alistic many-body potential for a series of simple liquid met-
als, Li et al.20 approximated the excess entropy by the pair
correlation entropy as in Ref. 27 and found that Se, i.e., S2,
universally scales with temperature as:

S2 ∝ T −1. (9)

We fit Eqs. (8) and (9) to the temperature dependence of Se

and S2, respectively, and find that the temperature dependence
of S2 is well described by T−1 scaling and T−0.4 scaling de-
scribes the relationship between the excess entropy and tem-
perature accurately, for all the liquid metals, liquid Si and LJ
system as shown in Fig. 3.

The phase-ordering rule of SRMPE for predicting transi-
tions from disordered to ordered phases is tested by plotting
-SRMPE as a function of temperature along isochors for vari-
ous systems as shown in Fig. 4. A glance of this figure shows
that over the studied temperature range liquid Si exhibits a
different temperature dependence of -SRMPE from other stud-
ied liquid systems: as temperature is lowered, for liquid Si
-SRMPE increases, whereas for other simulated liquid systems
it decreases and the decrease trend becomes rapid with the
decrease of temperature. These indicate that with the increase
of temperature in liquid metals and LJ system the multipar-
ticle (three-body and higher order) correlation is enhanced,
whereas in liquid Si the multiparticle correlation is weakened,
which is in agreement with the fact that in liquid Si the co-
valent bonds decrease and the floating bonds increase with
temperature. Therefore, for all studied systems except liquid
Si the freezing temperatures can be obtained using the phase-
ordering rule of SRMPE, the change sign of -SRMPE from pos-
itive to negative, which are summarized in Table I. In order

FIG. 3. T−0.4 dependence (a) of excess entropy (Se) and T−1 dependence (b)
of the pair correlation entropy (S2) for several simple liquid metals, liquid Si.
The inset in panel (a) shows T*−0.4 dependence of Se of LJ system, the inset
panel (b) shows T*−1 dependence of Se of LJ system. Lines are the best to
present the data.

to make a comparison, we also present in Table I the exper-
imental values (TE), the theoretical estimates (THV) from the
freezing criterion proposed by Hansen and Verlet,2 theoretical
values (TC) obtained using the thermodynamic condition for
two-phase coexistence with the same model potential. As a re-
sult, the extrapolated freezing temperatures on the basis of the
zero-SRMPE criterion are in reasonable agreement with exper-
imental values or results calculated by other methods. In con-
trast, the failure of liquid Si in obtaining freezing temperature
clearly indicates that the zero-SRMPE criterion does not hold
for liquid Si. Only based on the present results we may not
conclude which one of these two semiempirical freezing rules
is better. But it should be pointed out that the first-peak value
of S(Q) of liquid Si close to melting temperature is much

FIG. 4. Dependence of residual multiparticle entropy (SRMPE) on tem-
perature (T) for several simple liquid metals and liquid Si. The inset
shows the -SRMPE of LJ liquid also plotted as a function of the reduced
temperature (T*).
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TABLE I. Obtained freezing temperatures using the phase-ordering rule of
SRMPE (TRMPE) and using the freezing criterion proposed by Hansen and Ver-
let Ref. 2 (THV) for liquid LJ, liquid metals and liquid Si. Freezing tempera-
ture TC is theoretical value obtained using the thermodynamic condition for
two-phase coexistence, and TE is the experimental freezing temperature. ρ is
number density. For LJ liquid, number density in units of σ−3, temperature
in units of ε/kB (ε and σ are LJ parameters, kB is Boltzmann constant). For
liquid metals, number density in units of Å−3, temperature in units of K.

LJ Al Cu Pb Ti Si

ρ 1.0130 0.0531 0.0760 0.0310 0.0517 0.0551
TRMPE 1.46 1006.45 1503.46 614.59 2070.51
THV 1.54 770.8 1355.8 683.0 1834.7
TC 1.59a 870 ± 5b 1237 ± 7b 466 ± 5b 2750c,2547d

TE 933.25e 1357.6e 600.6e 1943e 1683f

aReference 34.
bReference 18.
cReference 23.
dReference 16.
eReference 35.
fReference 36.

lower than the value given by the Hansen-Verlet freezing cri-
terion, therefore the freezing criterion proposed by Hansen
and Verlet2 also fails in liquid Si. In addition, the results of
pair correlation entropy at freezing point of liquids except
Si are shown in Fig. 5, which is in good agreement with the
work of Chakraborty28 and Yokoyama,29 where the S2 value at
freezing is −3.5(±0.3) for LJ, soft-sphere, and Morse liquids,
also in agreement with the work of Rosenfeld,26 where the ex-
cess entropy at freezing is -4.0 for all soft inverse power po-
tential and Yukawa potentials. Why does the phase-ordering
rule of SRMPE hold for liquid LJ systems and simple liquid
metals but not hold for liquid Si? Keep this question in mind
while we discuss the following.

The variations in the residual multiparticle entropy as a
function of the temperature must not only be related to the
behavior of different order metrics charactering the nature
as well as the extent of structural disorder, but also reflect
the atomic dynamics. In order to obtain some information
about the connections among the residual multiparticle en-
tropy, dynamics and local order in liquids we use the concept
of atomic-level stresses, which is introduced to describe the
local structure of metallic glass systems and has been suc-
cessfully used in describing the atomistic nature of defects
in crystalline, the glass transition and atomistic structures of
liquids.30–32 The atomic-level stresses reflect the topology and
symmetry of the environment of each atom as well as the in-

FIG. 5. The pair correlation entropy (S2) of liquids at freezing.

teraction of this atom with its surrounding atoms. Thus, the
atomic-level stresses together with the atomic-level volume
may approximately describe the atomic dynamics and could
be used as the basis for the statistic mechanics of liquids.

The expression for local atomic-level stresses σ ab is
given by30–32

σ ab
i = − 1

�i

⎡
⎣1

2

∑
j

Fa
i j r

b
i j + Mi v

a
i vb

i

⎤
⎦ , (10)

where a and b are the Cartesian coordinates, Fij is the force
on atom i due to atom j, Mi is the mass of atom i, vi is the
velocity of atom i, rij is the separation of atoms i and j, �i is
local atomic volume of atom i. The kinetic contribution [the
second term in Eq. (10) associated with the flow of particles
across a fixed spatial surface is trivial compared to the con-
figurational contribution (the first term) associated with the
interatomic forces acting between particles.32 Here, the stress
is thus calculated using the following form:

σ ab
i = − 1

2�i

∑
j

Fa
i j r

b
i j . (11)

The local atomic volume (�i) can be calculated using the vol-
ume of Voronoi-polyhedron of atom i.32 For the sake of sim-
plicity, as in Ref. 32 we used an essentially equivalent but
simpler approach, calculating �i using a weighted average
near-neighbor distance for atom i,

�i = 4

3
πa3

i , (12)

and

ai =
∑

j r−1
i j

2
∑

j r−2
i j

, (13)

where rij is the distance between atom i and its near-neighbor
atom j. ai is average radius of the near-neighbor shell around
atom i. In our present calculations, the cutoff distance for
defining near-neighbor atoms of atom i correspond to the first
minimum of the pair correlation function. Liquids are macro-
scopically isotropic, so it is natural to use spherical represen-
tation of stresses or equivalently the cubic representation. One
of the local stress components in the cubic representation is:

σα
i =

√
1

3

[
σ xx

i + σ
yy

i + σ zz
i

]
. (14)

The local atomic-level stress corresponds to the atomic-level
pressure by

σal =
(

1√
3

)
σα

i . (15)

Atomic-level pressure fluctuation leads to a rearrangement in
the nearest neighbor atomic configuration and changes the lo-
cal density. In order to make comparison, here the atomic-
level pressure is scaled by the average virial pressure of
corresponding system. Therefore, we display the ratio of the
average values of the atomic-level pressure (σal) to the aver-
age virial pressure of systems (σav ) as a function of tempera-
ture for several simple liquid metals, liquid Si and LJ system
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FIG. 6. The ratio of the average values of the atomic-level pressure (σal )
to the average virial pressure of systems (σav ) as a function of temperature
(T) for several simple liquid metals and liquid Si. The inset shows the cor-
responding quantity of LJ liquid also plotted as a function of the reduced
temperature (T*).

under NVT conditions in Fig. 6. As can be seen from this fig-
ure, the σal/σav of liquid metals and LJ system is positively
correlated with temperature, however, for liquid Si it is nega-
tively correlated with temperature. That is, when temperature
is increased the local density around an atom increases under
NVT conditions for liquid metals and LJ system while for liq-
uid Si it decreases. The comparison between Fig. 4 and Fig. 6
clearly indicates that, σal/σav and -SRMPE have much similar
temperature dependence for all studied systems, even though
simple liquid metals and liquid Si exhibit opposite temper-
ature dependence of both σal/σav and -SRMPE. Thus, there
exists the positive correlation between σal/σav and -SRMPE:
when the local density around an atom increases/decreases
the multiparticle correlations becomes strong/weak, i.e., the
absolute value of the residual multiparticle entropy becomes
large/small.

It has been argued that the zero-SRMPE criterion is the out-
come of two competing effects12, 33 of multiparticle correla-
tions on the excess entropy of a fluid: one is that the increase
of localization tends to lower SRMPE, another is that an in-
crease in the free volume as a consequence of local ordering
results in a positive contribution to SRMPE. As the temperature
is lowered the localization is always increased. So the change
behavior of the free volume of atoms with temperature may
play a critical role in the temperature dependence of SRMPE,
it turns out to be the critical factor of the zero-SRMPE crite-
rion. The change behavior of free volume with temperature
can be obtained quantitatively from the pair correlation func-
tion. In Fig. 7 we plot the pair correlation function g(r) of
liquid Al (as an example of simple liquid metals and LJ sys-
tem) and liquid Si at different temperatures. From Fig. 7(a)
we can see that the first peak in the g(r) of liquid Al shifts to
a longer distance and the inner portion of the first peak shifts
the weight to the outer portion with the decrease of temper-
ature. But as shown in Fig. 7(b) the first peak in the g(r) of
liquid Si shifts to a shorter distance and the outer portion of
the first peak shifts the weight to the inner portion with lower-
ing temperature, which is in agreement with the fact that the
floating binds decrease and the covalent bonds increase with

FIG. 7. The pair correlation function at different temperature in the region
around the main peak: (a), liquid Al; (b), liquid Si. The insets show the long-
range behavior of the pair correlation functions.

the decrease of temperature in liquid Si. Thus, in simple liquid
metals the free volume increases with the decrease of temper-
ature, which makes a positive contribution to SRMPE. And the
greater free volume afforded by the more efficient structural
packing overcomes the effect of increased positional order-
ing in determining the SRMPE at freezing temperatures. But in
liquid Si the free volume decreases with the decrease of tem-
perature, which makes a negative contribution to SRMPE. The
competing properties of the above-mentioned two effects on
the SRMPE, which exist in simple liquid metals, disappear in
liquid Si. Therefore, the phase-ordering criterion based on the
residual multiparticle entropy works in simple liquid metals
and LJ system but fails for liquid Si.

IV. CONCLUSIONS

Employing realistic many-body potential for a series of
liquid metals, LJ potential and Tersoff potential for liquid
Si, a modified Wang-Landau density-of-states sampling ap-
proach has been performed to calculate the excess entropy un-
der NVT conditions. Our results suggest that the temperature
dependence of the pair correlation entropy is well described
by T−1 scaling while T−0.4 scaling well describes the relation-
ship between the excess entropy and temperature. Liquid Si
exhibits a different temperature dependence of -SRMPE from
liquid metals and LJ system: as temperature is lowered, for
liquid Si -SRMPE increases, whereas for other liquid systems
it decreases. This is in agreement with the fact that in simple
liquid metals and LJ system, the local atomic-level pressure
decreases with decreasing temperature, while in liquid Si, the
atomic-level pressure increases with the decrease of tempera-
ture. The phase-ordering criterion based on the residual mul-
tiparticle entropy work on simple liquid metals, but fails in
liquid Si. Our further analysis shows that the competing prop-
erties of the two effects due to localization and free volume
on the SRMPE exist in simple liquid metals and LJ system but
disappear in liquid Si, which may be the critical reason of the
failure of the phase-ordering criterion in liquid Si.
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