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Chaotic spin-wave solitons in magnetic film active feedback rings were observed for the first time. At

some ring gain level, one observes the self-generation of a single spin-wave soliton pulse in the ring.

When the pulse circulates in the ring, its amplitude varies chaotically with time. Numerical simulations

based on a gain-loss nonlinear Schrödinger equation reproduce the observed responses.
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If one amplifies the output signal from a dissipative
transmission line and then feeds it back to the input of
the line, one creates an active feedback ring system—a
driven damped system. In the steady state of this system,
the energy loss of the wave in the dissipative line is
compensated by the energy gain provided by the amplifier.
Examples of this type of ring system include fiber ring
lasers [1–3], magnetic film feedback rings [4–7], and elec-
tromagnetic transmission line oscillators [8,9]. These sys-
tems are excellent test beds for studies of nonlinear
dynamics and, therefore, have attracted considerable
works. The two main focus areas are (1) envelope solitons
and (2) chaos. For (1), the main work has been on the
demonstration of envelope solitons in a wide variety of ring
configurations [2,3,5,7,8]. For (2), the main focus has
been on the use of various configurations to demonstrate
chaotic excitations through different nonlinear processes
[1–4,6,8,9] and the development of new models to describe
chaotic excitations in certain ring systems [1–3].

Recent theoretical work discovered that the active
feedback system could also support chaotic solitons.
Specifically, Soto-Crespo et al. [10], Zhao et al. [11], and
Karar et al. [12] reported optical envelope solitons that
circulated in fiber feedback rings and had their amplitudes
varying with time in a chaotic manner. This discovery
opened a completely new paradigm in the field of nonlinear
science. This is because solitons and chaos are usually
considered to exist in opposite physical regimes and
present two totally unconnected aspects of nonlinear dy-
namics [13–15]. In spite of the significance of this discov-
ery, however, the experimental demonstration of such
chaotic solitons has been rather limited. The only demon-
stration so far was done by Zhao et al. for optical soliton
pulses in fiber feedback rings [11]; however, neither the
solitonic nature of the pulses nor the chaotic nature of their
behavior was confirmed.

This Letter reports on the first experimental demonstra-
tion and modeling of chaotic spin-wave solitons in

magnetic film active feedback rings. As the ring gain is
increased to a certain threshold level, one observes the self-
generation of a single spin-wave envelope soliton that
circulates in the ring with constant amplitude. With a
further increase in the ring gain, this soliton pulse develops
into a chaotic soliton—a soliton whose amplitude changes
chaotically with time. The pulse has a hyperbolic secant
shape and a flat phase profile across its width, which are the
signatures of a soliton. The overall time-domain signal
resulting from the circulation of the pulse shows a finite
correlation dimension and a positive Lyapunov exponent,
which are clear evidence of chaos. Numerical simulations,
based on a gain-loss nonlinear Schrödinger equation
(GLNLS), reproduced the observed responses. At rela-
tively low ring gain levels, there is even a quantitative
agreement between the numerical and experimental
results.
It is important to emphasize that, although these results

were obtained for a magnetic film feedback ring, the work
has implications for other driven damped nonlinear sys-
tems, including optical fiber rings [1–3] and electromag-
netic transmission line oscillators [8,9]. It is also important
to highlight that this work demonstrates a new type of
chaotic microwave pulse generator. Chaotic microwave
sources are critically needed by chaotic radar [16] and
chaotic communications [17].
The feedback ring consisted of a magnetic yttrium iron

garnet (YIG) film strip and two microstrip transducers
placed over the YIG strip to excite and detect spin waves
[7]. The output signal from the detection transducer was
fed back to the excitation transducer through a microwave
amplifier and an adjustable microwave attenuator. The YIG
strip was magnetized by a static magnetic field which is
parallel to the YIG strip length. This film-field configura-
tion supports the propagation of backward volume spin
waves along the YIG strip and, at the same time, prohibits
the three-wave interactions of such waves [18,19]. The ring
signal was sampled through a directional coupler, with
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feeds to a spectrum analyzer for frequency analysis and an
oscilloscope for temporal signal measurements. For the
data presented below, the YIG strip was 5:6 �m thick,
2.1 mm wide, and 52 mm long. The magnetic field was
938 Oe. The microstrip transducers were 50 �m wide and
2 mm long elements. The transducer separation was held at
5.5 mm. The microwave amplifier had a peak output power
of 2 W and a linear response over 1–8 GHz.

The feedback ring can have a number of resonance
eigenmodes that exhibit low decay rates [7]. The frequen-
cies of these modes can be determined by the phase
condition kð!Þlþ�e ¼ 2�n, where k is the spin-wave
wave number, ! is the frequency, l is the transducer
separation, �e is the phase shift introduced by the elec-
tronic circuits, and n is an integer. At a low ring gain G,
all eigenmodes experience an overall net loss, and there is
no spontaneous signal in the ring. If the ring gain is
increased to a certain level, here taken as G ¼ 0, the
eigenmode with the lowest decay rate will start to self-
generate in the ring and one will obtain a continuous
wave response. A further increase in G leads to the
excitation of additional modes and a comblike frequency
spectrum, which, in the time domain, corresponds to a
spin-wave soliton that circulates in the ring; and then to
the broadening of each mode in the frequency spectrum,
which, in the time domain, corresponds to the realization
of chaotic solitons as reported below. Here, both the
excitation of new modes and the mode broadening are
realized through four-wave interactions. At even higher
gain levels, one obtains the circulation of two or more
spin-wave pulses in the ring. Note that the first demon-
stration of solitons in magnetic film feedback rings was
carried out by Kalinikos et al. [20]. That demonstration
also used the backward volume spin-wave configuration,
but the solitons were excited by the use of external
microwave pulses and appropriate interruption to the ring.

Figure 1 shows representative power spectra for ring
signals obtained at different ring gains. In each panel, the
bottom diagram shows the full spectrum, and the top dia-
grams present �32 expanded views for the three main
peaks in the bottom diagram. All diagrams have the same
vertical power scale. The three top diagrams for the same
main peak also have the same frequency scale. The peak
widths in all the diagrams are instrument limited.

The data in Fig. 1 demonstrate three results. (1) On a
large frequency scale, as shown in all the bottom diagrams,
the power spectrum has a comblike structure. With an
increase in G, this comb spectrum remains the same,
except that there is a weak growth in mode intensity.
(2) On a smaller frequency scale, each mode consists of
a narrow single peak for G ¼ 2:0 dB. With an increase in
G, one observes the excitation of new sideband peaks near
the initial single peak, as shown in the top diagrams in (b),
and then the washout of those modes and the realization
of broad spectra, as shown in the top diagrams in (c).

(3) There is a slight shift of the modes to lower frequencies.
This shift agrees with the fact that backward volume spin
waves have a negative nonlinearity coefficient [18].
The time-domain signal obtained at G ¼ 2:0 dB con-

sists of a uniform train of pulses. This signal corresponds to
the clean comb spectrum in Fig. 1(a) and results from the
continuous circulation of a single spin-wave soliton in the
ring [7]. With an increase in G to 2.25 dB, the train
becomes chaotic—the amplitude of the pulse varies cha-
otically with time. This corresponds to the excitation of
new side modes shown in Fig. 1(b) and is the onset of
chaos. With a further increase in G, one observes stronger
chaotic behavior.
Figure 2 shows the time-domain signal obtained at

G ¼ 2:5 dB. Graphs (a) and (b) show the power profile
of the signal in different time and power scales. Graph (c)
shows one pulse in (a) in an expanded time scale. The
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FIG. 1 (color online). Power spectra for ring signals obtained
at different ring gain (G).

PRL 107, 114102 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

9 SEPTEMBER 2011

114102-2



circles are data, and the curve is a fit to a hyperbolic secant
squared function. Graph (d) shows the carrier waves (left
axis) and phase profiles (right axis) for four pulses. Each
phase profile shows the phase of the carrier wave relative to
a reference continuous wave whose frequency was given
by the main frequency of the carrier wave of the pulse.
Graph (e) shows the carrier wave of one pulse in (d) in an
expanded time scale.

The data in Figs. 2(a) and 2(b) show a train of chaotic
pulses. This train corresponds to the circulation of a single
spin-wave soliton pulse whose amplitude changes chaoti-
cally with time. The data in (c) show a perfect hyperbolic
secant function fit. The data in (d) show flat phase profiles
across the central portions of the pulses. These results
clearly confirm the solitonic nature of the pulses. The
waveform in (e) and the clean phase profiles in (d) show
that, in spite of the chaotic variation in amplitude, the
soliton has a coherent carrier wave as a conventional
soliton.

Figure 3 shows representative data that confirm the
chaotic nature of the time-domain signals. Graph (a)
shows a 3D attractor. Graph (b) shows plots of correlation
sum C vs probing distance r for embedding dimensions
m ¼ 2–20. Graphs (c) and (d) show the correlation dimen-
sion and maximal Lyapunov exponent, respectively, as a
function of m. The squares in (c) are for the G ¼ 2:25 dB
signal. All other data in Fig. 3 are for the G ¼ 2:5 dB
signal. The approaches for attractor construction and cor-
relation sum calculation are the same as in Ref. [21]. The
calculation of the maximal Lyapunov exponents involved
the following steps [22]: (1) construction of the attractor;
(2) identification of the nearest neighbor point to each of
the points on the attractor; (3) examination on how these
points separate as time increases; (4) average of the logs of
the separations for a given time; (5) plotting of the average
as a function of time; and (6) determination of the slope of

the linear region in the plot. The obtained slopes were
taken to be the maximal Lyapunov exponent �.
The attractor in Fig. 3(a) is smooth and has a visible

structure. The correlation plots in (b) all show a linear
regime, in which the slopes of the plots yield the dimension
data shown in (c). The data in (c) clearly demonstrate
saturation behavior and indicate a fractal dimension of
about 1.27 for theG ¼ 2:25 dB signal and a higher dimen-
sion of about 3.83 for the G ¼ 2:5 dB signal. The response
in (d) shows a saturation of � at about 1:9� 105 s�1. These
results clearly confirm the chaotic nature of the measured
signals. Note that the anomalously negative value of � for
m ¼ 3 is due to the fact that the embedding dimensionm is
less than the fractal dimension of the attractor.
Numerical modeling was performed with the following

GLNLS equation:
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FIG. 2 (color online). Time-domain signal obtained at G ¼ 2:5 dB: (a)–(c) power profiles; (d)–(e) carrier waves. In (c), the circles
show the actual data and the curve shows a hyperbolic secant squared function fit. The curves in (d) show the relative phase profiles of
the corresponding pulses.
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FIG. 3 (color online). Chaotic characterization of time-domain
ring signals.
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where u is a unitless spin-wave amplitude, D is the disper-
sion, N and S are the cubic and quintic nonlinearity,
respectively, t is the ‘‘temporal’’ evolution coordinate, x
is the ‘‘spatial’’ coordinate of propagation boosted to the
group velocity of the envelope, and L, C, and Q are the
linear, cubic, and quintic gains (if positive) or losses (if
negative), respectively. Note that similar equations have
been used to model exciton-polariton Bose-Einstein con-
densates [23] and mode-locked lasers [24].

The measurements indicate that nonlinearity and disper-
sion are the dominant sources of envelope shaping for spin
waves and that the losses present in the ring are fully
compensated by the amplifier. This imposed two con-
straints on modeling. (1) The coefficients N and D must
be orders of magnitude larger than L, C, and Q. (2) The
linear amplifier must compensate both the linear and
nonlinear losses present in the film, requiring a net aver-
aged linear gain (L > 0). The dissipative terms represent
the net gain and loss processes occurring in the ring
averaged over several round trip times. One expects the
use of this approximation to be valid when the time scale of
envelope modulation is greater than the soliton round trip
time. This condition is met by all ring gains in this work.

Simulations were performed using the adaptive time-
step Runga-Kutta method for ‘‘temporal’’ evolution and
pseudospectral techniques for ‘‘spatial’’ propagation.
Periodic boundary conditions mimicked the propagation
of a single soliton around the ring. Experimentally mea-
suredD andN values were used to generate a stable soliton
train which then numerically propagated in the YIG strip
with higher order nonlinearity. The cubic dissipation rep-
resented nonlinear loss processes (C< 0).Q> 0 was used
to saturate the nonlinear loss. All simulations were run
with maxðjuj2Þ< 1 and the quintic nonlinearity was eval-
uated separately as a higher order nonlinearity (S < 0) and
as a high-power saturation of cubic nonlinearity (S > 0).
Finite correlation dimensions were observed numerically
only for S > 0. The amplitude of envelope modulation was
seen to vary with the magnitude of S, while increases in
gain quickly destroyed the solitonic nature of the pulse.

Figure 4 illustrates typical simulation data. The left
and right columns show data for chaotic solitons with
amplitude variations of 2.0% and 5.1%, respectively.
These two variation levels are chosen because they
match the experimental variations of the G ¼ 2:25 dB
and G ¼ 2:5 dB signals, respectively. The simulation
used the following parameters: N ¼ �9:0� 109 rad=s,
D ¼ 4:5� 103 cm2 rad=s, L ¼ 5:9� 105 rad=s, C ¼
�5:9� 105 rad=s, and Q ¼ 5:9� 105 rad=s. The value
of S was taken as 6:0� 109 rad=s for the data with 2.0%
variation and 12:0� 109 rad=s for the data with 5.1%

variation. The top and middle rows give power profiles in
different time scales, which show trains of chaotic solitons
just like those in Figs. 2(a)–2(c). The two graphs in the
bottom row show the correlation dimension data. The left
one indicates a fractal dimension of about 1.26, which
closely matches that of the G ¼ 2:25 dB signal. The right
one indicates a dimension of about 1.66, which is lower
than that of the G ¼ 2:5 dB signal. One can see that the
simulations reproduced measured responses in terms of the
amplitude variation and qualitative structure for all gains.
The correlation dimensions were reproduced only at low
gains. The lack of a quantitative agreement for the high
dimensional chaos suggests that the periodic nature of the
active feedback is not negligible and the use of averaged
gain parameters is not appropriate for G> 2:25 dB.
Preliminary studies of an iterative GLNLS model for the
feedback ring indicate a promise for high gain descriptions
without the use of a saturated nonlinearity.
In summary, this Letter reports on the experimental

observation of a spin-wave soliton that circulates in a
magnetic film feedback ring with chaotically varying am-
plitude. The observed responses were reproduced by nu-
merical simulations. There are two additional points of
note. (1) There is a recent work on the propagation of a
chaotic train of solitonlike spin-wave pulses in a YIG
element [25]. Two significant differences exist between
that previous work and the present work. First, different
nonlinear systems were used. The YIG element in [24]
represents a dissipative system, rather than the driven ring
system considered in the present work and in the theoreti-
cal prediction of chaotic solitons [10–12]. Second, the
nonlinear objects observed are different. In [24], the sol-
itonlike pulses have their amplitudes differing chaotically
from one to another, and it is unknown whether the ampli-
tude of each pulse changes chaotically. In stark contrast,
the present work involves a single soliton only. This soliton
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FIG. 4 (color online). Simulation results for chaotic spin-wave
solitons.
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circulates in the ring with its amplitude changing chaoti-
cally from one round trip to another. (2) The present work
was realized in a regime where three-wave interactions
were prohibited. Recent work has shown that solitonlike
pulses with a chaotic phase modulation can develop in a
regime where both three- and four-wave processes are
allowed [26].
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