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Recently, object detection has achieved great improvements due to deep CNNs. In this paper, we propose
a novel proposal generation network named RFP-Net by mimicking human visual system for high-quality
proposals generation. Specifically, RFP-Net takes receptive fields (RFs) as reference boxes to remove many
hyper-parameters of anchor boxes that have large sensibility to object detection results. During network
training, we select positive samples using an effective RF (eRF) rule instead of the Intersection-over-
Union (IoU) rule, which only requires the centroid of a ground truth box to be within the eRF region.
This renders RFP-Net learn the representation of region proposals not limited to be of a fixed range of
scales and accurately localize the bounding boxes of region proposals around the eRF. RFP-Net also solves
the imbalance problem between negative and positive samples with less computational cost. The pro-
posed RFP-Net significantly improves multiply state-of-the-art two-stage and multi-stage detectors.
For example, it achieves 43.1% AP by combined it with Cascade RCNN onMS COCO dataset, outperforming
previous approaches.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Object detection is one of fundamental machine vision chal-
lenges [1,2], aiming to localize and recognize object instances from
images and videos with bounding boxes. It is the crucial basis of
many computer vision tasks, for example, video object tracking
[3–6], edge detection [7], instance segmentation [8] and so forth.
Over past years, many deep learning-based object detectors have
been developed. Among them, R-CNN [9] and its variants have
led to a revolutionary success of object detection in many real-
world applications. The idea behind them is to produce region pro-
posals as pre-processing for the final detection of objects in the
second stage. Due to scale variation and poor localization, proposal
generation, however, is still a bottleneck in most of state-of-the-art
R-CNN detection systems. Traditionally, proposal generation meth-
ods include selective search (SS) [10], MCG [11], objectness mea-
suring[12] and EdgeBoxes [13]. Most of them perform
unsatisfactorily and are time-consuming so that they are impracti-
cal in many applications. Recently, Ren et al. [14] presented a deep
CNN-based object detection network, Faster R-CNN, which
employs a region proposal network (RPN) to generate proposals
by sharing features extracted from deep CNN. The RPN introduces
multiple anchors at each sliding window of the top feature map as
reference boxes for proposal regression, largely improving the
accuracy of proposal generation. The anchor mechanism has been
thought of to be a corner-stone paradigm for generating region
proposals in the two stage object detection frameworks [15–18].
At present, most state-of-the-art one-stage object detection meth-
ods also employ such an anchor mechanism for the bounding
boxes research, e.g., SSD [19], YOLOv3 [20], and RetinaNet [21],
where multiple anchor boxes are preset with different scales and
different aspect ratios for regressing the bounding boxes of objects.
Nevertheless, such anchor mechanism has the following limita-
tions: (1) Many hyper-parameters need to be preset in advance,
e.g., base size, scales and aspect ratios of the anchor boxes, and
there exists no guideline for choosing these parameters for a par-
ticular data scenario. For example, different base sizes could lead
to very different mean Average Precisions (mAPs), as shown in
Fig. 1. Moreover, it will become more complex when multi-scale
feature architectures, for example, pyramids of image and features,
are adopted [17,19]. (2) Positive and negative samples are often
seriously imbalanced. The anchor mechanisms determine positive
and negative samples based on the IoU overlap between anchor
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Fig. 1. Performances of Faster R-CNN with different base sizes on Pascal VOC2007
(VOC) and MS COCO (COCO) datasets.
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boxes and ground-truth (GT) boxes for network training [14–17].
By the IoU rule, a large number of anchors are needed to ensure
large overlaps with any GT box, which, however, induces too many
negative samples with small or no overlaps with GT boxes. (3) It is
deficient to detect small objects. Small objects tend to have little
overlap with the anchors preset. For example, the average max
IoU for small objects is only 0.29 on COCO dataset [22]. Therefore,
there is little chance for small objects to be positive samples, thus
reducing the efficiency of learning small objects. Some methods
have been proposed to improve the anchor mechanism for
proposal generation. For example, Wang et al. [23] proposed to
pre-learn anchors for each location in the feature map. The pre-
learned anchors reflect possible shapes of objects around the
corresponding position and make it efficient to generate proper
proposals. Yang et al. [24] presented a flexible anchor mechanism,
MetaAnchor, which dynamically generates anchor functions
instead of modeling anchors in a predefined manner. Specifically,
anchor functions are learned from the customized prior boxes.
The resulting anchors are robust to the anchor setting and bound-
ing box distribution. Li et al. [25] devised a map attention decision
unit to weight the feature channel input for better proposal
generation. Recently, some researches went away with anchors
for proposal generation. For example, DeNet [26] established
corners-based region-of-interest estimator for proposal genera-
tion. The estimator is scene adaptive and does not require pre-
defined reference bounding boxes as usual. Similarly, Zhu et al.
[27] designed an anchor-free branch into each level of the feature
pyramid of FPN, which allows box encoding and decoding in an
anchor-free manner. The discoveries in neuroscience revealed that
the human visual system relies on a receptive field (RF) when pay-
ing attention to something [28]. Biologically, the RF mechanism
has a characteristic of homocentric opponent in response to stimuli
of the retina. Inspired by this phenomenon, we here present a new
proposal generation method for object detection named RFP-Net.
Specifically, we employ the receptive field in place of the dense
anchors in the anchor mechanism, and utilize an effective recep-
tive field (eRF) to refine proposal generation. In network training,
a new eRF-based rule is applied to determine positive and negative
samples, which allows including positive samples of different
scales for better learning the representation of region proposals.
The main contributions of this paper are listed as follows: (1)
The proposed RFP-Net adopts the RFs, instead of random dense
anchor boxes, as reference boxes to predict object proposals, and
then refines proposals according to the eRFs. Our method effec-
tively avoids designing hyper-parameters in RPN. The adoption of
RFs and eRFs is more reasonable and more robust to estimate the
distribution of region proposals. (2) We design a novel eRF-based
matching rule to select positive and negative samples for network
training. It means that only objects paid more attention in the RFs
are detected, which conforms to the homocentric opponent mech-
anism of human visual system. The eRF rule improves the quality
of training samples and addresses the imbalance problem between
negative and positive samples. (3) Our proposed approach can
obtain significant improvements over many state-of-the-art two-
stage and multi-stage detectors. For example, it achieves 43.1 AP
based on the baseline of Cascade RCNN on MS COCO dataset, out-
performing previous approaches. Besides, it can be easily embed-
ded into multiply detectors with few changes.
2. Related work

In this section, we briefly review the applications of human
visual system in object detection (Section 2.1), then in Section 2.2
and Section 2.3, we introduce two-stage object detection
approaches and object proposal generation methods, respectively.
2.1. Applications of human visual system on object detection

The cognitive studies of human visual attention behavior con-
firmed that the HVS can quickly turn attention to the most infor-
mative area in the visual scene [29]. Many recent computer
vision tasks are solved by mimicking human visual system (HVS),
achieving excellent performance. As we know, the most popular
field is salient object detection, aiming at extracting salient object
regions in the static image or dynamic video [30]. Shen et al. devel-
oped a novel object tracking approach by introducing the attention
mechanism into Siamese network, outperforming most state-of-
the-art trackers on popular tracking benchmarks [3]. Wang et al.
designed an effective and efficient deep model for salient detection
in videos. Similarly, visual attention prediction task also takes
advantage of HVS, and it aims to recognize the fixation locations
that human observers would fixate at first glance [31,32]. In [32],
a new detection framework, Attentive Saliency Network (ASNet),
was proposed, and it could detect the salient object with the help
of fixation maps. Wang et al. addressed the problem of photo crop-
ping by building a neural network including attention box predic-
tion (ABP) network and aesthetics assessment (AA) network. By
leveraging attention information, much important information
can avoid discarding [33]. The comparison experiments show
excellent performance of the proposed method. Inspired by the
successful application of attention mechanism in vision problems,
Hu et al. [34] firstly proposed an adapted attention module for
object detection, achieving the first fully end-to-end object detec-
tion. In [35], a Receptive Fields module was proposed by mimick-
ing the relationship between the size and eccentricity of
receptive field in HVS, which improves deep features.
2.2. Two-stage object detectors

Two-stage detection approaches are the mainstream of modern
object detections. They implement object detection in two stages:
The first stage generates a spare set of region proposals, and the
second stage refines the detection based on the resulting proposals.
For example, Faster R-CNN [14] uses a region proposal network
(RPN) in the first stage to generate proposals from a set of pre-
defined anchor boxes, and then these proposals are fed as
regions-of-interest into Fast R-CNN detector for final multi-
classes detection. Similarly, Dai et al. [16] developed a R-FCN
framework by constructing a set of positive-sensitive score maps
in a fully convolutional way, leading to decrease computation time
and improve detection accuracy. In FPN [18], Lin et al. constructed
feature pyramids using a top-down architecture with lateral con-
nections, accurately addressing the issue of multi-scale object
detection.
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2.3. Proposal generation methods

An object can be located at any position and any scale in one
image, therefore, it is natural and cost-efficient to generate propos-
als in advance [36,37]. Generally, there are three ways for proposal
generation: sliding window-based, segmentation-based and
grouping-based methods. Among sliding window-based methods,
Edgeboxes [13] uses structural edges and a contour detector to
compute proposals scores in a sliding window fashion without
learning any parameter. Alexi et al. [38] proposed an objectness
measure based on image saliency and other cues to score all siding
windows and sampled desired number of windows according to
their scores. An alternative approach to sliding window methods
is the segmentation-based algorithm. For example, Carreira et al.
[39] proposed to segment the object of interest based on Graph
Cuts algorithm. It produces segments from randomly generated
seeds, and each segment denotes a proposal bounding box. Follow-
ing the grouping-based strategy, Uijlings et al. [10] designed a
data-driven grouping-based strategy, Selective Search, to obtain a
small set of high-quality object locations. Recently, deep convolu-
tional neural networks have been introduced to proposal genera-
tion. In Deepbox [40], Kuo et al. presented a convolutional
network model that learns to re-rank proposals generated by
EdgeBox [13], a bottom-up method for bounding box proposals.
Ghodrati et al. [41] proposed a Deep-Proposal object proposals
framework that uses deep convolutional layer features in a
coarse-to-fine inverse cascading to obtain possible object propos-
als in an image. Recently, RPN [14] uses a deep convolutional net-
work to predict object bounding boxes and confidence scores at
each position of feature map and obtain high-quality region pro-
posals. Instead of using RPN for proposal generation, we proposed
a novel RFP-Net to produce high-quality object proposals by
exploiting the homocentric opponent phenomenon in human
visual system, and the relationship between receptive field and
effective receptive field.
3. Proposed method

Our method can combine with two-stage or multi-stage detec-
tion frameworks for replacing RPN and achieve multi-classes
object detection via an end-to-end way. In this section, we first
introduce the theoretical details of the RFP-Net (Section 3.1) and
definitions of RF and eRF in CNNs (Section 3.2). Then, we present
more details of RFP-Net (Section 3.3), including its network archi-
tectures, eRF-based matching strategy, loss function, and the filter
module. Finally, the proposed RFP-Net can take place of RPN and be
merged into any two-stage object detection framework for object
detection.
Fig. 2. Homocentric opponent phenomenon (a) and its Gaussian model (b)
3.1. The homocentric opponent phenomenon (HOP) in human visual
system

In real visual system, each neuron responds to a specific area of
stimuli that fall on the retina, named receptive field (RF). When
eyes are paying attention to something, there occurs a homocentric
opponent phenomenon in the RF: Exciting central area but inhibit-
ing peripheral area [42,28], as shown in Fig. 2(a). Rodieck et al. [43]
established a Gaussian distribution model for characterizing such
homocentric opponent phenomenon: The closer it is to the center
of receptive field, the stronger the human eye senses, and the cen-
ter of the RF are most sensitive visually, as shown in Fig. 2(b).
3.2. Definitions of RF and eRF in deep CNNs

Similar to human visual system, we introduce RF for a pixel or a
sliding window over the top feature maps in CNNs. As shown in
Fig. 2(c), the RF for a pixel p can be defined as a rectangle region
in an input image I that the pixel sees:

Ri ¼ GðI;p;#Þ ð1Þ

where # denotes the scaling coefficient(# ¼ 16 for VGG16). For a
k� k sliding windowwith a centroid ðx; yÞ, we can obtain its RF with
a centroid ðxr; yrÞ, where xr ¼ #x and yr ¼ #y, and of size wr � hr ,
where wr ¼ hr ¼ k#. Given a convolutional feature map of size
w� h, we can obtain w� h RFs totally.

According to the HOP, the magnitude of signals that the pixel
can perceive is non-uniform within the RF and follows a Gaussian
distribution centered at the centroid of the RF. Then an effective
Receptive Field (eRF) can be defined for each RF to be the area that
effectively perceives targets within the RF. We argue that only
objects whose centroids lie in the eRF can be precisely recognized
and localized by the sliding window associated with the RF. Specif-
ically, we take the eRF as a circle region centered at the centroid of
the RF with a radius r. In CNN, radius r of eRF can be defined as
follows:

r ¼ kS
ffiffiffi
2

p
=2 ð2Þ

where k is a regulatory factor, and S is the up-sampling factor from
the top feature map to the input image. For VGG16 network, S is 16,
and r ¼ k8

ffiffiffi
2

p
=2. Note that S can be adjusted according to its up-

sampling factor of each pyramid in FPN. The regulatory factor
essentially decides the size of eRF and has an influence on localizing
and recognizing objects in a CNN-based object detection frame-
work. In this paper, k is set to 1 by experiments as mentioned in
Section 4.5.
in human visual system and the definitions of RF and eRF in CNNs (c).



Fig. 3. (a) The architecture of our RFP-Net. It includes backbone network (VGG and ResNet) for extraction features, a k� k convolutional layer for feature transformation, two-
sibling branches for refining object proposals, the positive sample selection module(b) and the filter module(c). In (b), the negative sample whose centroid is outside in the
associated eRF. In (c), we will reserve the proposal if its center point locates in the area of eRF. See Section 3.3.2 and 3.3.4 for more details about (b) and (c).
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3.3. RFP-Net

3.3.1. Network structure of the RFP-Net
Fig. 3(a) presents the network structure of our method. Briefly

speaking, RFP-Net inputs an image and outputs a set of candidate
region proposals with objectness scores and locations. We use
VGG16 [44] and ResNet [45] as the backbone for extracting deep
features. Over the top convolutional feature map, we slide a small
network that takes as input a k� k window (k ¼ 3 in this paper)
and transforms the window into a d-dimensional feature vectors
(512-d for VGG16). Specifically, the small network can be a k� k
convolutional layer with 512 channels followed by ReLu transfor-
mation. The 512-d feature is then fed into two siblings 1� 1 con-
volutional layers: one is with 2 output neurons encoding the
probabilities of being objects or not for classification, and another
is with 4 output neurons encoding the coordinates of a box for
localization. Note that the localization is parameterized as offsets
relative to the associated RF. During training, we assign a label
(the positive or negative) for each RF sample according to its eRF,
as shown in Fig. 3(b). It shows that the RF is positive samples if
there exists an object whose centroid lying in the associated eRF.
Otherwise, it is a negative sample. Finally, in order to remove
low-quality proposals, all output proposals are passed to a filter
module, as shown in Fig. 3(c). Following the characteristic of eRF,
we design this filter module. Specifically, we screen out the pro-
posals whose centroid is beyond the associated eRF. Our method
has an important property of translation invariance in terms of
the RFs and the functions that compute proposals relative to the
RFs. When an object in an image is translated, the proposal ought
to translate and the same function ought to be able to predict the
proposals. The MultiBox method [46], in contrast, uses the k-
means algorithm to generate 800 anchors without translation
invariance. Therefore, MultiBox does not generate the same pro-
posal when an object is translated. Our RFP-Net significantly
reduces the numbers of network parameters compared with tradi-
tional proposal generation methods. As we know, MultiBox [46]
has a ð4þ 1Þ � 800-dimensional fully-connected output layer,
and RPN [12] has a ð4þ 2Þ � 9-dimensional convolutional output
layer, whereas our RFP-Net has a (4 + 2)-dimensional output layer.
Totally, our RFP-Net has 3� 103 parameters in the output layer,
one order of magnitude fewer than RPN and three orders of mag-
nitude fewer than MultiBox.
3.3.2. An eRF-based matching rule for sample selection
Considering the eRF has a higher visual sensitivity than the rest

in RF and objects whose centroids lie in the eRF are more likely rec-
ognized and localized, we introduce the eRF into the training sam-
ple selection. Specifically, we assign a binary class label (an object
or not) to each RF (sample) by testing if there is at least one ground
truth which is visible by the corresponding eRF or not. To imple-
ment the strategy, we design the following eRF matching rule:
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Given an RF sample in an image, firstly, we calculate the Euclidean
distance between the RF and all GT boxes:

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxr � x�i Þ2 þ ðyr � y�i Þ2

q
ð3Þ

where i denotes the order of GT boxes in the image. ðxr; yrÞ denotes
the center coordinate of the RF and ðx�i ; y�i Þ denotes the center coor-
dinate of the i� th GT boxes. Then, we select the minimum value
dmin of all distances to compare with the radius r of eRF. If
dmin < r, this RF sample is assigned the positive label and partici-
pates in training; otherwise it is the negative label and will be
ignored during training. As we know, in the anchor mechanism,
there are 9 or more anchors at each sampling location. By the IoU
rule for sample selection, there are more chances for these anchors
to be negative samples, which constitutes the basic reason for the
imbalance between positive and negative samples. In contrast, our
proposed approach only samples one RF at each sampling location
to be the training sample, and by the eRF-based rule, the chances
for being positive and negative samples are equal. This eventually
leads to more likely balanced negative and positive samples for net-
work training. Specifically, by RPN, the ratio of foreground and
background classes is 1:1500 on PASCAL VOC dataset, while by
the eRF-based rule, the ratio reduces to 1:300. Therefore, the RFP-
Net can greatly relieve the sample imbalance problem for proposal
generation. On the other hand, the use of the eRF-based rule also
relieves the scale variation problem. For object detection, the most
challenging problem is to recognize objects with different size,
especially small objects. RPN designs multi-anchors to solve scale
variation problem, however, it needs to adjust scale and aspect ratio
for detecting different objects, and when training the model, most
small objects will be ignored by its IoU-based matching rule. There-
fore, it cannot address scale variation, especially small objects. In
contrast, by going away with the IoU-based matching rule, our
eRF-based matching strategy can select objects of any size to be
training samples, making it fair to learn different sizes of objects.

3.3.3. Loss function
For training RFP-Net, we minimize a multi-task loss function

based on the positive and negative samples described above. For
each sample, the definition of the loss function is described:

Lðl; l�; t; t�Þ ¼ Lclsðl; l�Þ þ c½l� P 1�Llocðt; t�Þ ð4Þ
where the classification loss Lcls is a cross-entropy loss function for
two classes, and the localization loss Lloc takes the smooth� L1
bounding box regression loss [39]. l and l� denote the predicted
and ground-truth labels, respectively. t� denotes the parameterized
coordinates of predicted ðt� ¼ ft�x; t�y; t�w; t�hgÞ and t denotes the
parameterized coordinates of the GT bounding box
ðt ¼ ftx; ty; tw; thgÞ. We parameterize the coordinates of the GT box
and the predicted bounding box as follows:

t�x ¼ ðx� � xrÞ=wr; t�y ¼ ðy� � yrÞ=hr

t�w ¼ logðw�=wrÞ; t�w ¼ logðh�
=hrÞ

ð5Þ

tx ¼ ððx� xrÞÞ=wr; ty ¼ ððy� yrÞÞ=hr

tw ¼ logðw=wrÞ; t þw ¼ logðh=hrÞ ð6Þ

where ðx�; y�Þ is the center coordinate and w�; h� are the width and
height of GT box, ðx; y;w;hÞ are the counterparts for the predicted
box, and ðxr; yr;wr;hrÞ are for the receptive field. This can be viewed
as a regression from a receptive field to its nearby GT box. The term
½l� P 1�Llocðt; t�Þ indicates that the regression loss is activated only
for a positive receptive field ðl� ¼ 1Þ. The two terms Lcls and Lloc
are weighted by a balance parameter c. We set c to 1 in this paper,
which means that the scoring and bounding box regression losses
are optimized without biases.
3.3.4. Filter module for duplicate removal
Some proposals may highly overlap with each other. We design

a filter module for reducing the redundancy. Like the eRF-based
matching strategy, our filter module also depends on eRF. Assume
an object proposal centered at a location (Xp;Yp) and its associated
eRF centered at a location (Xe;Ye) with a radius r. The distance
between them can be calculated as follows:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXP � XeÞ2 þ ðYp � YeÞ2

q
ð7Þ

We only filter those proposals with D P r, otherwise, we will
reserve them as final object proposals.

3.4. Combination of RFP-Net and two-stage detectors

For two-stage detectors, in the first stage, an image is fed into
the backbone for extracting deep features and passed to the RFP-
Net for generating region proposal candidates. In the second stage,
top-300 proposals ranked by scores are recommended to the sec-
ond stage for fine-tuning detection, predicting the objects cate-
gories and a class-specific bounding box. Non-maximum
suppression (NMS) algorithm is finally employed for removing
redundant boxes for the same objects [47] Because separate train-
ing will lead to different convolutional layers. We, therefore, joint-
train RFP-Net and the fine-tuning network in the second stage via
an end-to-end way, allowing for shared convolutional layers. In
each SGD iteration, the forward pass generates proposals which
are then fed into the fine-tuning network for training. The back-
ward propagation happens as usual, and for the sharing convolu-
tional layer, the backward propagated signals come from the
combination of RFP-Net loss and fine-tuning loss in the second
stage.

4. Experiment results

4.1. Experiment details

Baseline network: In order to evaluate the performance of our
proposed RFP-Net, we use it to replace RPN and combine it with
four popular baseline detectors: Faster RCNN [14], R-FCN [16],
FPN [18]and Cascade RCNN [48]. These baselines are mainstream
two-stage and multi-stage object detection frameworks, achieving
state-of-the-art detection results. Note that we use their default
settings (except where noted). Training settings: Considering
RFP-Net is a fully-convolutional network, we train it via an end-
to-end way. Each SGD mini-batch is constructed from a single
image that contains 256 positive and negative samples. For each
mini-batch, positive and negative samples are randomly selected
such that the ratio between positive and positive samples is 1:1.
When the number of positive samples is fewer than 128 in an
image, we will fill the SGD mini-batch with negative ones. All
new layers are initialized from a zero-mean Gaussian distribution
with standard deviations 0.01, and the shared convolutional layers
are initialized by pre-training a model for ImageNet classification.
Datasets: Three object detection datasets were used: (1) MS COCO
2017 [1], which involves 80 object categories and contains ~118 k
training images, 5 k validation and 20 k testing images (test-dev).
Compared with the PASCAL VOC dataset, MS COCO poses chal-
lenges in terms of more object classes and smaller objects. We
report final results on test-dev set without annotation labels. (2)
PASCAL VOC2007 + 2012 [2], which consists of 10 k trainval images
for training and the VOC2007 test set for testing. Evaluation met-
rics: For MS COCO dataset, results are verified by the Average Pre-
cision (AP) (mean AP for IoU @ [0.5:0.95]), AP50 (AP for IoU 50%)
and AP75 (AP for IoU 75%). We also evaluate the results using
APS, APM , and APL, which represent the mAP for small, medium
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and large objects, respectively. Besides, we also use mAP and recall
to evaluate detection results on PASCAL VOC dataset.

4.2. Comparision with state-of-the-art detectors

To evaluate the generalization ability of our proposed method,
we conduct experiments on MS COCO test-dev dataset. Table 1
reports the detection results, demonstrating that our method out-
performs previous detectors. Compared with baselines, the RFP-
Net brings consistent improvement. For example, it improves
FPN and Cascade RCNN by 1.3% and 0.7% on ResNet-101 backbone,
which is significant for the MS COCO dataset. Note that we obtain
the improvement by just taking place of region proposal network
of two-stage or multi-stage detectors, therefore, it can be applied
conveniently to other detectors with few changes.

4.3. Detection results on PASCAL VOC

We also report the performance of the RFP-Net on PASCAL VOC
dataset. The networks were trained on VOC 07 + 12 trainval set and
tested on VOC07 test set. We use Faster RCNN (with VGG16) and R-
FCN (with ResNet) as baselines. The COCO evaluation metrics were
used for exploring the detection performance. Table 2 reports the
resulting APs on PASCAL VOC data set. It shows that we obtain
an improvement of 4.7 and 3.3 points respectively for Faster RCNN
and R-FCN detectors. This may result from the robustness of the
proposed RFP-Net.

We further examine the mAPs and recalls under different num-
bers of proposals recommended, as shown in Fig. 4(a). From this
figure, it can be seen that our method outperforms Faster R-CNN
in both mAPs and recalls, regardless of the numbers of proposals,
suggesting that our network is more cost-effective. Specifically,
with 20 proposals, our approach has an mAP of 68:0%;9:6% higher
than Faster R-CNN, and a recall of 81:5%;16:9% higher than Faster
R-CNN. Fig. 4(b) shows the changes of recalls and mAPs with the
IoU cutoffs by our method and previous methods. We can clearly
see that our method always achieved the highest mAPs and highest
recalls among the three methods regardless of IoU cutoffs. For
example, with an ad hoc IoU cutoff of 0.7, our method achieves a
Table 1
Comparison results with state-of-the-art methods on COCO dataset. The best results are s

Methods Backbone AP

YOLO [20] DarkNet-19 21.6
SSD513 [19] ResNet-101 31.2
RetinaNet [21] ResNet-101 39.1
ION [49] VGG16 23.0
DeNet-101 [26] ResNet-101 33.8
Faster RCNN [14] VGG16 23.5
R-FCN [16] ResNet-101 30.3
FPN [18] ResNet-101 36.2
Cascade RCNN [48] ResNet-101 42.4

Faster RCNN + RFP-Net VGG16 24.7
R-FCN + RFP-Net ResNet-101 31.4
FPN + RFP-Net ResNet-101 37.5
Cascade RCNN + RFP-Net ResNet-101 43.1

Table 2
Object detection results on PASCAL VOC dataset. The best results are shown in bold.

Methods Backbone

Faster RCNN [14] VGG16
R-FCN [16] ResNet-50
Faster RCNN + RFP-Net VGG16
R-FCN + RFP-Net ResNet-50
56:0% mAP and 80:8% recall, which are 10%and 23:3% higher than
Faster R-CNN, respectively.

4.4. Proposals quality of RFP-Net

The role of RFP-Net is to generate region proposals for fine
detection in the second stage. Fig. 5 examines the changes of
recalls and APs of region proposal generation with the IoU cutoffs
in top 50, 100 and 200 proposals. For comparison, Fig. 5 also shows
the results by two previous methods, RPN and selective search.
From this figure, we can see that RFP-Net always achieves the high-
est recall and AP rates at all IoU thresholds, regardless of the num-
ber of proposals. Specifically, when considering 50 top region
proposals, RFP-Net obtained a recall of up to 91% and 32% at an
IoU cutoff of 0.5, surpassing RPN by 9% and 11%, respectively,
and when considering more region proposals, e.g., 100 and 200,
RFP-Net still outperforms RPN by 5% and 2% on recalls and 11%
and 11% on APs, respectively.

By fixing the IoU threshold at 0.5, we further investigated the
changes of Recalls and APs with the number of proposals, as shown
in Fig. 6. From this figure, we can see that compared with the pre-
vious methods, RPN and SS, RFP-Net obtained higher Recalls and
APs with fewer proposals, suggesting the higher quality of propos-
als by RFP-Net. Specifically, with top 20 proposals, the recall by
RFP-Net is up to 79:2%;11:6% higher than that by RPN, and the
AP is 31:8%;15:1% higher than that by RPN. Finally, to look into
the proposals, we taken three images as examples and laid the
top 20 proposals onto the original images, as shown in Fig. 7. For
comparison, the results by previous methods, RPN and SS are also
illustrated in Fig. 7. We can clearly see that RFP-Net largely reduces
redundant and duplicate recommendations and generates high-
quality proposals compared with previous methods.

Fig.8(a) shows the relative scale distribution of proposals gener-
ated by RFP-Net, RPN and SS, as well as that of GT boxes. Note that
the relative scale for a region proposal or a GT box is calculated as
the size ratio to the whole image. We can see that RFP-Net results
in a similar distribution of scales to that of GT boxes with a wide
scale coverage, showing no scale bias. In contrast, RPN is obviously
biased toward large objects, while SS is biased toward small
hown in bold text.

AP50 AP75 APS APM APL

44.0 19.2 5.0 22.4 35.5
50.4 33.3 10.2 34.5 49.8
59.1 42.3 21.8 42.7 50.2
42.0 23.0 6.0 23.8 37.3
53.4 36.1 12.3 36.1 50.8
43.9 22.6 8.1 25.1 34.7
52.2 30.8 12.0 34.7 44.3
59.1 39.0 18.2 39.0 50.9
61.1 46.1 23.6 45.4 54.1

45.8 24.4 8.5 27.2 38.1
52.0 32.8 12.4 35.2 48.5
58.0 43.2 18.7 40.1 52.5
63.8 47.3 24.4 48.3 55.3

AP AP50 AP75

41.8 73.2 43.1
43.8 77.1 46.8
46.5 76.5 50.1
47.1 79.5 53.5



Fig. 4. Changes of mAP and Recall with the number of proposals (a) and with IoU cutoffs (b) by our method, Faster R-CNN, and Fast R-CNN. Note that the experiments were
performed on the Faster RCNN (baseline).

Fig. 5. Recalls and APs versus IoU thresholds. (a), (d): 50 proposals. (b), (e): 100 proposals. (c), (f): 200 proposals.

Fig. 6. Recall and AP versus Number of proposals with IOU = 0.5 on PASCAL VOC dataset.
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Fig. 7. Examples of top 20 SS proposals (top row), RPN proposals (middle row) and RFP-Net proposals (bottom row). The red boxes are GT boxes, and the blue boxes are
predicted proposals.

Fig. 8. Proportions of GT boxes and proposals by RFP-Net, RPN and SS at different relative scales (a) and IoU intervals (b).
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objects. We further examined the IoU of the predicted proposals by
different methods with GT boxes. Note that for each proposal, the
maximum IoU with any GT boxes were considered. Fig. 8(b) shows
the proportions of proposals at different IoU intervals for RFP-Net,
RPN and SS. It reveals that compared with RPN and SS, RFP-Net
generates a larger proportions of proposals with larger IoUs, sug-
gesting that RFP-Net can more accurately localize the bounding
boxes of region proposals. This should be attributed to the inclu-
sion of RF and eRF information for determining positive training
samples. Taken altogether, the results suggest that RFP-Net can
recommend all possible proposals for objects of any scales.
4.5. Influence of the hyper-parameter k

RFP-Net has only one hyper-parameter, the regulatory factor k
of the eRF, which plays an important role by specifying the area
of eRF. We conduct several experiments to select optimal parame-
ter k on PASCAL VOC and MS COCO datasets, respectively. Fig. 9
shows the changes of mAP with k. From this figure, we observe that
both mAP and AP first increase sharply and then drop gradually as
k increases, suggesting that there exists a best eRF area for an RF.
The poor results at small ks may be associated with a few positive
samples caused by small eRF, while the reduced performance at



Fig. 9. Changes of detection mAPs with the parameter k on PASCAL VOC dataset (a) and MS COCO dataset (b), respectively. Experiments were conducted on Faster RCNN with
RFP-Net by using VGG16 backbone.

Table 3
Training time (ms/iter) of our method and Faster R-CNN on two benchmarks.

Methods PASCAL VOC MS COCO

Faster R-CNN 290 315
Faster R-CNN with RFP-Net 240 304

Table 4
Testing time (ms/img) of our method and Faster R-CNN on two benchmarks.

PASCAL
VOC

MS
COCO

Methods Number of
proposals

ms/img mAP ms/img AP50

50 62 68.2 64 37.3
Faster R-CNN 300 71 73.2 81 43.9

50 58 73.8 63 39.9
Faster R-CNN with RFP-Net 300 67 76.5 74 45.8
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large ks should be due to the degradation of RFP-Net to RPN. Thus,
in this paper, the parameter k is set to 1 for VOC dataset and MS
COCO dataset.
4.6. Computation efficiency

We finally examined the computation efficiency of our method
on a single NVIDIA TITAN X (PASCAL) GPU. Tables 3,4 compare the
training and testing time of our method with those of Faster R-CNN
on PASCAL VOC and MS COCO data sets, respectively. From Table 3,
we can see that training our network takes 240 ms/iteration, 40 ms
faster than Faster R-CNN on PASCAL VOC, and 304 ms/iteration,
11 ms faster than Faster R-CNN on MS COCO. This is consistent
with the case of test time regardless of the number of proposals,
as shown in Table 4. These results suggest the higher computation
efficiency of our method over previous methods.
5. Conclusion

In this paper, we have proposed a new proposals generation
network named RFP-Net for object detection. The RFP-Net intro-
duces the concepts of RF and eRF for accurate generation of region
proposals. Specifically, the method takes the RF of each sliding
window as reference boxes and exploits the eRF area for filtering
out low-quality proposals. Additionally, we designed an eRF-
based matching strategy to determine positive and negative sam-
ples for training RFP-Net, which effectively relieves the imbalance
problem of positive and negative training samples and the scale
variation problem in object detection. Numerous comparison
experiments on PASCAL VOC and MS COCO benchmarks demon-
strate the superior region proposals performance of RFP-Net over
existing proposal generators. However, as we described in this
paper, we imitate the HOP in HVS for selecting positive samples
and designing filter module, but do not refer to the network, there-
fore, the radius of eRF could not learn from CNN. Inspired by appli-
cations of attention mechanism in [31,32,50,51], we may try to
introduce the attention mechanism into the RFP-Net for predicting
the radius of eRF and helping localize objects with a little search
space. In the future, we hope these ideas provide improvements
to our work on object detection.
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