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Fluffy sodium titanate nanostructures have been fabricated by a simple hydrothermal method with metatitanic acid as precursor.
The obtained nanostructures exhibit as the aggregation of nanosheets, and the surface area of the nanostructure is about
110.59 m2/g. Such nanoarchitecture indicates high adsorption capacity to some metal ions, such as Cd2+, and the maximum
adsorption capacity has been estimated to be 255.18 mg/g. The possible reasons that are responsible after its high adsorption ability,
have been ascribed to the tiny structure, the ion-exchange ability and the large surface area of the sodium titanate nanostructures.
And this may greatly enlarge its application potential as an adsorbent.

1. Introduction

Environmental problems have been a global tickler that
badgers the human’s survival and development [1–5], and
various physiochemical methods have been used to remove
pollutants from waste water. Nanomaterials have been found
to be potential adsorbents that may found great applications
in environmental treatment [6–9]. And now there are
many kinds of nanostructures that have been fabricated
towards high-efficient adsorbents. Materials with enhanced
adsorption performance are still challenges.

Sodium titanate is one of the ion exchangers that have
been found to have potential application in the treatment
of environmental pollutants. In the past decades, many
kinds of sodium titanate nanostructures have been fabricated
with using various physicochemical methods, including
nanotubes, nanowires, nanobelts, and so forth [10–15].
However, as far as we know, many of the fabricated nanos-
tructures have the problem of the cost of the method used.
So, it is now a great challenge to fabricate nanostructures
with low-cost method. Therefore in this paper, we report
fluffy sodium titanate nanostructures which are obtained by
a simple hydrothermal method using the low-cost industrial
raw materials metatitanic acid (TiO2·H2O) as precursor.

And this may greatly enlarge its application potential as an
adsorbent.

2. Experimental Details

2.1. Materials. The reagents were of purchased from Shang-
hai Runjie Chemical Reagent Co., Ltd. All chemicals were
analytical grade and used without any further purification.

2.2. Synthesis. In a typical synthesis, 3 g metatitanic acid
and 1.6 g NaOH were mixed with 40 mL deionized water
under agitation for about 2 h. After that, the mixture was
transferred into a teflon-lined stainless steel autoclave and
heated in an electric oven at 80◦C for 30 h. Then the autoclave
was cooled down in the air. Then the white product was
harvested by filtration and washed with deionized water for
several times until the pH was 12 before drying in air.

2.3. Characterization. The characterization experiments
were carried out at room temperature. The phase of the
powder was identified by X-ray diffraction (XRD) using a
Philips X’Pert Pro MPD with Cu Kα (λ = 1.5406 Å) radia-
tion. The morphology, crystalline size, and crystal structure
of the sample were determined by Field Emission Scanning
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Electron Microscopy (FESEM; FEI Sirion-200), transmission
electron microscopy (TEM), and high-resolution Trans-
mission Electron Microscopy (HRTEM; JEOL JEM-2010,
200 kV). Thermogravimetric analysis (TGA) measurements
were performed on a TGA (Pyris Diamond DSC, PERKIN-
ELMER, USA) at a constant heating rate of 10 deg min−1.
The porous structure characteristics, including the BET
surface area, the pore volume, and the pore size distribution,
were obtained from the conventional analysis of nitrogen
isotherms measured with specific surface and void ratio
analyzer (Omnisorp 100 CX, Coulter, USA). Metal con-
centrations were measured by Inductively Coupled Plasma
Spectrometer (Thermo Scientific iCAP 6000).

2.4. Adsorption Experiments. Adsorption isotherm experi-
ment was performed with various Cd2+ concentrations (500,
400, 300, 200, and 100 mg/L, resp.), and the sodium titanate
was 1.25 mg/mL at room temperature and 24 h contact.
Time-dependent adsorption experiment was performed at
the quantity of sodium titanate was 1.25 mg/mL at room
temperature, and the Cd2+ concentration is 100 mg/L. The
concentration of pollutant adsorbed on sodium titanate
hierarchical nanostructures, Cs (mol g−1), was calculated
from the difference of initial concentration (C0) and final
concentration remained in solution after equilibrium (Ceq),
the volume of the solution (V) and the mass of sodium
titanate hierarchical nanostructures (m) with the equation
Cs = (C0 − Ceq)×V/m.

3. Results and Discussions

The typical XRD pattern of the as-prepared sample is
shown in Figure 1(a). The characteristic peak of titanate
has been found at around 2θ = 10.4◦ accounting for the
lamellar ordering of the compound with a high interlamellar
distance [16–21]. No other phase, such as TiO2, is found.
Figure 1(b) is the FESEM image of the as-prepared sample.
It can be found that there are lots of loose fluffy nanos-
tructures. From further investigation of the TEM image of
Figure 2(a), it can be seen that the fluffy nanostructures
are constructed by some nanosheets, which is thinner than
10 nm by comparison to the supported carbon film. And
the corresponding SAED image indicates its polycrystalline
property, which should be mainly ascribed to the too thin
layer. EDS spectrum of the fluffy nanostructures is shown in
Figure 2(c). Only C, O, Ti, and Na elements are observed. It
should be noted that the C element comes from the carbon
film of the specimen holder and partially from the carbon
spheres. The proximate integer ratio of Na : Ti is around
2 : 3, so the chemical formula of the compound should be
Na2Ti3O7.

The nitrogen ad-desorption isotherms of the sodium
titanate nanostructure are investigated in Figure 3(a). The
nitrogen ad-desorption isotherms show characteristic type
IV isotherm with hysteresis loop, indicating that the sodium
titanate nanostructures are composed of connected meso-
pores. The SBET is evaluated to be 110.59 m2/g. Such
porous structure and large BET surface area endow the
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Figure 1: (a) XRD pattern of the as-prepared sample; (b) the
FESEM image.

sodium titanate hierarchical nanostructures with potential
application as adsorbent. Figure 3(b) is the TG curve of the
sodium titanate nanostructure. The TG measurement was
done in the region of 50–700◦C at a heating rate of 10◦C/min.
For the fluffy sodium titanate, the weight loss stopped at
around 700◦C and the total loss was about 15.5%. The weight
loss below 200◦C (about 12%) can be ascribed to the removal
of surface adsorbed/bound water molecules. As increases the
annealing temperature to 700◦C (mainly in the range of 200–
300◦C), the residual weight is 3.5%, which should be ascribed
to the loss of water molecules from the interlayer.

We chose Cd(II) (heavy metal) to investigate the adsorp-
tion performance of the sodium titanate nanostructure.
The Cd(II) ion-exchange equilibrium data are graphed in
Figure 4(a). Excellent fits of the data were performed with
the Langmuir isotherm model expressed as

Cs = Ka · qmax ·
Ceq(

1 + b · Ceq

) , (1)

where Ceq is the concentration of adsorbed ions in solution
at equilibration, Cs is the amount of ions adsorbed to
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Figure 2: (a) TEM image of the as-prepared sample; (b) the SAED pattern.
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Figure 3: (a) Nitrogen adsorption-desorption isotherms of the sodium titanate nanostructures; (b) TG curve of the sodium titanate
nanostructure.
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Figure 4: (a) Adsorption isotherm of Cd(II) on the sodium titanate nanostructure. T = 20 ± 2◦C, solid line: Langmuir model; (b) time-
dependent adsorption curve at pH = 6 and the starting concentration of Cd(II) is 100 mg/L.
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form a monolayer coverage on the adsorbent particle,
and Ka is the Langmuir adsorption equilibrium constant.
The maximum, Cd(II) adsorption capacities calculated by
the adsorption isotherms are 255.18 mg/g (calculated from
Langmuir simulation). Figure 4(b) is the time-dependent
adsorption behavior investigation of Cd(II) on the sodium
titanate nanostructures. The adsorption of the Cd(II) ions
on the sodium titanate nanostructure depicts a relative fast
adsorption process. About 1 h later, almost 90% Cd(II) ions
were removed by the adsorbents, and after 3 h, almost all
the Cd(II) were removed. The results of the adsorption of
Cd(II) are higher than some previously reported [13]. This
should not only be ascribed to the ion-exchange ability of
the material. It has been well known that the ability of
sodium titanate to eliminate the other metal ions is mainly
due to the ion-change ability of the interlayered Na+ ions.
However, this should also be affected by the diffusion length
of the adsorbents. As we all know, the bigger the scale of the
adsorbents, the harder the heavy metal ions to exchange with
the Na+ due to the larger diffusion length from the surface
to the inner. So, it can be expected that nanomaterials with
very small scale may greatly enhance its adsorption ability via
the way to shorten the metal ions diffusion length. Also, it
should be noted that as the scale of the adsorbents decreases,
the surface area increases greatly. This is also favorable for its
adsorption ability.

4. Conclusion

In conclusion, a fluffy sodium titanate nanostructure was
successfully fabricated with utilization of hydrothermal
reaction. The fluffy sodium titanate nanostructure exhibits
a large surface area of about 110.59 m2/g, and thus it could
be expected to have high adsorption capacity to some heavy
metal ions (such as Cd(II)). And the maximum adsorption
capacity of Cd(II) has been estimated to be 255.18 mg/g.
So, this kind of material could be expected to have great
potential in the environmental treatment, especially for the
elimination of heavy metal ions, such as Cd(II).
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