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Abstract The strong-coupling Eliashberg theory plus ver-
tex correction is used to calculate the maps of transition
temperature (Tc) in parameter-space characterizing super-
conductivity. Based on these Tc maps, complex crossover
behaviors are found when electron–phonon interaction in-
creases from weak-coupling region to strong-coupling re-
gion. The doping-dependent Tc of cuprate superconductors
and most importantly the emergence of pseudo-gap region
can be explained as the effects of vertex correction.

Keywords Electron–phonon interaction · Vertex
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1 Introduction

The standard strong-coupling theory has no bound on
transition-temperature Tc of superconductors [1–4]. Re-
cently, the significant large second moments λ〈ω2〉 of
Eliashberg function α2F(ω) for cuprate superconductors are
measured from the experiments of electron relaxation via
pump-probe optical spectroscopy [5] means that there are
strong electron–phonon interactions in cuprate supercon-
ductors. The Eliashberg functions extracted from the mea-
surements of infrared optical conductivity [6] and ARPES
spectrum [7] for cuprate superconductors predicted very
strong electron–phonon interaction and very high Tc over
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the experimental values [6]. The Tc in mean-field approxi-
mation of Eliashberg theory is higher than experimental Tc.
In the situation of very strong electron–phonon coupling,
nonadiabatic effects of the electron–ion system will be so
important that the electrons are dressed heavily by lattice vi-
brations and the conventional strong-coupling theory needs
to be generalized to include the nonadiabatic effects or the
vertex corrects beyond Migdal’s theorem [8–10]. The behav-
ior of crossovers when electron–phonon interaction evolving
from the weak-coupling region to the strong-coupling region
were found in different theoretical calculations [11–14].
These crossovers are expected to prevent Tc from infinitely
increasing with electron–phonon interaction. If the electron–
phonon interaction is the underlying pairing-mechanism for
unconventional superconductors such as the cuprate super-
conductors, it should provide reasonable explanations of the
pseudogap region and the dome-shape of doping depen-
dent Tc in the doping-Tc phase diagram.

In our previous calculations of strong-coupling theory
plus vertex correction [10, 15, 16], (1) we have predicted
that the highest Tc of cuprate superconductors is close to
160 K consistent with the present record of cuprate super-
conductors [10], and (2) the up-limit of Tc for iron-based su-
perconductors is about 90 K [10] with 34–35 K space left to
increase Tc beyond the present record about 55–56 K [17];
(3) we have successfully explained the spatial anticorrela-
tion between the energy gap and phonon energy for cuprate
superconductor Bi2212 [15]; (4) we have also found that it
is very difficult to realize a home-temperature superconduc-
tor in a high-pressure metal hydrogen and other hydrogen-
rich materials [16] because of a very strong vertex correction
(or nonadiabatic effects) induced by small electronic band-
width and high phonon frequency.

In this paper, the Tc maps including the influences of ver-
tex corrections are studied. Complex crossovers are found
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on these Tc maps when the parameter λ of electron–phonon
coupling increases from weak-coupling region to strong-
coupling region. These crossovers are very close to the
well-known λ = 2 at which the value of Tc reaches its
maximum [1]. The pseudogap region in the phase diagram
with the same topology as the phase diagram of doping-
dependent Tc for cuprate superconductor is explained as the
effects of vertex correction. The interplay of vertex correc-
tion and Coulomb interaction can suppress theoretical Tc to
access experimental values [6].

2 Theoretical Formulas

The calculations of vertex corrections are greatly simplified
under isotropic approximation because the electron–phonon
interactions are included in the vertex corrections only by
the functions of electron–phonon interaction λn defined as
λn = 2

∫ ∞
0 dωα2F(ω)ω/(ω2 + ω2

n). When temperature is
very close to Tc, the energy-gap equation [8, 10] is simpli-
fied to

+∞∑

n′=−∞
Knn′(�n′/|ωn′ |) = 0, (1)

with the kernel matrix expressed as

Knn′ = [λn−n′Bnn′ − μ∗ + Cnn′ ]an′ − δnn′Hn′ ,

Hn′ = ∑+∞
n′′=−∞

[
δn′n′′ |ωn′′ |

πkBT
+ λn′−n′′An′n′′sn′sn′′an′′

]

,
(2)

where the parameters Ann′ = 1 − V A
nn′ , Bnn′ = 1 − V B

nn′ ,
sn = ωn/|ωn|, and an = (2/π) arctan(EB/Zn|ωn|). EB is
the effective band width of conducting electrons. In the cal-
culation an, Zn ∼1 takes the value of normal state. The three
parameters of vertex correction V A

nn′ , V B
nn′ and Cnn′ have the

form

V A
nn′ = S

∑

n′′
λn−n′′sn′+n′′−nsn′′an′+n′′−nan′′

V B
nn′ = 2S

∑

n′′
λn−n′′sn′+n′′−nsn′′an′+n′′−nan′′

(3)
Cnn′ = S

∑

n′′
λn−n′′λn′−n′′

× sn′−n′′+nsn′′an′−n′′+nan′′

with S = π2kBT/2EB . The Coulomb pseudopotential is de-
fined as μ∗ = μ0/(1 +μ0 ln(EB/ω0)), where μ0 = N(0)U ,
N(0) the density of state of normal state at Fermi energy, U

the Coulomb interaction between electrons and ω0 charac-
teristic energy of typical phonon correlated to superconduc-
tivity. If the vertex corrections are ignored, three parameters
V A

nn′ , V B
nn′ and Cnn′ are all equal to zero and the kernel (2) of

the energy-gap equation reduces to the general form without

vertex correction [2] after some symmetrizations and sim-
plifications. It is convenient that the Knn′ matrix is sym-
metrized as in [2]. The Eliashberg functions α2F(ω) have
the same approximation as in [18] and is expressed by

α2F(ω) = c

(ω − ΩP )2 + (ω2)2
− c

(ω3)2 + (ω2)2
, (4)

if |ω − ΩP | < ω3 and α2F(ω) = 0 for others, where ΩP is
the energy of phonon mode, ω2 the half-width of peak of
phonon mode, and ω3 = 2ω2. The parameter of electron–
phonon interaction is defined as λ = 2

∫ ∞
0 dωα2F(ω)/ω.

In order to build the ΩP –λ space, at first the ΩP is fixed
and different λ values are calculated by changing parame-
ter c, and the next step is that ΩP is changed to establish
completed ΩP –λ space. The full parameter space ΩP –λ–
μ∗–EB is built by treating μ∗ as an independent parame-
ter. The constraints between different parameters are sep-
arately considered once the Tc map in the full parameter
space is obtained by numerical calculations of the strong-
coupling theory. Other details in our calculations can be
found in [10, 16].

The parameter ΩP /EB measures the magnitude of the
vertex correction in the perturbing calculation. In fact, ΩP

and EB do not always appear as the combination of ΩP /EB .
Generally, one changes and the other stays unchanged in our
calculations. From an electron point of view, the vertex cor-
rection or nonadiabatic effect can be controlled by the effec-
tive bandwidth EB ; on the other hand, from an ion point of
view, it can be controlled by the cutoff ω0 of phonon energy
or ΩP in the Einstein model. In this work, the vertex correc-
tion is controlled by the effective band-width EB within the
range from 0.5 eV to 5 eV. The situation EB = ∞ is equiv-
alent to no vertex correction. According to (3), we can see
that the smaller EB means that the stronger vertex correc-
tion.

3 Results and Discussions

Figure 1(a, b, c) illustrate the evolution of Tc map on the
λ–ΩP plane with decreasing EB . Figure 1(a) is the Tc map
having been obtained in the previous work without consider-
ing vertex corrections [10]. When EB = 1.7 eV, the large de-
formation of Tc map with strong vertex correction is shown
in Fig. 1(b) near the well-known λ = 2.0 in the region of
high phonon energy. With EB decreasing to 1 eV further,
the region with strong vertex correction rapidly expands and
occupies a large part of parameter space with ΩP > 80 meV
in Fig. 1(c). In the region ΩP < 80 meV, the Tc is strongly
suppressed, however, there are no discontinuous changes of
Tc or breaking of contour lines. An important result from
the Fig. 1 is that Tc does not change with λ monotonously if
phonon energy ΩP is high enough. Figure 2(a) shows the
changes of Tc with λ along two arrows A and B shown
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Fig. 1 The evolution of Tc map on λ–ΩP plane with increasing
strengths of vertex corrections (decreasing effective bandwidth EB )
with (a) EB = ∞, (b) EB = 1.7 eV, and (c) EB = 1 eV. The Coulomb
pseudopotential μ∗ = 0.1

in Fig. 1(c). If ΩP = 80 meV, the Tc monotonously in-
creases with λ. However, for ΩP = 90 meV, the Tc first in-
creases with λ, reaches the maximum at λ ∼ 1.5–1.7 and
then quickly decreases with increasing λ. Further increas-
ing λ > 2, Tc will be very low due to strong vertex correc-
tions. The non-monotonous λ-dependent Tc in Fig. 2(a) had
been found in the nonadiabatic theory of superconductiv-
ity [12]. Some crossover behaviors from weak coupling to
strong coupling region had been predicted in the Holstein–
Hubbard model solved numerically by the quantum Monte
Carlo method [13] and in polaron theory [14]. It is very rea-
sonable that the nonmonotonuos λ-dependent Tc is equiva-
lent to the crossovers found in QMC calculation [13] and
polaron theory [14]. So only the leading vertex correction
can describe qualitatively very well the electron–phonon in-
teraction in strong coupling region.

Figure 3(a) is the normal Tc map on μ∗–λ plane without
vertex correction [10]. The figure shows that when μ∗ > 0.2,
Tc is insensitive to the change of μ∗. The breaking contour

Fig. 2 (a) The Tc change along two arrows shown in Fig. 1(c) with
fixed phonon energies ΩP = 80 meV and 95 meV, respectively. (b) The
Tc change along two arrows shown in Fig. 3(c) with fixed Coulomb
pseudopotentials μ∗ = 0.10 and 0.25, respectively

lines with Tc = 0 K are because of the inaccurate calcula-
tions when Tc < 0.1 K if only N = 200 Matsubara energies
are used. The contour lines with Tc > 0.1 K are accurate
enough. If the Coulomb pseudo-potential and vertex correc-
tion work together, the situation will change drastically and
some new interesting results will appear. The large defor-
mations are found in Fig. 3(c) if EB decreases to 1.0 eV. As
expected, the large deformations and discontinuous changes
of contour lines appear on the Tc map when μ∗ > 0.20. The
contour lines with iso-values from Tc = 20 K to 200 K are
bunched together within the rectangle region in Fig. 3(c)
with 0.15 < μ∗ < 0.25 and λ > 2. The figure clearly shows
that if the Coulomb pseudopotential μ∗ is large enough, the
Tc will change with λ nonmonotonously. The changes of
Tc along two arrows with μ∗ = 0.1 and 0.25 are plotted
in Fig. 2(b). For μ∗ = 0.25, Tc first increases with λ until
reaches the maximum at λ = 2.2 and then sharply decreases
to smaller value at λ = 2.5. The crossover behavior is en-
hanced by strong Coulomb interaction.

The Tc map on EB–λ plane is presented in Fig. 4(a) with
ΩP = 72 meV. If EB increases but λ keeps unchanged, the
Tc monotonously increases with EB until to the limit of non-
vertex correction. More interestingly, on this map, the Tc is
nonmonotonuos dependent on EB along straight line from
P 1 to P 2 companying by the decrease of λ from 5.0 to 0.2.
The nonmonotonuos dependence of Tc on effective band-
width EB is equivalent to the band-filling effect of Tc. Our
results show that, if ΩP > 80 meV, the suppression of Tc

will be more prominently.
The values of Tc obtained from standard strong-coupling

theory are generally higher than those measured in ex-
periments. The copper-oxides superconductors Bi2Sr2Ca
Cu2O8+δ and Bi2Sr2Cu2O6+δ studied in [6, 7] have very
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Fig. 3 The evolutions of Tc
map on μ∗–λ plane
(ΩP = 69 meV) with
decreasing effective bandwidth
(a) EB = ∞, (b) EB = 1.7 eV,
and (c) EB = 1.0 eV

strong electron–phonon interactions λ ∼ 2.36–2.85 and
overestimated Tc in underdoped samples. With increasing
doping δ, the values of λ decrease to about 0.35–1.42 [6].
The effective bandwidths EB of conducting electrons for
these cuprates are distributed from 1 eV to 3 eV. The effec-
tive phonon energies are distributed from 50 meV to 80 meV.
We recalculate the values of Tc along straight line P 1–P 2 in
Fig. 4(a) under the assumption that the Coulomb interaction
is strong in the underdoped region μ∗ = 0.3 at P 1 and weak
in the overdoped region μ∗ = 0.1 at P 2. For simplicity, μ∗
linearly decreases from 0.3 at P 1 to 0.1 at P 2. As shown
in Fig. 4(b), if λ < 4.0, the values of Tc are reduced from
around 200 K to lower than 150 K and close to experimen-
tal values [6]. In the strong-coupling region 4.0 > λ > 3.0,
Tc is very low. Our results provided an explanation to the
pseudogap in underdoped region shown in Fig. 4(b). The
cooper-pairs preform at T ∗

c the transition temperature in
mean field approximation on the standard strong-coupling
theory. However strong nonadiabatic effects induce the in-
stability of cooper-pairs and the real Tc has lower value. The
T ∗

c degenerating with Tc in the overdoped region is similar
to the example (1) of Fig. 9 in [19]. The preformed cooper-
pairs in cuprate superconductors are supported by measure-
ments of Nernst effect [20], specific-heat [21], and many
other methods.

An interesting result is that at very strong coupling λ >

4.0, the effects of vertex corrections superficially become
weak. Even there are positive vertex correction that had been
found in other work [12]. The electronic states in region SP
with λ > 4.0 are strong-coupling pairs [22]. The Fig. 4(b)
shows a crossover from BCS state to strong-coupling pairs
state with increasing electron–phonon interaction λ. It’s ob-
viously that Fig. 4(b) has the same topology as the well-
known Tc-doping phase diagram. It’s dependent on whether
the parameter λ electron–phonon interaction decreases with

Fig. 4 (a) The Tc map on EB–λ plane with μ∗ = 0.25 and
ΩP = 72 meV. (b) The curve Tc (MFT + VC) is the evolution of Tc
from P 1 to P 2 in (a) but μ∗ linearly decreases from 0.3 to 0.1. The
solid curve T ∗

c (MFT) is the standard result in strong coupling theory
without vertex correction. (c) The δ–λ relation is adopted in [6]

increasing doping or not. This point had been proved in re-
cent experiments [6, 7]. The δ–λ curve in Fig. 4(c) is based
on data in Ref. [6]. It’s urged that there will be other experi-
ments supporting this point.
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In order to analyze our results more deeply, we present in-
dividually the effects of nonadiabatic parameters V A

nn′ , V B
nn′

and Cnn′ on Tc in Fig. 5(a). Equation (2) indicated that
V B

nn′ and V A
nn′ are the renormalization to the parameter of

electron–phonon interaction λ and Cnn′ is the renormaliza-
tion to Coulomb pseudopotential μ∗. The Tc–λ curve la-
beled with V B is calculated by allowing V B

nn′ �= 0 and set-
ting V A

nn′ = 0 and Cnn′ = 0. Other curves are obtained with
the same manner. We can find that the dome shape curve

Fig. 5 (a) The effects of three nonadiabatic parameters V A
nn′ , V B

nn′
and Cnn′ on Tc. (b, c) The changes of average values of diagonal and
off-diagonal matrix elements of |Ann′ | = |1−V A

nn′ |, |Bnn′ | = |1−V B
nn′ |

and |Cnn′ | with increasing λ

of Tc in the region λ < 4.0 is generated by the effects of
V B

nn′ . In the region λ > 4.0, the effects of V A
nn′ and Cnn′ can-

cel the effects of V B
nn′ so that the strong coupling pairs in

the mean field approximation are restored and even have a
higher Tc. This fact can be clarified from the Fig. 5(b, c) in
that the averages of the absolute values of diagonal and off-
diagonal elements of parameter matrix |Ann′ | = |1 − V A

nn′ |,
|Bnn′ | = |1−Vnn′ |, and |Cnn′ | have larger changes mainly in
the region 2.5 < λ < 4.0. Moreover, in the region λ > 4.3,
the |Ann′ | and |Bnn′ | are close to normal values 1.0 just
as in weak coupling region. Additionally, the average val-
ues of diagonal elements of the parameter matrix |Cnn′ | and
|Bnn′ | steadily increase with λ and lead to positive vertex-
correction.

4 Discussion and Conclusion

The well-known Morel–Anderson relationship μ∗ =
μ0/[1 + μ0 ln(EB/ΩP )] that sets a constraint to parameter-
space has only quantitatively influence on the Tc–EB curve
in Fig. 4(b). Figure 6(a) shows the Tc–EB curves for differ-
ent choices of μ0 = 0.3, 0.6, 1.2. We find that, for different
μ0, there are no significant changes of the maximum and
minimum compared with the Tc–EB curve with μ∗ linear-
dependent on EB in Fig. 4(b). The underlying reason is that
the strong-coupling effect of electron–phonon interaction is
dominated over the Coulomb interaction in strong coupling
region.

In the electron–phonon interaction theory, the coupling
constant between electron and phonon is dependent on
the phonon energy by g = (�/2MNV ω)1/2J . There are
feedback effects coming from the shift of phonon energy
(or phonon self-energy). The Hopfield–McMillan relation
M〈ω2〉λ = I = N(0)〈J 2〉, as the average effects of the feed-
back, is exact and nonperturbed and it can be taken as the
role of sum-rule in electron–phonon interaction theory of

Fig. 6 (a) The curves of Tc
evolute along the straight line
from P 1 to P 2 in Fig. 4(a) with
μ∗ = μ0/(1+μ0 ∗ ln(EB/ΩP )).
(b) The μ∗–EB curves are
plotted with μ0 = 0.3, 0.6 and
1.2, respectively. As a
comparison, the curve in
Fig. 4(b) with μ∗ linearly
dependent on EB is plotted
together
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superconductivity. Based on the Hopfield–McMillan rela-
tion, the parameter of electron–phonon interaction is de-
pendent on M and ω. In the McMillan’s original paper,
a maximum of Tc was found for fixed I if the Hopfield–
McMillan relation was considered [1]. It is important that
by using the Hopfield–McMillan relation the anomalous iso-
tope effects with α > 0.5 of fulleride and cuprate super-
conductors can be naturally explained as the effects of an-
harmonic vibrations of crystal lattice [23, 24]. The anticor-
relation between phonon energy and the energy gap found in
the cuprate superconductor is a very successful application
of the Hopfield–McMillan relation [15]. One of our previ-
ous works had shown that, if there are no structure tran-
sitions under pressure, for simple metal, λ and ω approxi-
mately satisfy the Hopfield–McMillan relation with increas-
ing pressure [25].

In summary, the nonmonotonuos changes of Tc with in-
creasing λ show the crossover behaviors near λ = 2 when
λ evolving from the weak-coupling region to a strong-
coupling region. The crossovers can explain both the pseu-
dogap phenomenon and the dome shape of doping depen-
dent Tc of cuprate superconductors. The Tc maps in the pre-
vious paper [10] and the maps with vertex corrections in this
paper provide a very comprehensive understanding of super-
conductivity of cuprate superconductors.
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