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• The state of the art is presented for the heat and flow characteristics of 
packed beds under conditions where radiant heat transfer may be ne- 
glected. Equations for the prediction of convective heat transfer, pressure 
drop, effective thermal conductivity, and wall heat transfer are recom- 
mended. New experimental data of heat transfer and pressure drop that 
exceed the previous Reynolds number range by one order of magnitude up 
to Re /e  = 7.7 × 105 are reported. Sources of errors that may occur during 
experimental work are discussed and partly quantified. 
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INTRODUCTION 

The importance of research in the field of porous media 
may be demonstrated by the large number of publications 
on the subject, about 150 per year. The domain of applica- 
tion is wide spread, ranging from catalytical and chemical 
particle beds, mass separator units, and heat exchangers 
to thermal insulation, debris beds, soil investigations (oil 
recovery), heat pipes, and fluidized beds. About one fourth 
of the work is devoted to fluidized beds including im- 
mersed bodies, one-third deals with natural convection in 
saturated porous media, another fourth with heat and 
mass transfer problems under forced convection, and about 
one-tenth treat the field of effective conductivity. 

The basic idea for the treatment of particle-to-fluid 
heat transfer in porous media is to consider the situation 
for the individual particle. Appropriate quantities for the 
length scale and the velocity, together with a geometrical 
function, are sufficient to correlate the results of the 
single particle with those of the packing [1]. These charac- 
teristic quantities must combine the statistical parameter 
of the porous medium, that is, the porosity, with charac- 
teristic quantities that are easily accessible, for instance, 
particle size and mean fluid velocity. 

The pressure drop is calculated from equations initially 
established for channel flow. To apply them to porous 
media, the same characteristic quantities must be intro- 
duced. Doing so for laminar flow, encounters the so-called 
Darcian flow, which is characterized by a linear relation- 
ship between pressure drop and mass flow. In many situa- 
tions, particularly when natural convection occurs, the 
conditions of Darcian flow prevail. This is true for local 
Reynolds numbers Re < 1. Beyond this threshold, inertial 
effects may play an increasing role. 

The major concept when treating the problem of effec- 
tive conductivity is that of the cell model proposed by 
Zehner and Schliinder [2]. In this model a characteristic 
unit cell is cut out representing the solid and fluid phase 
situation in the bed. In this unit cell the particular heat- 
transferring mechanisms are considered. 

The present paper presents the state of the art with 
regard to heat transfer, pressure drop, effective conductiv- 
ity, and wall heat transfer for particulate beds of nonuni- 
form porosity. Emphasis is given to spherical particles. 
Because of the large field of research treated, only more 
recent or earlier basic contributions are cited. Fuller in- 
formation is to be found in the cited review papers. 

FLOW AND HEAT TRANSFER 
CHARACTERISTICS 

The statistical quantity of a randomly packed bed is the 
void fraction E, which is defined as 

e = 1 - - -  (1) 

where ~ is the volume of the solid particles and 1/t the 
total volume. 

The length scale, that is, the hydraulic diameter of the 
system, is dependent on the void fraction and the pebble 
diameter d: 

dh - - .  (2) = d  1 _ • 

The mean pore velocity correlates with • and with the 
mean velocity u in the empty tube, 

Up = u / • .  (3) 
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Thus we obtain for the Reynolds number 

dhU p p 1 
Re h - -  Re, 

where 

1 m E 
(4) 

udp 
Re = , (5) 

~7 

(6) 

and for the Nusselt number 

a d  h e 
NUh A NU 1 - e 

where 

Nu = ad/A. (7) 

Assuming that the heat transfer from pebble beds can be 
expressed in terms of the function 

Nu h = f(Reh; Pr), (8) 

empirical heat transfer results will obey the equation 

Nu f ; Pr . (9) 
E 

Defining the pressure drop coefficient as 

Ap 
= (10) 

(H/dh)( p/2)u 2' 

where H is the total height of the packing, this quantity 
becomes 

q' = ( g / d ) (  o / 2 ) u  2 ~ ' (11) 

with d h and Up from Eqs. (2) and (3). 
The pressure drop coefficient • is a function of Rey- 

nolds number Reh, 

i( e/ 
= f ( R e h )  = ~,1 -- el" (12) 

FORCED CONVECTIVE HEAT TRANSFER 

The forced convective heat transfer is influenced by a 
number of parameters, for instance, Reynolds number, 
Prandtl number, void fraction, ratio of tube diameter to 
sphere diameter, ratio of bed height to sphere diameter, 
local flow conditions, effects of radiation, contact conduc- 
tion, natural convection, and surface roughness. This is 
the reason the experimental results found in the literature 
show considerable departures from one another. Many of 
the more than 100 papers in this field therefore report on 
results under certain conditions and cannot be generalized 
to represent the convective heat transfer in an "infinitely" 
large randomly packed bed. In particular, the void fraction 
and the ratio of tube to sphere diameter are parameters 
of strong influence, which has often not been recognized. 
Therefore many authors do not report on the correspond- 
ing details, which makes an evaluation of the results 
impossible. The present paper addresses the effect of 
some of the parameters mentioned above and quantifies 
their importance. 

The measurement techniques applied for pebble bed 
heat transfer are 

• Heat transfer from an electrically heated single 
sphere buried in the unheated packing 

• Mass transfer tests making use of the analogy be- 
tween heat and mass transfer 

• Simultaneous heat and mass transfer 
• Regenerative heating 
• Semiempirical methods 

The method of the single heated sphere requires that 
the gas mixing downstream of the particle is nearly per- 
fect. If this is true, this technique is very simple and 
accurate. The heating rate and the temperature difference 
between the wall and the bulk can easily be determined. 
Using copper or brass for the probe material, the bound- 
ary condition of constant surface temperature is approxi- 
mately obtained. Radiation can be minimized by using 
highly polished surfaces. To avoid uncontrolled heat losses 
via the points of contact with the unheated neighboring 
spheres, the thermal conductivity of those neutral spheres 
should be low compared to that of the active probe. 

Mass transfer experiments with single spheres are pre- 
ferably conducted according to the method of naphtha- 
lene sublimation in air. This makes use of the weight loss 
of naphthalene due to sublimation during a time interval 
At. It promises to be a very successful way of producing 
reliable results. The boundary condition is constant wall 
concentration, corresponding to constant wall tempera- 
ture in heat transfer experiments. 

Effects of heat radiation and contact heat conduction 
cannot occur, and the effect of natural convection, which 
becomes relevant at low Reynolds numbers, is essentially 
reduced, as the Grashof number is lower by three orders 
of magnitude than in heat transfer experiments. A crucial 
point is the strong dependence of the naphthalene vapor 
pressure on the temperature, which requires a very exact 
wall temperature measurement. An error of I°C causes an 
error of 10% in the determination of the mass transfer 
coefficient. A further disadvantage is the noncontinuous 
nature of the technique, which requires the preparation of 
new naphthalene test spheres for each particular Reynolds 
number run. 

Some authors apply the method of simultaneous heat 
and mass transfer. Porous particles are saturated with a 
fluid that evaporates during the test run. The temperature 
decrease and the weight loss of the spheres can be evalu- 
ated separately in terms of the heat transfer coefficient. 
This method is not so easy to handle, and difficulties arise 
in determining the exact surface temperature, which is 
strongly affected by the evaporation process. 

The regenerative heating technique is based on un- 
steady heat transfer from a pebble bed. Appropriate heat- 
ing and cooling of the packing leads to temperature pro- 
files that can be evaluated in terms of the heat transfer 
coefficient. This method requires significant technical and 
mathematical effort. 

The semiempirical methods start from a hypothesis as 
the basis for the derivation of empirical relationships. The 
heat transfer from a pebble bed, for instance, can be 
related to the heat transfer for a single sphere. The 
adjustment to experimental results is then done by means 
of geometrical parameters. 
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A very successful application of  a semiempirical method 
is that published by Gnielinski [1]. The method is based on 
the idea that the heat transfer from arbitrary particles can 
be predicted by applying the equations for a flat plate if a 
suitable length scale and velocity are introduced. This 
characteristic length scale is the distance traveled by a 
fluid particle on its way along the body. For spherical 
particles this length scale is equal to the sphere diameter. 
The characteristic velocity is the mean velocity in the 
pores as defined in Eq. (3). Both quantities are introduced 
into the asymptotic solutions for laminar and turbulent 
heat transfer, 

and 

Nu 1 = 0.664Prl/3(Re/e) 1/z (13) 

0 .037(Re/e)° 'Spr  
Nu t = . (14) 

1 + 2 . 4 4 3 ( R e / e ) - ° 1 ( p r  2/3 - 1) 

The combination of  the two asymptotic solutions, 

~T 2 , , 1 / 2  
N u s p = 2 +  (Nu21+lsu  t) , (15) 

yields the heat transfer from a single sphere. The 2 in Eq. 
(15) is the asymptotic solution for Re ~ 0. 

Equation (15) can now be applied to pebble beds by 
defining an empirical arrangement factor f(E), 

f ( e )  = 1 + 1.5(1 - e). (16) 

Thus we find 

Nu = f(e)  Nusp. (17) 

The set of  Eqs. (13)-(17) is suitable for correlating the 
experimental results up to high Reynolds numbers for 
void fractions in the range 0.26 < • < 0.935 and the 
Prandtl or Schmidt number  from 0.7 to 10 4, respectively. 

Equation (17) was experimentally covered up to R e / •  
= 2 × 10 4 when [1] appeared. In the present work this 
range was exceeded by more than one order of  magnitude 
up to R e / •  = 7.7 x 105. The tests were performed in a 
wind tunnel that was operated with a system pressure up 
to 40 bar. The fluid was air or helium. Thus the same 
Reynolds number  could be reached by varying the pres- 
sure, the mass flow, or the kind of  fluid. 

The majority of  the present experiments were con- 
ducted using a bed diameter of  D = 0.983 m and a bed 
height of  H = 0.84 m. To eliminate wall effects, the core 
wall was structured such that a regular orientation of the 
spheres adjacent to the wall was avoided. The sphere 
diameter was d = 0.06 m. The void fraction was experi- 
mentally determined to be • = 0.387. The heat transfer 
experiments were carried out by applying the method of 
the electrically heated single sphere in an unheated pack- 
ing. The test spheres were manufactured from copper, the 
surface being highly polished and covered with a silver 
layer to keep the contribution of thermal radiation low. 
The remainder of the spheres were graphite except for 
those in contact with the test sphere. Those spheres were 
made of acrylic to avoid heat losses via the contact points. 

To cover the lower range of Reynolds numbers down to 
unity (1 < R e / •  < 2.5 × 104), mass transfer experiments 
were carried out, applying the method of naphthalene 
sublimation in air. This method was favored to avoid the 

problems of  radiation, natural convection, and contact 
conduction that occur in heat transfer experiments. Two 
test installations were used. In addition to the one men- 
tioned above, a bed diameter D = 0.3 m and a sphere 
diameter of d = 8 x 10 -3 m were applied. The mass 
transfer tests were conducted as follows. Spheres covered 
with a naphthalene layer about 0.5 mm thick were buried 
in the core for each run. Then the test was started, 
keeping the gas temperature and the mass flow of  the 
fluid constant. After an appropriate time interval At, 
which had to be adjusted to the magnitude of  the mass 
transfer coefficient /3, the loss of naphthalene from the 
sphere surface was determined. The mass transfer coef- 
ficient was then calculated from the mass flux rh and the 
partial pressure difference, Pw - P~, between the wall and 
the bulk, where p~ was assumed to be zero. This proce- 
dure must be repeated for each Reynolds number. 

Figure 1 exhibits the present heat and mass transfer 
results together with those from the semiempirical equa- 
tion (17). For Re > 500, the experimental results can very 
well be represented by that relationship. For evaluation of 
the mass transfer results, with a Schmidt number of  Sc = 
2.5 it was assumed that the effect of Sc on the Sherwood 
number can be described by f(Sc) = Sc 1/3. 

For Reynolds numbers Re < 500 the present results are 
lower than those predicted by Gnielinski's formula. This 
fact was observed and discussed in 1967 by Kunii and 
Suzuki [3]. Schliinder [4] and Martin [5] tried to explain 
this evidence by pointing out the effect of  the nonuniform 
void fraction distribution across the bed. If, in this case, 
the heat transfer coefficient is calculated by means of the 
overall heat removal from the bed, a cold bypass stream 
occurs, which indicates a lower heat transfer coefficient 
than there actually is. 

Vortmeyer [6] also comments on the apparent decrease 
in convective particle-gas heat transfer at low Reynolds 
numbers. He shows that for Re < 200 the axial dispersion 
term increasingly dominates the heat transfer. Similar 
conclusions are drawn by Tsotsas [7] for the situation of 
particle-to-gas mass transfer. 

The present tests were carried out with a single naph- 
thalene-covered sphere in an inert bed. The wall was 
structured to avoid near-wall bypass effects. Under  these 
conditions Schliinder's hypothesis cannot explain the de- 
creasing trend of  the mass transfer. The present measure- 
ment technique, however, violates the hypothesis of con- 
sidering the bed as an arrangement of heated channels of 
a certain hydraulic diameter. This is true only if all parti- 
cles are "heated." In this case the boundary layer thick- 
ness is restricted to the geometry of  the channels and the 
Nusselt number becomes constant. In the present case 
for the single mass transfer sphere, the thickness of the 
boundary layer is not limited and may exceed the channel 
hydraulic diameter, leading to a continuous decrease in 
the mass transfer coefficient with decreasing Reynolds 
number. 

Experimental results for convective heat transfer may 
also be affected by other heat transfer mechanisms. Ap- 
plying the measurement technique of  the separately heated 
sphere, the influence of  radiation can be estimated by 
assuming radiant heat transfer from a gray body to a black 
surround, with the temperatures in both locations known 
by measurement. Furthermore, the results may be checked 
by means of  mass transfer tests. For design purposes, 
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Figure 1. Convective particle-to-fluid heat transfer for pebble beds: (1) Present results; (2) Eq. (17), Pr = 0.7, E = 0.387. 

however, the predict ion of  the radiant  heat  rate is more  
complicated and requires a numerical  t rea tment  making 
use of  the effective conductivity. 

The heat  losses via points of contact  are a severe 
problem for the single-sphere method.  Figure 2 demon-  
strates what happens  when a copper  test sphere is in 
contact  with unhea ted  graphite  spheres. The solid line 
represents  the expected result. Over the whole range the 
heat  conducted through the points of contact  represents  
a considerable contr ibution to the total  heat  rate. This 
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Figure 2. Effect of heat conduction via points of contact. 

demonstra tes  that the spheres surrounding a test sphere 
must be of low thermal  conductivity. 

A further source of  error  is natural  convection, which 
may occur to augment  flow or counter  flow. Karabelas  
et al. [8] correlate  their  mass transfer results carried out in 
the Rayleigh number  range 1.24 x 107 < Ra < 3.24 X 10 9 
by the equations 

Sh = 0.46(Gr S c )  1/4 ( 1 8 )  

for Ra  = (Gr  × Sc) < 10 9 and 

Sh = 0.12(Gr Sc) 1/3 (19) 

for Ra  = (Gr  S c ) >  10 9, where the Grashof  number  is 
defined as 

Equat ions (18) and (19) can also be applied to heat  
transfer by replacing the Schmidt number  Sc by the Prandtl  
number  and Ap/p by AT/T~. Our own heat  and mass 
transfer results, obta ined in the lower range of Rayleigh 
numbers,  5 < Ra < 5 x 10 6 and with variable void frac- 
tion, confirm Eq. (18). Fur thermore ,  the present  results 
indicate that within the scatter of the results the natural  
convective h e a t / m a s s  transfer is independent  of the void 
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fraction e (Fig. 3). It can be correlated with the relation 
valid for the single sphere (Eq. 20) given by [9], 

Pr Pr Ra) 1/4 
N u = 2 + 0 . 5 6  0.846+ (20) 

Figure 4 gives an example of heat transfer measure- 
ments with convective counterflow. The data points level 
out to a constant value that corresponds to the natural 
convective heat transfer. 

The method of the single heated sphere requires knowl- 
edge about the statistics of local heat transfer in the bed. 
For this purpose heat transfer experiments were carried 
out at four Reynolds numbers in the range 10 4 < Re < 
105 by burying the test spheres in different random posi- 
tions in the bed. The measurement made from each of the 
20 tests yields a standard deviation of tr < 5% indepen- 
dent of Re. The maximum deviation was +7.3% and 
-10.6%. These data refer to the interior of a bed, the 
wall of which was structured to avoid bypass effects. 

The heat transfer from spheres positioned in the en- 
trance layer of a bed is expected to be lower than the 
average value because the velocity and the turbulence 
level of the incident flow are smaller than the superficial 
velocity. Figure 5 exhibits this comparison. The difference 
seems to decrease for low Reynolds numbers. 

PRESSURE DROP COEFFICIENT 

The experimental work on pressure drop through packed 
beds shows a large scatter in the results. This is with a 
view to Eq. (11), predominantly due to the essential effect 
the void fraction e has on the pressure loss. In most of 
the numerous papers evaluated in [10], the void fraction e 
was not determined exactly enough or not at all. Thus 
only a few relevant papers were left whose results can be 
approximated by 

320 6 
q~ + (21) 

Re / (1  - e) [Re/(1  - e)] °'1" 

Equation (21) is confirmed by experimental results up to 
Re/(1 - •)  = 5 × 10 4. Further tests in a high-pressure 

wind tunnel applied for the present work permitted this 
range to be extended by about one order of magnitude. 
These results indicate that for R e / ( 1 -  e ) >  105 the 
pressure drop coefficient seems to become independent of 
Re (Fig. 6). Therefore, Eq. (21) only holds for Re/(1 - e) 
_< 105. 

The first term of Eq. (21) represents the asymptotic 
solution for the laminar flow, the second term, the solu- 
tion for turbulent flow. Each of the terms can be written 
a s  

- n  + _ +  

~ =  ~ 1 -  e]  = A ( 1 -  e) Re , (22) 

where n = 1 represents the low Re range and n = 0.1 the 
high one. The sensitivity of Eq. (21) to the influence of e 
can be pointed out by writing 

d(Ap)  0(Ap) de 
(23) 

Ap 0e Ap " 

Equations (11) and (22), together with Eq. (23), yield 

d(Ap)  3 - e(2 - n )  d e  
- - .  (24)  

Ap 1 - e • 

A positive relative variation of e causes a negative 
variation in the pressure drop multiplied by a factor that is 
dependent on the void fraction e and on the slope n of 
the Reynolds number (see also Fig. 7). At e = 0.4, for 
instance, an error of 1% in e causes an error of 4% 
for Ap. 

BYPASS EFFECT 

The strong dependence of the pressure drop on the void 
fraction causes a nonuniform velocity distribution across 
the particle bed, since the disturbance of the statistical 
particle arrangement adjacent to the wall generates here a 
higher void fraction than the average value in the bed. For 
spherical particles, Benenati and Brosilow [11], Goodling 
and Vachon [12], and Ouchlyama and Tanaka [13] mea- 
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Figure 3. Natural convective heat/mass transfer in pebble beds; solid lines: Eq. (20). 
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Figure 4. Mixed convective heat transfer in pebble beds 
under opposing flow conditions. 

sured the radial void fraction distribution as shown in Fig. 
8. The void fraction • decreases from unity at the wall to 
a minimum of • = 0.2 at a distance of d / 2  and then 
levels out with decreasing amplitudes to a constant value. 
This point is reached at a distance of nearly four sphere 
diameters from the wall. Recently Daszkowski [14] deter- 
mined also the axial void fraction distribution in spherical 
beds, starting both from the free surface of the bed and 
from the bottom plate (Figs. 9 and 10). 

Similar experiments on void fraction distribution have 
been conducted also for other particle shapes used in 
catalyst techniques. Raschig rings and full cylinders have 
been investigated by Roblee et al. [15] (Fig. 11). Figure 11 
represents also our own results [16] for the hollow cylinder 
with a diameter ratio of d i / d  a = 0.425. Thin-walled rings 
show an effect only for a wall distance of r < ld. Full 
cylinders vary with a wavelength of ld  and thick-walled 
cylinders with d / 2  as an effect of the inner voidage of the 
particle. 

The radial variation of the void fraction has this effect 
of generating a near-wall bypass flow. The higher veloci- 
ties near the wall are not only of importance for the local 
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flow, heat, and mass transfer in this region but also 
influence integral quantities of the packing such as the 
total pressure drop and heat /mass  transfer. Therefore 
numerous authors have measured or calculated the veloc- 
ity distribution across the bed. A comprehensive review in 
this field was published in [17]. Recent experimental and 
computational results are also to be found in [14]. 

As mentioned above, it can be demonstrated that the 
effect of bypass flow is the main reason for the severe 
departures of experimental pressure drop results. The 
higher the ratio of sphere to tube diameter, d / D ,  the 
stronger is the influence on the pressure drop. This can 
easily be shown when assuming, for a rough estimation, 
that the bed is subdivided into a near-wall region (index 
w) and a central region (index c). The corresponding void 
fractions required for the calculation can be obtained by 
evaluating the experimental results for the overall value 
from Carman [18] and Barthels [19], 

• = 0 .78(d/D)  z + 0.375, (25) 

and for the wall value from [10], 

• w = 63.6 -~- + 15 + 0.43. (26) 

The central void fraction can then be calculated from 

E w  i • 

ec = •w . (27) 
(1 - d / D )  2 

The velocity ratios wall-to-center, Uw/U c, and center-to- 
average, Uc/U, can be determined by means of the pres- 
sure drop equation (11). The result is shown in Fig. 12. 
With increasing ratio d / D  the wall effect becomes more 
and more important. 

When evaluating experiments on pressure drop without 
accounting for the bypass effect, the mean velocity calcu- 
lated from the mass flow is higher than the actual central 
velocity. Therefore the pressure drop coefficient evaluated 
with the mean velocity is too low. This effect is exhibited 
in Fig. 13, which shows the ratio of apparent to exact 
pressure drop coefficient. At d / D =  0.2, for instance, the 
error is about 28%. The reliability of experimental pres- 
sure drop results therefore decreases with increasing ratio 
d / D  unless a correction for the bypass has been made. 

THERMAL CONDUCTIVITY 

The thermal conductivity of a packed bed is no longer 
merely a material property but depends also on the flow 
and heat transfer conditions and on the size and shape of 
the particles. Therefore it is called the effective thermal 
conductivity, Ae, which means that the bed is considered a 
quasi-continuum and the conductive heat flux q can be 
calculated by means of the Fourier equation. 

The thermal conductivity is separated into two contribu- 
tions: the stagnant gas conductivity, A 0, and the conductiv- 
ity due to macroscopic flow effects, A k, where 

Figure 5. Convective heat transfer in the entrance region of 
a pebble bed. A~ = A 0 + A k. (28) 
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Figure 6. Pressure drop coefficient of pebble beds. ( × ) High pressure, (O) ambient pressure. - -  Eq. (21), - - - - -  ref. [22]. 

The latter quantity accounts for the dispersion due to the 
flow and is therefore related to the Peclet number (Pe). 
The relation given by Yagi et al. [20], 

A k Pe 
(29) 

Ag K ' 

is well established and linearly correlates the dispersion 
term with the Peclet number. The quantity K is different 
for radial and axial conductivity and is dependent on the 
geometrical conditions of the packing. For the radial case 
and spherical particles, experimental results have been 
correlated by Schliinder [21], 
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Figure 7. Sensitivity of the pressure drop to changes in the 
void fraction. 

The corresponding value for the axial conductivity is re- 
ported [6, 21] to be Ka~ = 2. Data for other particle 
shapes are also found in the VDI-Wiirmeatlas [22]. 

The constant K r in Eq. (30), which is equal to 8 for 
spherical infinite beds, can be understood as the turbulent 
Peclet number of the system. It describes the heat ex- 
change due to the velocity fluctuations, which are inde- 
pendent of the Reynolds number to a first approximation. 
Thus Pe/K is the ratio of turbulent tO molecular heat 
conductivity. 

The stagnant gas effective conductivity, h0, is influ- 
enced by several heat transfer mechanisms: (1) conduction 
through the gaseous phase, (2) conduction through the 
solid phase, (3) heat radiation solid-solid and through 
the void area to the next layer, (4) conduction through 
the contact area, and (5) pressure-dependent conductivity 
caused by the Smoluchowski effect. 

Tsotsas and Martin [23, 24] have carried out a compre- 
hensive review of the thermal conductivity of packed beds. 
They comment on the numerous models for the determi- 
nation of h e. The most advanced model is the Zehner- 
Bauer-Schliinder model [25-28], which accounts for all 
effects mentioned above. Therefore it is recommended in 
the VDI-Wiirmeatlas [22] for engineers' application. The 
idea of that model is to cut out a unit cell and consider 
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Figure 8. Radial void fraction distribution. (After Ref. 11.) 
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Figure 9. Axial void fraction distribution measured 
from the free sphere layer of the bed. (After 
Ref. 14.) 
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the heat flux assuming parallel heat flux vectors. The set 
of equations that are applicable to various shapes of 
particles and also to binary systems is voluminous. It will 
not be repeated in this paper but can be found in [22]. 

The paper by Dalle Donne and Sordon [29] theoreti- 
cally and experimentally treats the thermal conductivity of 
beds consisting of particles of different sizes and different 
solid conductivities. The authors apply the Zehner- 
Bauer-Schliinder model mentioned above and a model by 
Okasaki et al. [30] established for binary particle mixtures. 
After modifications they were able to correlate their ex- 
perimental results with satisfactory accuracy. 

Botterill et aL [31] investigated the effective thermal 
conductivity of particulate beds for small particles (alumina 
376 /~m; sand 410 and 590 /~m) at high temperatures 
(400-950°C). In their analysis in [32], these authors re- 
viewed several models and found that none of them could 
predict the strong temperature dependence of the effec- 
tive conductivity. They assume that the reason for this 
evidence is that the material is partly transmissive. 

Finally, excellent experimental results by Robold [33], 
which have not been noticed in the literature, should be 
reported on. He measured the conductivity of a closely 
sized bed of spherical particles up to 1870 K in vacuum 
and in helium using either high-conductive spheres of 
graphite or low-conductive spheres of ZrO 2. The experi- 

mental results are in good agreement with his theory, 
which is a modification of the Zehner-Bauer-Schliinder 
model (Fig. 14). The dashed line represents the result for 
stagnant helium according to [22], which overpredicts 
the experimental data in the lower range of tempera- 
ture. With increasing temperature the agreement im- 
proves, which means that the radiation through the pores 
is correctly modeled. The decreasing slope of the curve for 
T > 1400 K results from the diminution of the graphite 
conductivity with increasing temperature. 

WALL-TO-FLUID HEAT TRANSFER 

In many technical applications a heat flux penetrates the 
wall of the packed bed in order to heat it, to cool it, or to 
supply a chemical reaction. In this situation the heat has 
to pass the wall boundary layer established by the stream- 
ing fluid. Its thickness depends on the Reynolds and 
Prandtl numbers and generally is small compared to the 
particle size. Similarly a thermal boundary layer exists that 
causes a temperature difference AO across this region. 
The heat flux at the wall, qw, can be expressed by Newton's 
law, 

qw = aw AO, (31) 
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Figure 11. Radial void fraction distribution. Ref. 14: ring 
( 0 ) ,  d i /d  a = 0.67-0.77; full cylinder (O). Ref. 16: ring (×), 
di /d  a = 0.425. 
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Figure 12. Ratio of wall-to-center and center-to-mean veloci- 
ties. 
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Figure 13. Effect of bypass flow on the pressure drop coef- 
ficient. (@) Present experimental result. Re = 104. 
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Figure 14. Effective conductivity of packed beds in vacuum 
and helium. Experiments and theory after Ref. 33; - - . - -  22. 

and occurs as the boundary condition 

-A~ 0-~r0 w = aw AO (32) 

in the energy equation to be solved for the problem using 
the effective conductivity, A¢, in the diffusion term. 

The wall Nusselt number, 

~w d 
Nu w f (Re,  Pr), (33) 

Ag 

has been determined experimentally by numerous au- 
thors. The paper by Hahn and Achenbach [34] gives a 
survey of the experimental work. Their experimental re- 
sults obtained by the naphthalene mass transfer method 
range from 50 < Re < 2 x 10 4 and fit satisfactorily to the 
relation recommended in [22], 

1 
Nuw = (1 -~-~  ) Re°'61 Pr 1/3 . (34) 

Equation (34) loses its justification below Reynolds num- 
bers of the order of Re = 100, since diffusion effects 
dominate the heat transfer in comparison to the convec- 
tive contribution. In other words, the thickness of the wall 
boundary layer is of the order of the particle size, which 
has consequences for the boundary conditions at the wall. 
The temperature difference AO vanishes, which is equiva- 
lent to a w ~ ~. Thus the temperature profile across the 
bed can be calculated immediately up to the wall by 
means of the energy equation. 

CONCLUSION 

The heat transfer and pressure drop of packed beds have 
been considered. The state of the art is described, and 
equations for the prediction of the related phenomena are 
recommended. 

In particular, the particle-to-gas convective heat trans- 
fer can be calculated from the set of equations reported in 
[1]. Some emphasis was given to effects that can cause 
considerable errors in determining the convective heat 
transfer experimentally. Those mechanisms are natural 
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convection, heat  losses via contact  points, and the bypass 
effect. 

The pressure drop coefficient can be corre la ted  accord- 
ing to [10] or [22] over the entire Reynolds number  range 
of interest.  My results for very high Reynolds numbers 
indicate that the pressure drop  coefficient becomes inde- 
pendent  of Re for R e / ( 1 / e ) >  10 5. Fur thermore ,  the 
essential influence of  the void fraction and its distr ibution 
across the bed  is addressed,  and the importance of the 
bypass flow is pointed out. 

The effective thermal  conductivity of a particle bed for 
stagnant and streaming gas is most reliably predic ted  by 
the models  of  [25-28]. Addi t ional  exper imental  results are 
ment ioned [33] in which the bed tempera ture  was in- 
creased up to 1870 K. 

Finally, the wall- to-bed heat  transfer is considered. Here  
the equations of  [22] are recommended.  

NOMENCLATURE 

A geometry  coefficient, dimensionless 
Cp specific heat, J / ( k g  K) 
d part icle diameter ,  m 

D tube diameter ,  m 
Gr  Grashof  number  ( =  gd 3 A p / p u 2 ) ,  dimensionless 

g gravity constant,  m / s  2 

H height of the packed bed,  m 
K constant,  turbulent  Peclet  number,  dimensionless 

Nu Nusselt  number  ( =  a d / A ) ,  dimensionless 
n exponent  of the Reynolds number,  dimensionless 

A p  pressure difference, N / m  2 
Pe PEclet number  ( =  udp  Cp/A), dimensionless 

q heat  flux, W / m  2 
r radial  coordinate,  m 

Ra Rayleigh number  ( =  Gr  Pr), dimensionless 
Re Reynolds number  ( =  u d / v ) ,  dimensionless 
Sh Sherwood number  ( =  f l d / 6 ) ,  dimensionless 

T temperature ,  K 
u velocity, m / s  
V volume, m 3 

Greek  Symbols 
c~ heat  transfer  coefficient, W / ( m 2 K )  
fl mass transfer coefficient, m / s  

diffusion coefficient, m 2 / s  
void fraction, dimensionless  

T/ fluid dynamic viscosity, k g / ( s  m) 
A thermal  conductivity, W / ( m  K) 
v kinematic viscosity, m 2 / s  
p fluid density, k g / m  3 
~O pressure drop coefficient, dimensionless 

ax axial 
c central  
e effective 
g gas 
h hydraulic 
1 laminar  

Subscripts 

p pore  
r radial  
s solid 

sp sphere 
w wall 

infinite 
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