IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

477

A Constructive Approach for Finding Arbitrary Roots
of Polynomials by Neural Networks

De-Shuang Huang, Senior Member, IEEE

Abstract—This paper proposes a constructive approach for
finding arbitrary (real or complex) roots of arbitrary (real or
complex) polynomials by multilayer perceptron network (MLPN)
using constrained learning algorithm (CLA), which encodes the a
priori information of constraint relations between root moments
and coefficients of a polynomial into the usual BP algorithm (BPA).
Moreover, the root moment method (RMM) is also simplified into
a recursive version so that the computational complexity can be
further decreased, which leads the roots of those higher order
polynomials to be readily found. In addition, an adaptive learning
parameter with the CLA is also proposed in this paper; an initial
weight selection method is also given. Finally, several experimental
results show that our proposed neural connectionism approaches,
with respect to the nonneural ones, are more efficient and feasible
in finding the arbitrary roots of arbitrary polynomials.

Index Terms—Adaptive learning parameters, computational
complexity, constrained learning, multilayer perceptron networks,
polynomials, recursive, root moment, roots

1. INTRODUCTION

HE roots (zeros) finding of polynomials is often required

by various areas of signal processing, such as speech
processing, frequency or direction-of-arrival (DOA) estimation
of signals in noise, filter design, spectral analysis, phase
unwrapping, communication (coding theory and decoding
theory, cryptography), etc., [1]-[8]. So far there have existed
many reports on finding the roots of polynomials for a variety
of signal processing topics. Most of them, however, adopted
a conventional numerical method of roots finding, such as
Laguerre’s, Newton—Raphson’s, and Jenkins—Traub’s methods,
etc., [9], [10], in which successive approximations to the roots
are obtained [2], [9]-[13]. Moreover, almost all numerical
methods can only find the roots one by one, i.e., by deflation
method, the next root is obtained by the deflated polynomial
after the former root is found [9]. This means that the numerical
root-finding algorithm is inherently sequential.

Neural networks, especially multilayer perceptron network
(MLPN), have been used successfully in many fields [14]-[24].
Some examples include using two-layered perceptron network
to do the factorization of polynomials with two or multiple vari-
ables [16], [17], applying one-layered linear perceptron for the
inversion of nonsingular matrices [21] and solving linear equa-
tions by neural networks [22], [23], etc. These successful ap-
plications show that neural networks can indeed solve many
(neural) computation problems of signal processing related to

Manuscript received April 11, 2002; revised April 24, 2003 and December 5,
2003. This work was supported by a grant from NSF of China and the Grant of
“100 Persons Program” of Chinese Academy of Sciences of China.

The author is with the Institute of Intelligent Machines, Chinese Academy
of Sciences, P.O. Box 1130, Hefei, Anhui 230031, China (e-mail: dshuang@
iim.ac.cn; huangdeshuang @yahoo.com).

Digital Object Identifier 10.1109/TNN.2004.824424

linear algebra. The conventional BP algorithm (BPA) with a gra-
dient descent type, however, which often exhibits slow conver-
gence, largely limits their wide use in more neural computation
fields. For example, in 2000, Huang designed a Sigma-Pi (2-1I)
structured neural network to find the real roots of real coefficient
polynomials [24]. It was found that the BP training algorithm
would spend much time to converge unless those initial values
of network synapse weights, corresponding to the root values,
are appropriately selected.

In 1995, Perantonis, et al. proposed, using constrained
learning (CL) technique, which incorporated the a priori in-
formation from problems into the conventional BPA to train
MLPNs [14], [15] and to perform factorization of 2-D poly-
nomials [16]. The results show that the constrained learning
algorithm (CLA) not only exhibits rapid convergence, but also
renders accurate computation values. Hence, it is an effective and
practical method for solving those problems with constrained
conditions. Inspired by this training approach, we can solve
the above mentioned finding roots of polynomials by using the
CLA, which imposes the constrained relation between the roots
and coefficients of a polynomial into the CLA to train a suitably
structured MLPN. Some encouraging computer simulation
results were reported [25]. This method, however, will still
take much training time for high—order polynomials because of
computing the constraint relation involved in between the roots
and the polynomial coefficients. Therefore, to shorten the long
training time in finding the roots of high—order polynomials,
another constrained learning method based on the constrained
relation between the root moments [26] and the polynomial co-
efficients is proposed. Specifically, this root—-moment approach
can be simplified into a compact recursive version so that the
computational complexity can be further lowered. As a result,
those problems of rooting high—order polynomials can be easily
solved.

In this paper, we further extend these results into a more
general case of finding arbitrary (including real or complex)
roots of arbitrary (including real or complex) polynomials. In
the process of following derivations, we will always consider
the case of finding complex roots of polynomials. Specifically,
we also give an adaptive method of how to select the learning pa-
rameters with the CLAs and an initial weight selection method
for the root finders.

Why do we revisit this topic of the root-finding polynomial
since there have been many numerical methods? The motivation
based on three facts is stated as follows.

1) It is well known that neural networks with the flexible
parallel structures like brain can obtain simultaneously the
problem solutions. Therefore, by using neural network
approach to find the roots of polynomials, we can obtain

1045-9227/04$20.00 © 2004 IEEE

478

all roots simultaneously and in parallel, in particular,
when the computations were run on a parallel computing
machine. On the contrary, most of nonneural numerical
methods can only find the roots one by one and increasing
the number of processors will not increase the speed of
finding the solution. Therefore, in essence, the speed for
the numerical methods is certainly slower than the neural
methods.

2) Since the numerical methods are by deflation method, to
sequentially find the roots, each new root is known with
only finite accuracy and errors will creep into the deter-
mination of the coefficients of the successively deflated
polynomial [9]. Hence, the accuracy for the nonneural
numerical approach is fundamentally limited and is not
possible to surpass the one for the neural root-finding ap-
proach that simultaneously finds all roots.

3) All nonneural approaches need to find the good candi-
dates of initial root values, otherwise the designed root
finder will not converge [9], [10], which will certainly
increase the computational complexity and consume ad-
ditional processing time. On the other hand, however,
our proposed neural approaches are instructed by the a
priori information from the problem imposed into the
CLA so that they almost do not need to compute any ini-
tial root values except for randomly selecting them from
the uniform distribution in [—1, 1]. The initial weight se-
lection method (IWSM) discussed in the sequel, however,
is only done if we wish to get some insights into the ini-
tial weights so that the selected weights are capable of
assuring the more rapid training to be achieved. Specifi-
cally, an important point to be stressed is that the IWSM
is adopted only if the consumed time for selecting the ini-
tial weights can be neglected with respect to the one for
training the neural root—finder involved.

So it is in considering the three facts above that we address
connectionism method to discuss this topic of root-finding poly-
nomial.

This paper is organized as follows. Section II presents the
fundamental problem of finding the roots of polynomials, in-
cluding the constrained relations implicit in polynomials such as
the roots-coefficients relation and the root-moments coefficients
relation. Section III discusses the MLPN root finder model for
rooting polynomials and presents the corresponding complex
CLAs. Section IV focuses on the computational complexity es-
timates of the root-moment method, the recursive root-moment
approach, and the IWSM as well as the adaptive learning param-
eter scheme. Section V presents and discusses several experi-
mental results. Finally, several concluding remarks and further
research directions are arranged in Section VI.

II. PROBLEM PRESENTATION

A. n-Order Arbitrary Polynomial Problem

For a given n-order polynomial f(z) € C (C denotes the
complex domain)

f(2) =apz" +a12" P a2z 4t an 12 +a,

= Zan_kzk. (D
k=0

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

Without losing generality, letting a9 = 1 and n > 2,
we can write the corresponding complex polynomial co-

efficients a;(¢ = 0,1,...,n — 1) into a vector form
a = lag,a1,...,a,_1]% € C®. The aim of finding the
roots of this polynomial is how to obtain the root vector
A = [AM,d2,..., AT € C* so that the polynomial can

be factorized into f(z) = [[;—, (2 — ;). In the past, one
generally used numerical methods to solve this problem [2],
[9]-[11]. Here, we consider adopting neural network technique
to seek the solutions. Assume that we construct an MLPN to
deal with this problem of finding complex roots of polynomial;
then, the n-approximate complex roots w;(i = 1,2,...,n) are
estimated from the network involved. As a result, we can obtain

f(z) =~ H(z—wi). 2)

1=1

For this n-order polynomial equation f(z) = 0 with n complex
roots w;(i = 1,2,...,n), the problem is how an MLPN model
can be designed to find these complex roots. In the following
section, we will present the basic principle using the MLPN
model to find complex roots of polynomial.

B. Constrained Relations Implicit in Polynomials

Before presenting a new complex CLA by imposing the con-
strained relations from the problem into the conventional BPA,
it is necessary for us to investigate the constrained relations or
additional information implicit in a given polynomial so that a
specific CLA can be constructed to find the arbitrary roots of
polynomials.

1) The Constrained Relation Between Roots and Coefficients
of a Polynomial: 1t is well known that there exists the con-
strained relationship between the (real or complex) roots and
the coefficients of an n-order polynomial as follows [27]:

Y i = a1
Z: n)\2)\ = a2
e 3)

)\1)\2 tee)\n = (—1)"an.

This is the fundamental result from polynomial theory. There-
fore, if the conventional BPA can be supplemented by such a set
of constrained relations to compose a CLA for finding the cor-
responding roots of polynomial, then the learning process will
be certainly speeded up and the accuracy for the root solutions
will be possibly improved.

2) The Newton Identities: In addition, another constrained
relation, called as the root moment of polynomial first formu-
lated by Isaac Newton, is introduced here, which leads to the
relationships known as the Newton identities (Stathaki [26] and
see the references therein). The root moment of a polynomial is
defined as follows.

Definition 1: For an n-order polynomial as (1), assume that
the corresponding n roots are, respectively, A1, Az, ..., and \,,
then, the m (m € Z, here Z denotes the integer domain) order
root moment of the polynomial is defined as

=1

HUANG: CONSTRUCTIVE APPROACH FOR FINDING ARBITRARY ROOTS OF POLYNOMIALS 479

Obviously, S,,’s are possibly complex number which
depend on A;’s. Furthermore, there hold Sy = n and
(dS,n/dX;) = mA"~'. According to this definition of the
root moment, we can readily obtain the recursive relationship
between the m-order root moment and the coefficients of the
polynomial as follows:

Si+a; =0
S2+a151 +2a2 =0
. 5)

Sm + CLlSm_l + 4 CLnSm_n =0.
The above recursive relationship is named as Newton identity
[26]. Specifically, the above relationship can be used to calculate
S,, for m < 0. From these Newton identities, we can obtain a
theorem as follows.

Theorem 1: Suppose that an n-order polynomial as (1) is
known, then, a set of parameters (root moment) {S,,,m =
1,2,...,n)is solely determined recursively via (5). Conversely,
given the n root moments .S,,,, an n-order polynomial like (1) is
solely determined recursively via (5).

For the case of m < 0, however, the above same conclusion
can be stated as follows.

Corollary 1: Suppose that an n-order polynomial as (1) is
known, then, a set of parameters (root moment) {S,,,m =
—1,—2,...,—n) is solely determined recursively via (5). Con-
versely, given the n root moments {S,,,,m = =1, —2,...,—n),
an n-order polynomial like (1) is solely determined recursively
via (5).

After discussing the constrained conditions implicit in poly-
nomials, in Section III, we shall develop the neural network root
finder model and construct a suitable complex version of the
CLA for finding the arbitrary roots of arbitrary polynomials.

III. MULTILAYER PERCEPTRON NETWORK ROOT-FINDER
MODEL AND ADAPTIVE COMPLEX CONSTRAINED
LEARNING ALGORITHMS

A. Multilayer Perceptron Network Root-Finder Model

Considering an n-order arbitrary polynomial f(z), the idea
for finding the complex roots of the polynomial by neural net-
works is to use a two-layered perceptron network to represent
or approximate this polynomial so that those weights of the
input-hidden layer of the network try to represent, or approx-
imate, the complex roots of the polynomial. Assume that the
two-layered perceptron network model, as shown in Fig. 1, is
configured to perform the task. Obviously, this network is of the
size of 2 —n — 1 with a structure of two input neurons, n hidden
neurons, and one output neuron. As a result, this model, which is
somewhat similar to the >-1I neural network [28], is in essence
a one-layered linear network extended by a difference-product
unit. The network has two input neurons corresponding to the
terms of 1 and z, and n hidden neurons of forming the dif-
ference between the input z and weights w;’s, and one output
product neuron of performing the multiplications on the outputs
of n hidden neurons. Only the weights between the input neuron
clamped at value 1 and the hidden neurons need to be trained.
The weights between the input z and the hidden neurons and
those between the hidden neurons and the output neuron fixed
at 1s.

¥

Fig. 1. A two-layered MLPN model architecture for finding complex roots of
arbitrary polynomials.

From the above analyses, in mathematical terminology, the
output of the sth hidden neuron in the network can be written as
; = 2z —w; -1 = z — w;, where w;(i = 1,2,...,n) are the
network weights of input-to-hidden layer, i.e., the complex roots
of the polynomial to be estimated. The output of the output layer
performing multiplication on the outputs of the hidden layer can
be denoted as

i(z) = [[ai = [[(= — wo)- (6)
=1 =1
The outer-supervised (target) signal setup at the output of this
network model is f(z). In fact, if (6) is made the logarithmic
transformation after absolute operation, we can obtain the fol-
lowing:

g=Mjz)| => In|z —wi. (7)
=1

As a result, another neural root-finder model for finding the
complex roots of polynomial, which is structurally similar to the
factorization network model proposed by Perantonis et al. [16],
can be easily derived. In this model, the hidden neurons, which
compute the linear differences as in the above model, become
nonlinear hidden neurons with a logarithmic activation function
and the output neuron performs a linear summation instead of
multiplication. As pointed out in [16], this structure with loga-
rithmic activation functions has been preferred to the (X —1I) ar-
chitecture employed in [17] and [28] since it produces smoother
cost function landscape avoiding deep valleys and thus facili-
tates learning. In the sequel, we shall focus on discussing this
model.

In the following subsection, we shall present and discuss
the complex CLA, which incorporates into the training of the
MLPN the a priori knowledge about the nature of the problem
in the form of constraints that is suitable for the above two
neural network models for finding polynomial roots.

B. Adaptive Complex Constrained Learning Algorithms for
MLPNs

Itis well known that the commonly used BPA, with a gradient
descent type [30], may often lead to unsatisfactory solutions of
the given problem [14]-[16]. Because the error cost function de-
fined at the output of the MLPN may include many long narrow
troughs that are flat in one direction and steep in surrounding
directions, the corresponding training speed is very slow [14],
[15], [31], [32]. If the gradient descent is supplemented with a
momentum acceleration, zigzag paths will probably be avoided

480

and the learning process will be accelerated [14], [15]. However,
such an improvement on the BPA can meet only one target— im-
provement of the convergent speed. It is still difficult to realize
the other two targets at the same time—better generalization ca-
pability and a smaller number of local minima. The reason is that
this BPA does not take into account any additional information
about the nature of the problem, except for the network archi-
tecture and the desired input-target output relation [14]-[16].

In 1995, Perantonis and Karras proposed a new CLA [14],
[15] by incorporating additional information about the desired
behavior of the hidden units and synaptic weights, which prove
to be superior to other well-known supervised learning algo-
rithms because of the smaller number of local minima, higher
learning speed, and better generalization capability.

In this paper, we apply this CLA incorporated into the re-
lation between roots (weights) and coefficients of polynomials
to finding the complex roots of polynomials. Suppose that P
training patterns are selected from the region |z| < 1 of com-
plex domain C, an error cost function (ECF) can be defined at
the output of the network

1 P
5 lep(w)P
p=1

E(w)

1 L
=5p Z (0p = yp)(0p — yp)" ®)
p=1

where w is the set of all weights in the neural network and the
superscript * denotes complex conjugate. The target signal is
o, = In|f(z,)| and the actual output of the network can be
expressed as y, = -, In|z, — wy.

The above variables z,,w;, and function f(z,) are all pos-
sibly complex-valued ones, so we must in the following do the
derivations according to the rule of complex variables. For an
arbitrary complex variable z = = + ¢y, where x and y are the
real and imaginary parts of z, and i denotes \/—1. For the con-
venience of deducing the learning algorithm, here we give a def-
inition of the derivative of a real-valued function (e.g., the ECF)
with respect to complex variable.

Definition 2: Assume a real-valued function U(w) is the
function of complex variable w with the real and imaginary
parts, wy and we, the derivative of U(w) w.r.t w is denoted as
(U (w)/0w) = (OU (w)/Own) + i(OU (w)/0ws).

1) Gradient Descent Algorithm: The BPA is based on the
gradient descent rule, which can easily be deduced from the
ECF. By taking the partial derivative of E(w) with respect to
(w.r.t.) w;, we have

S _9B(w) _ 1 iaE(w) Ay,
‘ ow; 2P = oYy ow;
1 & Zp — W
= erp(w.lz:——wilz' €))
p=1

As aresult, the gradient descent based BPA can be described as
follows:

(10)

where dw; = w; (k) —w;(k — 1) denotes the difference between
w; (k) and w;(k — 1), the current, and the past weight.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

2) Complex Constrained Learning Algorithm: We can see
in Huang [24] that the BPA has a very slow learning speed un-
less the corresponding suitable and effective initialized weights
are given. Although the approach for initializing weights can be
derived by separating different complex roots by means of the
polynomial theory, it will take a longer time to achieve the accu-
rate upper and lower bounds, especially for those higher order
polynomials.

To alleviate this difficulty, we incorporate the a priori infor-
mation such as the relationship between the complex roots, i.e.,
the weights and the coefficients of a polynomial, and the com-
plex root moments of the polynomial into the gradient descent
based BPA. This facilitates the learning process that leads to
better solutions. Following the idea of the CLA proposed by
Perantonis and Karras [14], [15], we develop a complex CLA for
finding the complex roots of a polynomial. Here, the additional
information available is the constraint relations defined in (3) or
(5). We can uniformly write them as ® = [®1, ®,...,P,,]T =
0(m < m) (T denotes the transpose of a vector or matrix), which
is composed of the constraint conditions of (3) or (5). Therefore,
the objective of the learning process is to reach a minimum of
the ECF of (8), which fulfills as good as possible the additional
constraints ¢ = 0.

In fact, the CLA proposed by Perantonis, et al. [14]-[16] is es-
sentially similar to the method proposed by Bryson and Denham
[32]. In the algorithm, to avoid missing the global minimum, a
constraint for updated weights is imposed. Consequently, the
sum of absolute valued square of the individual weight changes
takes a predetermined positive value (6P)?2

> ldwi|* = (6P)? (11)
=1

where dw; denotes the change of weight w;, 6 P is a constant.
This means that, at each epoch, the search for an optimum new
point in the weight space is restricted to a small hypersphere of
radius 6 P centered at the point defined by the current weight
vector. If 6 P is small enough, the changes to F(w) and ® in-
duced by changes in the weights can be approximated by the
first differentials dF(w) and d®.

In the following, we will derive the complex CLA based on
the constraint conditions of ® = 0 and (11). First, assume d®
to be equal to a predetermined vector quantity 6(), designed
to bring ® closer to its target (zero). To incorporate the two
constraint conditions of ® = 0 and (11) into the BPA, we in-
troduce suitable Lagrange multipliers for them so that a new
built target cost function includes the effects of these two con-
straint conditions. Assume that a Lagrange multiplier vector
V = [v1,va,...,vm]T is needed to take into account the con-
straints in & = 0 and another Lagrange multiplier y is intro-
duced for (11). The objective of learning process is to ensure that
the maximum possible change in |dE(w)]| is achieved at each
epoch. By introducing the function ¢, de is defined as follows:

USEDY |dwi|2]

(12)

de = dE(w) + (6Q" — d®™)V + p

HUANG: CONSTRUCTIVE APPROACH FOR FINDING ARBITRARY ROOTS OF POLYNOMIALS 481

where the superscript H denotes the conjugate transpose of a
vector or matrix. As a result, we can derive

. FH
dw; = 2 Y (13)
21 2u
— 1/2
uz—l Irs— I8 Ipk I 1Y (14)
2 [(6P)? = 8QM 11 16Q
V = —2ulp16Q + It Iyp (15)

where F; = [FY F® . FM)T FY) = (00, Jow;) (i =
L,2,...,n,5 = 1,2,....m), I;; = ", |Ji|* is a scalar
and [;F is a vector whose components are defined by 5]} =
S LEY (5 =1,2,...,m). Specifically, Ipp is a matrix,
whose elements are defined by I }]} =3, Fi(])Fi(k)* (4, k=
1,2,...,m).

Note that the derivation of the Lagrange multiplier parameters
w1 and V' can refer to Appendix A.

Equation (13) forms a new weight update rule, called as com-
plex CLA for the MLPN instead of the conventional BPA as de-
scribed in (10).

From (14), we can see that there are (m + 1) parameters
6P, 6Q;(j = 1,2,...,m), which need to be determined
before the leaning process begins. Parameter 6P is often
selected as a fixed value. However, the vector parameters
0Q;(j = 1,2,...,m) are generally selected as proportional
to ®;, ie, 6Q; = —k®; (j = 1,2,...,mand k > 0),
which ensures that the constraints ® move toward zero at an
exponential rate as the training progresses [14]-[16]. From
(14), we note that k should satisfy k < §P(®H ;1. ®)~1/2. In

practice, the simplest choice for k is k = ndP/y/®H IE}@,
where 0 < 1 < 1 is another free parameter of the algorithm
apart from 6 P.

Comments: It can be found that the first term of the right
hand of (13) is related to the gradient .J; = dF(w)/0w;, i.e.,
the BPA. The difference is that the former coefficient is 1/2u
(which is related to the a priori information of polynomial),
while the latter one is —». The specific key point is that the
second term of the CLA, —FiH V/2u (which is also related to
the a priori information from the problem), is greatly helpful to
instruct the search along the global minimum of the error surface
so that the optimal solutions (global minimum solutions) can
be readily reached within a shorter time. Therefore, this CLA
is an important learning algorithm that can ensure those neural
computation problems to be exactly solved within a reasonable
time.

IV. EVALUATIONS AND DISCUSSIONS ON COMPLEX
CONSTRAINED LEARNING ALGORITHMS

A. Computational Complexity Estimates

In literature [25], we can see that the root-finding method
based on this CLA is apparently faster than that based on the
simple BPA [30]. However, because we have to compute at each
epoch, the values of the constraint conditions of (3) or (5) used
for ® and their derivatives 9® /Jw, which are sharply dominant
in the entire computations of the CLA. Therefore, as the order
of polynomial f(z) increases, the training time will significantly

increase. In fact, we can estimate the number of multiplication
operations at each epoch for using the complex CLA based on
the constrained relation of (3) to find the complex roots of a
given n-order polynomial f(z) as the following remark [25].

Remark 1: At each epoch for finding all the complex roots
of a given m-order arbitrary polynomial f(z) based on the
constrained learning MLPN using the constraint conditions
from the first one to the mth of (3), the estimate of the number
of multiplication operations needed for computing ® and
0P /0w, CEx(n,m) is

CEx(n,m) =4) j°CI =>"jCi->"Ci+n+1
j=0 j=0 j=0

(16)

Specifically, when m = n, (16) becomes into CEy(n,n) =
4[(n®> — n — 4)2"=2 4+ n + 1]. Obviously, CEx(n,n) is of the
order O(2™) multiplication operations.

Likewise, we can give the estimate of the number of multi-
plication operations at each epoch for computing the constraint
conditions of (5) for ® and their derivatives 0% /0w, which is
stated in the following Remark 2.

Remark 2: At each epoch for finding all the complex roots
of a given m-order arbitrary polynomial f(z) based on the
constrained learning MLPN using the constraint conditions
from the first one to the mth of (5), the estimate of the number
of multiplication operations needed for computing ® and
0P /0w, CEg(n,m) is

2
CEg(n,m) = g(m—1)(nm2—|—10nm+3m—12n—|—6). (17)

Obviously, CEs(n,m) is of the order O(nm?) multiplication
operations, which is considerably lower than that of the original
root-coefficients relation method (RCRM). Specifically, when
m = n, (17) results in CEg(n,n) = (2/3)(n—1)(n3+10n> —
9n+6). The deduction of this Remark 2 is stated in Appendix B.

It can be found that the ratio 7. of CEx(n,n) and CEg(n,n)
will tend to oo with n — o0, i.e.,

CEx(n,n)

lim r. = lim Es(n,n)

n—o0 n—oo

= OQ.

(18)

B. Recursive Root-Moment Method

In fact, owing to the particular form of (5), we find that in
computing A" (i = 1,2,...,n), it is not necessary for us to
visit from A} to A7 considering the relation A" = A" 77 - A\
Therefore, in computing A\}" we can use the result in computing
)\;”_1 (i.e., the stored)\,’;”_1), which can be performed recur-
sively from 7 = 1 to ¢ = n. Consequently, we can make a fur-
ther reduction on the computational complexity.

Suppose s("™) to denote a vector s(™) = [A\7*, A7 ... AT,
where s = [1,1,...,1]7 is a vector with all elements for
1’s. Obviously, there is 50750 — S, = n. For the sake of
convenience, in the following, we give a definition about the
concept, a direct product between two vectors.

Definition 3: Assume two vectors are denoted as
a = [a1,a2,...,a,])T and b = [by,bs,...,b,]7T; then their
direct product is defined as a ® b = [a1by, azbs, . .., anb,]T.

482

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

TABLE 1
THE COMPARISONS OF COMPUTATIONAL COMPLEXITIES AT EACH EPOCH OF THE RCRM AND THE RMM AS WELL AS THE RRMM
n 1 2 3 4 5 6 7 8 9 10 11 12
CE;(n,n) 0 4 32 148 536 1692 4896 13348 | 34856 | 88108 | 217136 | 524340
CE¢(n,n) 0 24 128 388 896 1760 3104 5068 7808 11496 16320 22484
CEg(n,n) 0 24 92 228 456 800 1284 1932 2768 3816 5100 6644

According to this definition of direct product, we can obtain
the recursive formula of computing the root moments S,,, as
follows:

S = s A (19)
s(m+1) — S(m) ® S(l) (20)
Sy = sDT SO 1)

As a result, we can obtain from the above recursive formula,
two sequences {s(1),s(®) ... s(™} and {S;,55,...,5,}, both
of which will take a total of n(n — 1) multiplication operations
at each epoch. If we compute first their values at each epoch and
store them in memory so that the following CLA can call these
values, then a large number of multiplication operations will
be saved. Therefore, according to these recursive computation
formula, we can deduce another remark as follows.

Remark 3: At each epoch for finding all the complex roots
of a given n-order polynomial f(z) based on the constrained
learning MLPN using the constraint conditions from the first
one to the mth of (5) and (19)—(21), the estimate of the number
of multiplication operations needed for recursively computing
® and 99 /0w, CER(n, m) is

CEg(n,m) =2(m —1)(2nm + m + 2). (22)

Obviously, CEg(n,m) is only of the order O(nm?) multipli-
cation operations, which is also lower than that of the foregoing
root moment method (RMM). Specifically, when m = n, (22)
becomes into CEg(n,n) = 2(n —1)(2n% +n + 2). The deduc-
tion of this Remark 3 is given in Appendix B.

We can find that the ratio, r,, of CEg(n,n) and CEg(n,n),
will tend to oo with n — oo, i.e.,

. CEs(n,n)
lim ——"—~ =
n—oo CEg(n,n)

Table I gives the comparisons among the computational com-
plexities (CC) at each epoch of the original RCRM, the RMM,
and the recursive root-moment method (RRMM) versus the
polynomial order n under the condition of all the n constraint
conditions being used.! Obviously, from the results it is easily
found that the RRMM is indeed of the lowest computational
complexity as n increases. However, when n is chosen as
a smaller value, the conclusion is contrary. Specifically, the
computational complexity of the RCRM is lower than that of
the RRM and that of the RRMM whenn < 7andn < 5,
respectively, while the computational complexity of the RRMM
is always lower than that of the RMM for all n values (the ex-

(23)

lim r,

n—oo

Moreover, the most general case for complex computations, which are four
times the real computations, is considered.

ceptional case is n = 2 when their computational complexities
are completely equal, i.e., 24).

C. Initial Weight Selection

As pointed out in Section III, the CLA imposes the a priori
information into the ECF, which is different from the conven-
tional BPA. Consequently, it is easier to reach the global min-
imum on the error surface than the BPA. Hence, we can choose
randomly the initial weights from the uniform distribution in
interval [—1, 1]. However, sometimes, we wish to get some in-
sights into the initial weights so that the selected weights are
capable of assuring the more rapid training to be achieved. In
the following, we will give two lemmas that define the upper
and lower bounds of the initial roots (weights) of polynomials
[27].

Lemma 1: For an n-order arbitrary polynomial f(z) as (1),
suppose (to be its arbitrary root, then (satisfies |(| < M, where
M = maX{|an|7 1+ |a1|7) I+ |an71|}'

This lemma gives the upper bound of all roots (weights) of
polynomial f(z).

Lemma 2: For an n order arbitrary polynomial f(z) as (1),
suppose (to be its arbitrary root, then satisfies |(| > m, where

m= (max {1+ })

This lemma gives the lower bound of all roots (weights) of
polynomial f(z).

These two lemmas expound the selection method of the upper
and lower bounds of the initial weights of an arbitrary polyno-
mial. Specifically, a key point to be stressed is that this IWSM
is adopted only if the consumed time for selecting the initial
weights can be neglected with respect to the one for training the
neural root finder involved.

|an71|

|an|

|ad]

]

L1+

D. Adaptive Learning Parameter (ALP) With the Complex CLA

From the complex CLA as described in Section III, we can
see that there exists one key parameter, § P, in iterating process,
which needs to be determined beforehand. If this parameter is
chosen as a constant in the experiments, the training process
will certainly become very slow. In fact, this parameter should
become smaller and smaller as the training process progresses
since the global minimum is of needle shape on the error surface.
Therefore, this parameter should be initially chosen as a larger
value, then it would become smaller and smaller as the training
process goes. As aresult, an adaptive learning parameter (ALP)
scheme is proposed

§P(t) = 6Py (1 —eF), 6P0) =8P, (24)

op
b

HUANG: CONSTRUCTIVE APPROACH FOR FINDING ARBITRARY ROOTS OF POLYNOMIALS

Error Value

0 100 200 300 400 500 600
Iterating Number
(a) The learning error curve

Weight (Root) Value

o] 100 200 300 400 500 600
Iterating Number
(¢c) Theroot w, =1.2
PRPYT TH — SRR SO SOOI S
© H H H
> : i :
=3 : !
(=] i '
< s s ' |
2 "YAOpTTrT e N
=) H ,
R e
-1.25 B ',....----é--------:r -
_1.5 'S i -I i i
0o 100 200 300 400 500 600

Iterating Number

(e) Theroot w, =-0.5

483

0.3
0.1
3 -01
[
>
= -03
(=}
o
= -05
-
=2
= -07
-09 +
-1.1 -
o] 100 200 300 400 500 600
Iterating Number
(b) The root w, =0.1
(4}
=
©
=
B
(=]
e
=
B=2
@
=
04 i i i i i
0 100 200 300 400 500 600
Iterating Number
(d) Theroot w, =1.2
24 L] L] L] L] ¥
[}
=
(o]
=
B8
[=]
o
k<]
=2
D
=
0 i i i i i
0 100 200 300 400 500 600

Iterating Number

(f) The root wy =2.0

Fig. 2. The learning error and weights (roots) curves for the root finder of the RCRM for the polynomial f1(z).

where 0 Fp is the initial value for § P, which is usually chosen
as a larger value; ¢ > 0 is the time index for training and), the
scale coefficient of time ¢, which is usually set as 6, > 1.

V. COMPUTER SIMULATIONS AND DISCUSSIONS

Before presenting the experimental results, three assumptions
are made: (1) the input sample pairs (z, f(z)) for each poly-
nomial involved f(z) are obtained from the domain of |z| <
1; (2) the total number P of input training sample pairs for
each polynomial involved f(z) is fixed at 100; and (3) the ini-
tial weight (root) values of the MLPN, unless otherwise stated,
are randomly selected from the uniform distribution in [—1, 1].
This section presents several examples by computer simulations

to illustrate the effectiveness and efficiency of our proposed
approaches. To evaluate a root finder performance (including
speed and accuracy), we define two evaluation criteria as fol-
lows.

1) The roots of a polynomial to be determined were known.
To evaluate the performance of a root finder in this case,
the definition of the following average relative error cri-
terion is used [25]:

n

1
dr:EZ

=1

N (25)

where J; is the ith complex root value of the given poly-
nomial computed by the root finder, i.e., the weight, w;,

484

Error Value

Weight (Root) Value

Weight (Root) Value

Fig. 3.

2)

100 200 300 400 500
Iterating Number

(a) The learning error curve

2.4 v r v r
22f--------- R R R ERERt EEEELEEEE .

o - ememeaaes S .
7 R U DN RO AR
L] -
1aBt-h---ch-mee - oo o EnECE EEREERPS .
12 i

T St S LSS S -
o8f--------- oo ---------- R dommonnoos .
o6b - e P .
0.4 i i i i

) 100 200 300 400 500

Iterating Number

(c) Theroot w, =1.2

Iterating Number

(e) Theroot w, =—0.5

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

Weight (Root) Value

200 300 400 500
Iterating Number

(b) The root w, =0.1

Weight (Root) Value

o 100 200 300 400 500
Iterating Number

(d) Theroot w;, =1.2

25 ' T T T
2 Y*‘ . .
S 185K s e drmmeeeees IRRREEEEEE -
g ! ! ! !
g 1 o o e .
S
o H H H H
= osfp--------- e e R -
= ; . . .
= ' :) :
2 Of eoeeaeas fooeeee Freoeeeees R .
05 - S O R L -
P ; ; ; ;
0 100 200 300 400 500

Iterating Number

(f) The root w, =2.0

The learning error and weights (roots) curves for the root finder of the RMM for the polynomial f1(z).

and J; is the 4th true (exact) root value corresponding to
this polynomial. Obviously, the better the root finder is,
the smaller the index d,. is.

The roots of a polynomial to be determined were un-
known. In practice, for most real problems the exact root
values of the polynomials are unknown. In such a case, to
evaluate the performance of a root finder, we can use an-
other measure for the accuracy of the approximation [25]

1 n
C, = EZW —a,|? (26)
=1

where {a;} are the coefficients of the original polynomial
f(2), and {@;} the coefficients of the reconstructed poly-
nomial f(z) by the estimated roots {w; }. Obviously, the
better the root finder is, the smaller the index C,, is.

A. Finding the Roots of a Polynomial With Known Roots

In this case, assuming a fifth-order polynomial f;(z) = 2° —

42* +4.432% — 0.1642? — 1.4642 + 0.144 with the known root
values A\; = 0.1, Ao = A3 = 1.2, Ay = —0.5 and \5 = 2.0, we
now use an MLPN trained by the CLAs, respectively, based on
the RCRM, the RMM, and the RRMM to find the corresponding

HUANG: CONSTRUCTIVE APPROACH FOR FINDING ARBITRARY ROOTS OF POLYNOMIALS

485

0.7
06
05
S
s 04
™ >
= =
s mg 0.3
] = 02
= =
w § 0.1
0
-0.1
_0.2 A 'l A A
0 100 200 300 400 500 0 100 200 300 400 500
Iterating Number Iterating Number
(a) The learning error curve (b) The root w; =0.1
24 ' Y T T
2.2 - m et e -
g 1 =2
~ ©
T - 1 4 =
=] k]
S 16t e - &
B 1all-k--moe e - 5
k= S
; 12HBRBIHE-- e~ - " -2 - - -+ ;
B R B e -
0.8 A A A 'l
0 100 200 300 400 500
Iteratina Number Iterating Number
(c) Theroot w, =1.2 (d) Theroot w; =1.2
-0.25 L ¥ L3 L3 25 L3 L] L L]
-0.5
[0 L)
= =
= S -1 | A R S S 4
2 -075 =
S S
& e &
= , =L ' 5 e s A -
R s e {1 3
= i = osb .
“1.25 oo R SRR < ;
s i z ; i) S feeeeees ST P E
0 100 200 300 400 500 0 100 200 300 400 500
Iterating Number Iterating Number
(e) Theroot w, =—0.5 (f) The root w, =2.0
Fig. 4. The learning error and weights (roots) curves for the root finder of the RRMM for the polynomial f;(z).

roots. Assuming the termination error (TE) to be 1.0 x 10711,
the numbers of the constrained conditions for the three methods
to be m = 4 and without using the ALP method, it was found
from the experiments that the network training would be ex-
tremely slow — even oscillate or diverge. Therefore, to speed up
the training process, the ALP method for § P in (24) is adopted.
For the three methods, supposing three parameters in the CLAs
to be chosen as the same values, i.e., 6Fy = 1.0,6, = 10.0
and n = 0.75, it could be found that the corresponding MLPNs
converge to the given TE after 1076781, 74002 and 71 526 iter-
ations, respectively, and the corresponding learning (error and
weight) curves are shown in Figs. 2—4, where only the starting

500 iterations are shown. From Figs. 3 and 4, it can be seen that
at the initial stage of 500 iterations, the corresponding learning
(error and weight) curves for the RMM and the RRMM are
almost completely identical. The reason for this result is that
the RRMM is a fast recursive form of the RMM. Hence, the
change traces for their corresponding errors and weight values
are somewhat similar as well.

In addition, in all experiments for neural and nonneural
methods we adopt Pentium III with CPU clock of 795 Mhz
and RAM of 256 Mb, and use Visual Fortran 90 to encode.
Consequently, we can obtain the estimated root values, the iter-
ating numbers (IN), and the d,.’s as well as the CPU times for

486

THE PERFORMANCE COMPARISONS OF THE THREE NEURAL ROOT FINDERS OF THE RCRM AND THE RMM AND THE RRMM AND THE THREE NON NEURAL ROOT

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

TABLE 11

FINDERS OF LAGUERRE AND NEWTON-RAPHSON AND JENKINS-TRAUB FOR THE POLYNOMIAL f; (z).

CPU
Index w w, w3 Wy Ws IN Time d,
(Seconds)

RCRM 0.09999987 | 1.2005882 | 1.1994117 | -0.5000001 | 2.0000001 | 1076781 146.83 4.964E-05
RMM 0.1000001 1.2001810 | 1.1998166 | -0.5000001 | 2.0000024 74002 21.34 3.310E-05
RRMM 0.1000001 1.2002169 | 1.1998809 [-0.5000001 | 2.0000021 71526 7.21 6.115E-06
Laguerre 0.0999973 1.2005921 | 1.1995214 | -0.5000003 | 2.0000004 12392 121.24 2.376E-04
Newton-Raphson | 0.09999988 | 1.2003105 | 1.1996134 | -0.5000002 | 2.0000011 123247 156.35 5.328E-05
Jenkins-Traub 0.1000002 1.2001328 | 1.1997345 | -0.5000001 | 2.0000018 152321 172.92 3.737E-05

the three neural methods and three nonneural methods such as
Laguerre, Newton—Raphson and Jenkins—Traub, respectively,
as shown in Table II. It can be seen from Table II that the CPU
time for the RCRM is all considerably longer than those for
the other two neural methods, but slightly shorter than those
for the three nonneural methods. Obviously, the experimental
results from Fig. 2—4 and Table II show that the RRMM is
of the fastest training speed. Furthermore, the estimated ac-
curacy is higher than the other two neural methods and the
three nonneural methods as well, where the reason might be
explained to be that the shorter training time will alleviate
the limited word-length effect for computers so that the ac-
curacy for the root finder is relatively improved. Furthermore,
the experimental results also show that the neural methods’
performance is, whether in speed or accuracy, superior to the
nonneural methods.

B. Finding the Roots of a Polynomials With Unknown Roots

We consider a sixth-order complex coefficient polynomial
fo(2) =254+ (B+40)25 +(2+2i)2* — 22+ (=3 —1i)z — 2 — 24,
where the corresponding root values are unknown. We employ
the MLPN trained by the CLAs, respectively, based on the
RCRM, the RMM, and the RRMM to find the complex roots
of this polynomial and compare their performances with the
three nonneural methods mentioned above. According to the
initial weight selection method of Lemmas 1 and 2, for f2(2)
the initial weights should be chosen in the range of 0.472 <
|w;(0)] < 4.16. Letting the TE be 1.0 x 10™'* and {§P, =
10.0,7 = 0.01,6, = 5.0} in all the three neural methods,
consequently, the corresponding learning error curves for three
methods are shown in Fig. 5, which shows that the RRMM is
of the fastest training speed. In addition, Table III demonstrates
the estimated root values, INs, CPU times, and C},’s for the six
methods. The experimental results again show that the RRMM
is of the fastest training speed and a relatively higher estimated
accuracy among the six methods and the neural methods are
in performance (speed and accuracy) better than the nonneural
methods.

14 Y T T

Error Values

Iterating Number

x10°*

Fig.5. Thelearning error curves for three methods of the RCRM and the RMM
and the RRMM for finding the complex roots of the polynomial f2(z).

C. Different Number of Constrained Conditions

In this section, we investigate how the performances of the
root finders are related to the number of constrained conditions.
Given a four-order polynomial f3(z) = z*—52%+4 with known
root values A\; = —2.0, Ay = 2.0, A3 = 1.0 and \y = —1.0, we
used the CLAs based on the RCRM, the RMM, and the RRMM,
respectively, to train a 2-4-1 structure of MLPN for finding the
real roots. Supposed four and two constrained conditions or-
dered from the first one of (3) or (5) to be employed, respec-
tively, and the TE to be 1.0 x 10~1°, Table IV shows the perfor-
mance comparisons between the three neural root finders with
two different number of constrained conditions.

The results show that the training times of the root finders
with four constrained conditions are much shorter than the
training times with two constrained conditions. More exper-
imental results show that for the cases of close roots, using
the fewer constrained conditions might make the learning not
converge (sometimes, oscillate in the vicinity of some points
as the BPA does). It must be pointed out, however, that the
accuracies of the root finders with fewer constrained conditions

HUANG: CONSTRUCTIVE APPROACH FOR FINDING ARBITRARY ROOTS OF POLYNOMIALS 487

TABLE III
THE PERFORMANCE COMPARISONS OF THE THREE NEURAL ROOT FINDERS OF THE RCRM AND THE RMM AND THE RRMM AND THE THREE NON NEURAL ROOT
FINDERS OF LAGUERRE AND NEWTON-RAPHSON AND JENKINS—TRAUB FOR THE POLYNOMIAL f>(z)

. . CPU Time C
Indices Estimated Roots IN (Seconds) p

(1.1131201E-08, -0.9999999)
(-1.0000002, 3.5500012E-08)
(1.00000140, 1.4221039E-08)
(3.3221931E-08, 0.9999999) 1232820 236.63 2.36E-010
(-0.9999996, -0.9999994)
(-2.0000008 -4.4508921E-07)
(-1.0500023E-08, -0.9999999)
(-1.0000001, 4.5223017E-08)
(0.9999999, -4.0636472E-08)
(2.6403824E-08, 0.9999999) 160689 46.54 7.45E-011
(-0.9999999, -1.0000002)
(-2.0000021, -5.3523230E-08)
(4.5333270E-08, -0.9999999)
(-0.9999999, 7.7600233E-08)
(1.0000000, -7.6832020E-09)
(2.6200932E-08, 0.9999999) 83138 13.71 8.64E-011
(-1.0000000, -1.0000001)
(-2.0000000, -1.3721032E-08)
(3.7621321E-08, -0.9999997)
(-1.0003101, 6.6329801E-08)
Laguerre (1.0000210, 5.6823034E-08)
gu (5.2783234E-08, 0.9999998) 92878 244.82 5.34E-09
(-0.9999994, -0.9999991)
(-2.0000321, -7.5617433E-07)
(2.4546367E-08, -0.9999998)
(-1.0000031, 4.4396212E-08)
(1.0000005, 3.9848201E-08)
Newton-Raphson (2.7934292E-08, 0.9999998) 334328 287.36 3.27E-010
(-0.9999995, -0.9999993)
(-2.0000042, 3.4345902E-07)
(1.7223401E-08, -0.9999999)
(-1.0000002, 5.5625401E-08)
(1.0000201, 4.3240230E-08)
(5.3423454E-08, 0.9999999) 543256 313.64 2.45E-010
(-0.9999995, -0.9999996)
(-2.0000020, -5.4234810E-07)

RCRM

RMM

RRMM

Jenkins-Traub

TABLE 1V
THE PERFORMANCE COMPARISONS OF THE THREE NEURAL ROOT FINDERS OF THE RCRM AND THE RMM AND THE RRMM WITH
FOUR AND TWO CONSTRAINED CONDITIONS FOR THE POLYNOMIAL f3(z)

CPU Time
Index Parameters Computed root values TIN d,
(Second)
-2.00000209
0B =1.0
; 2.00000254
45;’2;5?;2:‘1 6,=50 099999883 19151 2.36 1.157E-06
RCRM n=0.1 -0.99999886
2 constrained 8P, =1.0 -2.00000011
conditions _ 2.00000098
6,=50 90990873 373266 7.64 5.518E-07
n=0.1 -0.99999960
4 constrained 8P, =50 -2.00000352
conditions _ 2.00000348
6,=50 0.99999988 441 123 9438E-07
7=0.1 -0.99999984
RMM 2 constrained 8B =50 -2.00000085
conditions ~ 2.00000169
6,=50 o 0999081 1791239 3.32 7513E-07
n=0.1 -0.99999955
4 constrained OB, =50 -2.00001054
conditions _ 2.00001071 251
6,=50 099999988 081 2.699E-06
7=0.1 -1.00000005
RRMM | 2constrained | 6p =50 -2.00000103
conditions _ 2.00000186
6,=80 o 99908, 2826496 2.96 7.995E-07
n=0.1 -0.99999954

488

x10°
3.6 = rcrm
RMM
3 3 R ,./‘4
o 3.4 —+ Laguerre //
© -6~ Newton-Raphson X A
§ 3.2 H = Jenkins-Traub / N AN A/e\n/c
< 3 o
N
g 20 e }_E,_\(B,E_E,EHB\B/E—E—B-—E\E/E’EJ
= 2.4
10}
wl }—W—HW
22
2 prg - #*
5 10 15 20

Order of Polynomial

Fig. 6. The six sets of curves of the average estimated roots accuracies of the
three neural root finders and the three nonneural root finders versus the order of
polynomial f4(z).

are higher than those with more constrained conditions in the
case of the same termination error that can be seen from Table IV
since more iterating numbers are needed.

Comments: It can be found from the experimental results
that the more the number of the constrained conditions is, the
faster the convergent speed is. In general, when the constrained
conditions are fully used to design the CLA, it will be easier
for the algorithm to converge to the global minima. In addition,
to avoid as the local minima as possible, it is suggested that
the initial weight selection method introduced above should be
adopted, especially for the case of the less number of the con-
strained conditions being obtained.

D. Higher Order Polynomial Case

Finally, to observe the effects of the order n of a
polynomial on the estimated root accuracy, we use
L-order polynomial f4(z) with known root values r; =
exp(j2(w/L)i)(i = 1,2,...,L) to conduct related experi-
ments. Assuming the TE e,, = 1.0 x 10~% and the controlling
parameters {6Py = 1.0,6, = 4.0,n = 0.7} to be kept
unchanged in experiments, for each root finder (including the
three neural ones and the three nonneural ones), we change the
order of the polynomial from . = 2 to L = 20 and repeat,
respectively, 40 experiments by choosing different initial
connection weights from the uniform distribution in [—1,1].
Consequently, by (25), we can obtain six set of curves of the
average estimated root accuracies corresponding to the six
root-finding methods, as shown in Fig. 6. From Fig. 6, it shows
that the neural root-finding methods are almost not sensitive
to the order of the polynomial (however, the accuracies slowly
decreases due to a high load of computational complexity as the
order of polynomial increases), while the nonneural methods’
accuracies significantly decrease as the order of the polynomial
increases, especially for the Laguerre’s.

Further, for an L = 15 order polynomial f5(z), assuming
the controlling parameters are fixed as above under four dif-
ferent termination errors: (a) e, = 0.1, (b) e, = 0.01, (¢)
e, = 0.001, and (d) e, = 0.0001, we use the CLA-RRMM
to repeatedly train the corresponding MLPN root finder with

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

40 different random initial connection weights in [—1, 1] until
the four TEs are reached. The estimated roots distributions in
the complex plane are illustrated in Fig. 7. From Fig. 7, it can
be seen that the estimated roots’ accuracies become higher and
higher and the estimated roots’ scatters smaller and smaller as
the termination accuracy increases. At the same time, these re-
sults also show that our proposed MLPN root finders are in-
dependent of the initial weight values. In other words, even if
the initial roots are randomly chosen, our proposed MLPN root
finders can also rapidly find the zeros of polynomials.

VI. CONCLUDING REMARKS

This paper discussed how to use MLPNs to find the roots
(including real or complex) of arbitrary polynomials, which is
an important research topic for neural computations and digital
signal processing. The problem of finding roots of polynomials
may be mapped to MLPNs similar to a function approximation
problem. To speed up the training speed for the roots-finding
MLPN:S, the a priori information from the problems such as the
root-coefficients relation and the root moments implicit in the
polynomials must be employed to construct a new complex con-
strained learning algorithm (CLA). This paper discusses how
to integrate these constrained conditions available from poly-
nomials into the training of MLPNs for the finding roots. We
investigated imposing the root-coefficients relation and the root
moments, respectively, into the conventional BPA for formu-
lating the corresponding CLAs. Specifically, for the a priori in-
formation of the root moments from polynomial, we derived
a recursive root moments based CLA to train a suitable struc-
ture of MLPNSs for finding the roots of polynomials, which is
of more rapid training speed. Moreover, we made the estimates
of computation complexities on the RCRM, the RMM, and the
RRMM, respectively. It was found from both theory and ex-
periments that the RRMM is of lowest computation complexity
among the three methods. In addition, we proposed an adap-
tive learning parameter method for selecting the weight bound
parameter § P and gave the initial weight selection method for
the roots finding MLPNs. Finally, by computer simulations, it
was showed that the RRMM is the best method among the three
methods not only in the training speed but also in the estimated
accuracy.

Specifically, in this paper, we also discussed and compared
the performance of the three neural root finders based on the
RCRM, the RMM, and the RRMM, respectively, and the three
nonneural root finders such as Laguerre, Newton—Raphson, and
Jenkins—Traub methods. The experimental results showed that
although coded by Visual Fortran 90 program and performed on
conventional von Neumann sequential architecture computer
with an inherently parallel algorithm, the three neural root
finders have significantly faster training speeds and better
convergent root accuracies with respect to the three nonneural
methods.

Further works will include how to find, by neural connec-
tionism method, the roots with the maximum and minimum
moduli rapidly for a given polynomial so as to exactly judge
whether a polynomial can be utilized to design a minimum
phase system in signal processing.

HUANG: CONSTRUCTIVE APPROACH FOR FINDING ARBITRARY ROOTS OF POLYNOMIALS 489

15

45 : 5

15 -1 -0.5 0 0.5 1 15
(@ e =0.1
15
1 o
T .
e .
'\\
/S \‘
05 S N\
// . \
[« |
0
N J
A\ o
05 X VA
'\\ o/ ;
1 ‘\\§ l//
15 : i
15 1 05 0 0.5 1 15
(c) e, =0.001

Fig. 7.
(b) e. = 0.01,. (c) e, = 0.001.(d) e,, = 0.0001.

APPENDIX A

The derivations of (14) and (15) are stated as follows.

By substituting (13) into the condition 6Q = Y ., dw;F},
we have §Q = S (JF, — F,FEV 2p) =
(IJF—IFFV/2/L), where IJF = Z?:l JiFi7IFF =
SELUEFE, we have V. = —2ulpp6Q + Tnplsr,
which is just (15). By substituting (13) into (11), we have
Yoo (Ji = EEV)*(J; — FEV) = 44%(6P)?, which can be
further rewritten as Iy; — IfIFV —VHE;p + VEIpV =
44*(6P)?, where I;; = S |J;|>. Considering (15)
and (I;3)" = Ipf and p < 0, we have p = —(1/2)
[(Iy5 — I ImnIye/(6P)? — QT I;1.6Q)]Y/2, which s
just (14).

APPENDIX B

Lemma B.1: The squared sum of n natural numbers is
St ii2=mn(n+1)(2n+1)/6.

15
1 wsaz;
v ‘/// ’ ‘
/ \,
[- — VA .S S SRS S Mo
. / *
‘/, \
0 Yy
Yo /
Y ~f/
\ /4
-0.5 f-oee S S , -/-/--
\\\ . "’/ /
I R i S . = S
-1.5
-1.5 -1 -0.5 0 0.5 1 1.5
(b) e, =0.01
1.5

0 A Rt S
.
\\ /
\ ./
05
h \\ // !
-1 ==
15
15 -1 05 0 05 1 15
(d e, =0.0001

The estimated roots distributions of f5(z) in the complex plane for the MLPN —-RRMM root finder model under different termination errors. (a) e, = 0.1.

The derivation of Remark 2 is presented as follows.

1) In the most general case of complex number, the number
of the multiplication operations for computing the m con-
strained conditions ordered from the first one of ® of (5)
at each epoch CEq(n,m) is

CEi(n,m) =4 [n(i—1) +n(i—2) + -

i=1

+n(2—1)+n(1—1)]+4ii

=2

:4n§ji(i;1) +2(m +2)(m — 1)

= %(m — 1)(nm® + nm +3m +6). (B.1)

2) In the most general case of complex number, the number
of the multiplication operations for computing the m

490

constrained conditions ordered from the first one of the
derivations 0® /Jw; at each epoch CEq(n,m) is

m

CEy(n,m) =4 n(i — 2) + 4n(m — 1)

1=3
+83 n(i—2)=2n(m—1)(3m—4). (B2)
=3

We can then compute the total number of the multipli-
cation operations for the m constrained conditions or-
dered from the first one of ® and 0P /dw; at each epoch
CEg(n,m)

CEg(n,m) = CE;(n,m) + CE3(n,m)

2
Z(m — 1)(nm? 4+ 10nm + 3m — 12n + 6).

3
(B.3)

Specifically, when m = n, (B.3) becomes into
CEs(n,n) = (2/3)(n — 1)(n® + 10n> — 9n + 6).
Obviously, the limitation value of the ratio r. of
CEx(n,n) and CEg(n,n) can be derived

) . CEx(n,n)

1 =1 2SR
oo €T oo CEs(n,n)
(n?2—n—42"24+n+1

= 1
n0 Z(n — 1)(n® + 1002 — 90 + 6)
3 on
=— lim — = oo. (B.4)
8 n—oon
QE.D.

The derivation of Remark 3 is given as follows.

1y

2)

3)

The number of the multiplication operations for com-
puting the m terms ordered from the first one of
the two complex sequences {s("),s() ... s(™} and
{8152,...,S,} at each epoch is CEy(n,m) =
dn(m — 1).
The number of the multiplication operations for com-
puting the m terms ordered from the first one of the com-
plex constraint conditions ® of (5) apart from the above
two sequences ateach epochis CEq(n,m) =4 1" ,i =
2(m — 1)(m + 2).
The number of the multiplication operations for com-
puting the m terms ordered from the first one of 9% /0w
of (5) apart from the above two sequences at each epoch is
CEz(n,m) =4n(m—1)+8 ", n(i — 2) = 4n(m —
1)2. Consequently, we can compute the total number of
the multiplication operations for computing the m terms
ordered from the first one of ® and 9P /dw; at each epoch
CEgr(n,m) = Y7 CEi(n,m) = 2(m — 1)(2nm +
m + 2). Specifically, when mn = n, CEg(n,n) = 2(n —
1)(2n% + n + 2). Moreover, the limitation value of the
ratio rs of CEg(n,n) and CEg(n,n) can be derived
lim CEs(n,n)
n—oo CEg(n,n)
. 2(n—=1)(n*+10n% — 9n + 6)
= lim

2(n —1)(2n%2 4+ n+ 2)

n—oo

lim r, =
n—oo

= lim —n =00
n—oo

(B.5)
Q.E.D.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

(1]
(2]

(3]

[4

=

(3]

[6

—

(71

[8

—

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

S. R. Tate, “Stable computation of the complex roots of unity,” IEEE
Trans. Signal Processing, vol. 43, pp. 1709-1711, July 1995.

F. Y. Yan and C. C. Ko, “Method for finding roots of quartic equation
with application to RS codes,” Electron. Lett., vol. 34, pp. 2399-2400,
1998.

T. N. Lucas, “Finding roots of polynomials by using the Routh array,”
Electron. Lett., vol. 32, pp. 1519-1521, 1996.

A. Aliphas, S. S. Narayan, and A. M. Peterson, “Finding the zeros of
linear phase FIR frequency sampling filters,” IEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-31, pp. 729-734, June 1983.

C. E. Schmidt and L. R. Rabiner, “A study of techniques for finding the
zeros of linear phase FIR digital filters,” IEEE Trans. Acoust., Speech,
Signal Processing, vol. ASSP-25, pp. 96-98, Feb. 1977.

K. Steiglitz and B. Dickinson, “Phase unwrapping by factorization,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-30, pp.
984-991, Dec. 1982.

B. Thomas, F. Arani, and B. Honary, “Algorithm for speech model root
location,” Electron. Lett., vol. 33, pp. 355-356, 1997.

D. Starer and A. Nehorai, “Adaptive polynomial factorization by coeffi-
cient matching,” IEEE Trans. Signal Processing, vol. 39, pp. 527-530,
Feb. 1991.

H. P. William, A. T. Saul, T. V. William, and P. E. Brian, Numerical
Recipes in Fortran, 2nd ed. New York: Cambridge Univ. Press, 1992,
ch. 9.

R. Anthony and R. Philip, A First Course in Numerical Analysis.
York: McGraw-Hill, 1978.

P. Henrici, Elements of Numerical Analysis. New York: Wiley, 1964.
M. Lang and B. C. Frenzel, “Polynomial root finding,” IEEE Signal Pro-
cessing Lett., vol. 1, pp. 141-143, Oct. 1994.

L. Hoteit, “FFT-based fast polynomial rooting,” in Proc. Int. Conf.
Acoustics, Speech, and Signal Processing 2000 (ICASSP’00), vol. 6,
Istanbul, Turkey, June 2000, pp. 3315-3318.

S. J. Perantonis and D. A. Karras, “An efficient constrained learning
algorithm with momentum acceleration,” Neural Networks, vol. 6, pp.
237-249, 1995.

D. A. Karras and S. J. Perantonis, “An efficient constrained training al-
gorithm for feedforward networks,” IEEE Trans. Neural Networks, vol.
6, pp. 1420-1434, Nov. 1995.

S. J. Perantonis, N. Ampazis, S. Varoufakis, and G. Antoniou, “Con-
strained learning in neural networks: Application to stable factorization
of 2-D Polynomials,” Neural Processing Lett., vol. 7, pp. 5-14, 1998.
D. S. Huang and Zheru Chi, “Neural networks with problem decompo-
sition for finding real roots of polynomials,” in Proc. Int. Joint Conf. on
Neural Networks 2001 (IJCNN’01), Washington, DC, July 15-19, 2001,
Addendum, pp. 25-30.

D. R. Hush and B. G. Horne, “Progress in supervised neural networks,”
IEEE Signal Processing Mag., vol. 10, pp. 8-39, Jan. 1993.

D. S.Huang and S. D. Ma, “Linear and nonlinear feedforward neural net-
work classifiers: A comprehensive understanding,” J. Intelligent Syst.,
vol. 9, pp. 1-38, 1999.

J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of
Neural Computation. Reading, MA: Addison-Wesley, 1992.

D. S. Huang, “One-layer linear perceptron for the inversion of nonsin-
gular matrix,” in Proc. Internat. Conf. Robot, Optimization, Vision, Par-
allel Industry Automation (ROVPIA’96), Ipoh, Malaysia, Nov. 28-30,
1996, pp. 639-643.

D. S. Huang and Z. Chi, “Solving linear simultaneous equations by con-
straining learning neural networks,” in Proc. Int. Joint Conf. on Neural
Networks 2001 (IJCNN2001), Washington, DC, July 15-19, 2001, Ad-
dendum, pp. 31-26.

L. Kinderman, A. Lewandowski, and P. Protzel, “A framework for
solving functional equations with neural networks,” in Proc. Neural
Information Processing, ICONIP’01, vol. 2, Shanghai, China, Nov.
14-17, 2001, pp. 1075-1078.

D. S. Huang, “Finding roots of polynomials based on root moments,”
in Proc. Eighth Internat. Conf. on Neural Information Processing
(ICONIP’01), vol. 1II, Shanghai, China, Nov. 14-18, 2001, pp.
1565-1571.

D. S. Huang, “Constrained learning algorithms for finding the roots
of polynomials: A case study,” in Proc. IEEE Region 10 Tech. Conf.
on Computers, Communications, Control and Power Engineering, Oct.
28-31, 2002, pp. 1516-1520. Tech. Rep..

New

HUANG: CONSTRUCTIVE APPROACH FOR FINDING ARBITRARY ROOTS OF POLYNOMIALS 491

[26] T. Stathaki, “Root moments: A digital signal-processing perspective,”
Inst. Elect. Eng. Proc. Vision Image Signal Processing, vol. 145, pp.
293-302, Aug. 1998.

Handbook of Mathematics, Publ. House High Educat., Beijing, China,
1979, pp. 87-116. D. Z. Fang, in Chinese.

R. Hormis, G. Antonion, and S. Mentzelopoulou, “Separation of two-
dimensional polynomials via a ¥ — II neural net,” in Proc. Int. Conf.
Modeling and Simulation, Pittsburg, PA, 1995, pp. 304-306.

D. S. Huang, H. H. S. Ip, Z. Chi, and H. S. Wong, “Dilation method for
finding close roots of polynomials based on constrained learning neural
networks,” Phys. Lett. A, vol. 309, pp. 443-451, 2003.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning in-
ternal representations by error propagation,” in Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, D. E.
Rumelhart and J. L. McClelland, Eds. Cambridge, MA: MIT Press,
1986, ch. 8, pp. 318-362.

D. R. Hush, B. Horne, and J. M. Salas, “Error surfaces for multilayer
perceptrons,” IEEE Trans. Syst., Man, Cybern., vol. 22, pp. 1152-1161,
Sep./Oct. 1992.

A. E. Bryson and W. F. Denham, “A steepest-ascent method for solving
optimum programming problems,” J. Appl. Mechan., vol. 29, pp.
247-257, 1962.

[27]

[28]

[29]

[30]

[31]

[32]

De-Shuang Huang (SM’98) received the B.Sc. de-
gree in electronic engineering from the Institute of
Electronic Engineering, Hefei, China, in 1986, the
M.Sc. degree in electronic engineering from the Na-
tional Defense University of Science and Technology,
Changsha, China, in 1989, and the Ph.D. degree from
Xidian University, Xian, China, in 1993.

He was a Postdoctoral Student at Beijing Institute
i of Technology, Beijing, China, and at the National

/ : Key Laboratory of Pattern Recognition, Chinese

Academy of Sciences, Beijing, China, from 1993 to

1997. In September 2000, he joined the IIM/CAS as the recipient of “Hundred
Talents Program of CAS.” From September 2000 to March 2001, he worked as
Research Associate at the Hong Kong Polytechnic University. From April 2002
to June 2003, he worked as a Research Fellow in City University of Hong Kong.
From August to September 2003, he was at George Washington University,
Washington DC, as a Visiting Professor. From October to December 2003, he
worked as Research Fellow at the Hong Kong Polytechnic University. He is
currently an associate editor of International Journal of Information Fusion. He
has published over 150 papers and, in 1996, he published Systematic Theory of
Neural Networks for Pattern Recognition Printing House of Electronic Industry
of China, Beijing. In 2001, he published Intelligent Signal Processing Technique
for High Resolution Radars Printing House of Electronic Industry of China.

Dr. Huang was awarded the Second-Class Prize of the Eighth Excellent High
Technology Books of China in 1996.

