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A Hybrid Forward Algorithm for RBF Neural
Network Construction
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Abstract—This paper proposes a novel hybrid forward algo-
rithm (HFA) for the construction of radial basis function (RBF)
neural networks with tunable nodes. The main objective is to
efficiently and effectively produce a parsimonious RBF neural
network that generalizes well. In this study, it is achieved through
simultaneous network structure determination and parameter
optimization on the continuous parameter space. This is a mixed
integer hard problem and the proposed HFA tackles this problem
using an integrated analytic framework, leading to significantly
improved network performance and reduced memory usage for
the network construction. The computational complexity analysis
confirms the efficiency of the proposed algorithm, and the simula-
tion results demonstrate its effectiveness.

Index Terms—Analytic framework, computational complexity
analysis, parameter optimization, radial basis function (RBF)
neural network, structure determination.

I. INTRODUCTION

DUE to the simple topological structure and universal
approximation ability [33], radial basis function (RBF)

neural networks have been widely used in many areas, such as
data mining, pattern recognition, signal processing, time series
prediction, and nonlinear system modeling and control. See,
for example, [1], [7], [12], [13], [15], [18], [19], [23], [25],
[31], [35], and [40]–[42]. Gaussian radial basis functions have
also been widely used in support vector machines, an important
class of machine learning algorithms [5], [37]. One of the most
important issues in the RBF neural network applications is the
network learning, i.e., to optimize the adjustable parameters,
which include the center vectors, the variances (or the widths of
the basis functions), and the linear output weights connecting
the RBF hidden nodes to the output nodes. Another important
issue is to determine the network structure or the number of
RBF nodes based on the parsimonious principle [8], [20], [22],
[26].

Both the issues to determine the network size and to adjust
the parameters on the continuous parameter space are closely
coupled. It is a mixed integer hard problem if the two issues
are considered simultaneously. Evolutionary algorithms have
been used to address this problem [15], [22], however, they are
computationally very expensive to implement and it is also well
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known that these algorithms suffer the slow and premature con-
vergence problems. Despite that no analytic method is available
to efficiently and effectively address this integrated problem,
the two separate issues have been studied extensively in the
literature.

With respect to the RBF neural network learning, conven-
tional approach takes a two-stage procedure, i.e., unsupervised
learning of both the centers and widths for the RBF nodes and
supervised learning of the linear output weights. With respect
to the center location, clustering techniques have been proposed
[38], [39]. For the width learning, if the input samples are uni-
formly distributed, an identical width can be set for all the basis
functions, otherwise a particular width has to be set for each
individual basis function to reflect the input distribution [33].
Once the centers and the widths are determined, the linear output
weights can be obtainable using Cholesky factorization, orthog-
onal least squares, or singular value decomposition [9].

In contrast to the conventional two-stage learning procedure,
supervised learning methods aim to optimize all the network
parameters [21], [27], [29]. To improve the convergence, var-
ious techniques have been introduced. For example, hybrid
algorithms combine the gradient-based search for the non-
linear parameters (the widths and centers) of the RBF nodes
and the least squares estimation of the linear output weights
[28], [32], [34]. Second-order algorithms have also been
proposed, which use an additional adaptive momentum term
to the Levenberg–Marquardt algorithm in order to maintain
the conjugacy between successive minimization directions,
resulting in good convergence for some well-known hard
problems [4]. In [29], the performances of three different RBF
learning methods are compared—a gradient-based algorithm
(gradient descent with a momentum term), a three-step hy-
brid learning algorithm, and a genetic algorithm. Generally
speaking, although supervised learning is thought to be superior
to conventional two-stage approaches, it can be computation-
ally more demanding.

Nevertheless, these above learning methods are only appli-
cable to RBF networks of fixed structure. If the network size also
has to be determined, one of the simplest ways is to repeat these
above learning procedures with different network size until the
optimal one is acquired based on some network selection cri-
terion such as the Akaike information criterion (AIC) [3]. This
method is, however, computationally too demanding.

With respect to the determination of the RBF neural network
structure, a popular approach is to formulate it as a linear-in-the-
parameters problem, where all the training patterns/samples are
usually used as the candidate RBF centers, and the RBF widths
are chosen a priori. A parsimonious network is then determined
from these candidates using an efficient forward subset selection
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method, such as the orthogonal least squares (OLS) algorithms
[9], [14], [42] or the forward recursive algorithm (FRA) [24].
To improve the network generalization, the regularized forward
selection (RFS) algorithm has been proposed [30], which com-
bines subset selection with zero-order regularization. Backward
selection methods have also been used in RBF center selection
[16], [17]. However, forward selection algorithms are thought
to be superior to backward methods in terms of computational
efficiency, since they do not need to solve the equations explic-
itly with the full set of initial candidate centers.

Generally speaking, existing (forward and backward) subset
selection methods have several major disadvantages. First, since
the RBF widths are set a priori and the centers of the RBF nodes
are selected from a set of training samples with limited size, the
optimal values on the continuous parameter space for the center
and width parameters of RBF nodes can be easily missed out on.
This means that the stepwise forward or backward procedures
can easily miss out on a good RBF neural network. Second, in
order to increase the chance of obtaining a satisfactory RBF net-
work, one has to use a very large set of candidate RBF nodes of
different centers and widths. This is, however, sometimes com-
putationally too expensive or impossible to implement, since all
the candidate RBF nodes have to be stored for batch operations
and the number of all candidates will increase exponentially as
the search space dimension increases. Part of this is usually re-
ferred to as the curse of dimensionality problem in the literature.

In order to optimize the RBF center and width parameters
along with the network structure determination process, a sparse
incremental regression (SIR) modeling method was proposed
very recently [10]. This method appends regressors in an incre-
mental modeling process. For each regressor to be appended, the
nonlinear parameters are tuned using a boosting search based on
a correlation criterion. In this way, the network structure and the
associated nonlinear parameters are determined simultaneously.
However, the search for the optimal values of the nonlinear pa-
rameters (RBF centers and widths) is a continuous optimization
problem. The boosting approach in SIR, which employs a sto-
chastic search process, tends to be slower in convergence than
calculus-based optimization techniques. In addition, all the non-
linear parameters are treated equally in SIR, and the difference
between the center and width parameters of a RBF node is ig-
nored; this is again another factor that slows down the search
process. Finally, the boosting search in SIR has three to five pa-
rameters that need to be tuned empirically. All the above poten-
tial problems with SIR are illustrated in the simulation examples
at the end of this paper.

Different from existing methods in RBF neural network con-
struction, this paper proposes a novel hybrid forward algorithm
(HFA), which performs simultaneous network growing and pa-
rameter optimization within an integrated analytic framework,
leading to two main technical advantages. First, the network per-
formance can be significantly improved through the optimiza-
tion of the nonlinear RBF parameters on the continuous param-
eter space. Second, conventional forward selection algorithms
tend to use all training samples to produce a very large set of
candidate RBF nodes from which the final RBF network is se-
lected [6], [9]. The currently proposed method, however, only
uses a very small number of training samples just for the initial-

ization of the RBF centers, aiming to speed up the continuous
optimization procedure. As a result, the memory requirement is
significantly reduced.

This paper is organized as follows. Section II gives the
problem formulation for the forward RBF network construc-
tion, and the corresponding forward RBF network construction
procedure is introduced in Section III. Section IV proposes the
hybrid RBF network construction algorithm, and Section V
gives the computational complexity analysis for the proposed
algorithm. Application examples are given in Section VI.
Section VII concludes this paper.

II. PROBLEM FORMULATION FOR FORWARD RBF NEURAL

NETWORK CONSTRUCTION

A wide class of multiple-input–single-output systems can be
modelled by the RBF neural networks given by

RBF (1)

where denotes the network output, is the input
vector to the network, denotes the radial basis
function (e.g., Gaussian basis function) of the th hidden node
with the center and the width , and is the
linear output weight. The adjustable parameters in network (1)
are therefore the center vector , the width
vector , and the linear output weight vector

. For the Gaussian radial basis function
, where denotes the

Euclidean norm.
Now suppose a set of training samples (patterns), denoted as

, is used for the network training,
and the desired network output series is .
The network training aims to optimize and such that the
sum squared error (SSE) becomes minimal

RBF

(2)
Let , where

, be the output vector of the th RBF
node when all data samples are fed into the network. It is
referred to as the basis vector in the following context. Let

. Then the least square estimate of
the linear output weights is given by

(3)

if is of full column rank.
If (3) is used as a constraint, the cost function (2) is a function

of and , i.e.,

(4)

The objective of network training is then to minimize
defined in (4) against continuous parameter and , subject to
constraint (3). However, the network size (i.e., the number
of RBF nodes) is unknown. A practical solution is to use part
or all data samples as the centers with the widths of the radial
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basis functions being set a priori [7], [18], producing a large
number of candidate RBF nodes, say, nodes (this network
is sometimes called the saturated full neural network). Then
some subset selection algorithm is used to select a small set of
RBF nodes based on a network selection criterion [7], [24], [34],
leading to a neural network of small size.

In the forward subset selection, the candidate basis vectors
form the full regression matrix .
Now suppose RBF basis vectors out of the candidates,
denoted as , have been selected, and the remaining
candidates in are denoted as . The least squares
estimation of the network output weight vector is

(5)

where .
The cost function expressed in (4) is then given by

(6)

If a new RBF basis vector is selected
into the neural network, the selected regression matrix increases
by one column, becoming . The cost function
SSE is updated as

(7)

and the net reduction in the cost function value due to adding
into the network is given by

(8)

which is referred to as the contribution of or the ( 1)th RBF
node in this paper.

In order to select the th RBF basis vector into the
neural network, the contribution (8) has to be computed for each
of the remaining candidates, i.e.,

. The one, say, , that gives the maximum contribu-
tion will be selected into the neural network as the ( 1)th RBF
basis vector. The difference between various forward methods
lies in how to compute the contribution (8) more efficiently [7],
[9], [24].

In the following section, a forward RBF construction algo-
rithm [24] will be briefly introduced as the starting point for
the derivation of the hybrid forward algorithm to be given in
Section IV.

III. A FORWARD NETWORK CONSTRUCTION PROCEDURE

First define a matrix series

(9)

Then, the cost function (6) with RBF nodes is rewritten as

(10)

To efficiently compute the net contribution (8), two theorems
about the matrix series defined in (9)
have to be proposed.

Theorem 1: Let be a set of column vec-
tors and , and suppose matrices

are of full column rank. Then, the following property
holds:

(11)

Theorem 2: Let be a set of linearly indepen-
dent column vectors. All matrices

, defined in (9) have the following properties:

(12)

(13)

rank
rank

(14)

The proofs of Theorems 1 and 2 are given in the Appendix.
In (14) and hereafter, for any 1 column vector, say, an RBF
basis vector and the desired output vector , denote

(15)

Obviously, and .
According to (12) and (13), for two arbitrary 1 column

vectors and , it holds that

(16)

From (10) and (11), the net contribution of given in (8) can
then be computed as

(17)

According to Theorems 1 and 2, and can be recursively
updated, giving the final form

(18)

where is the th selected RBF basis vector.
Based on (17) and (18), a fast stepwise forward RBF neural

network construction algorithm can be easily proposed (see [24]



1442 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 6, NOVEMBER 2006

for details). Despite the great efficiency of stepwise forward
methods for RBF neural network construction, they have several
technical disadvantages. First, in the forward network construc-
tion process, all candidate basis vectors have to be processed,
stored, and updated each time a new node is added, which is
computationally very demanding if the set of candidate basis
vectors is very large in size. Second, the basis vectors are only
selected from a candidate set , where

is a limited number, and the neural network performance is
severely restricted. In detail, each basis vector can be regarded
as a function of the width and the center in the continuous pa-
rameter space , which is defined as follows:

(19)

If all the adjustable parameters for an RBF node are grouped
as a vector

(20)

then the basis function (19) can be rewritten as

(21)

With the previous notations, one can easily conclude that
the subset selection algorithms essentially select the param-
eter vector for each basis vector from a discrete candidate
set, instead of searching in the continuous parameter space

. Obviously, further improvement can be made if
all the adjustable parameters are optimized on the continuous
parameter space. This analysis forms the basis of the proposed
HFA for the RBF neural network construction.

In the proposed algorithm, the RBF neural network is con-
structed using stepwise forward method, i.e., the RBF nodes
are added into the network one by one. In the meantime, a gra-
dient-based search for the optimal parameters is car-
ried out on the continuous parameter space to maximize the con-
tribution of each selected basis function. In order to speed up the
search process, a small number of candidate RBF basis vectors,
which are randomly selected from the training samples, are used
to initialize the gradient-based search. This above procedure re-
sults in a hybrid algorithm for the RBF neural network construc-
tion which will be fully explored in the following section.

IV. HYBRID FORWARD ALGORITHM FOR RBF NEURAL

NETWORK CONSTRUCTION

Given training samples, the contribution of the
( 1)th newly added basis vector given in (17) is a function of
parameter vector , and it can be rewritten as

(22)

with

(23)

where

(24)

The maximum contribution is expressed as

(25)

The adjustable parameter vector has to be optimized for
the ( 1)th RBF basis vector. This is an ( 1)-dimensional
continuous optimization problem, and various optimization
techniques are available. In this paper, the Newton method [36]
is used. In order to facilitate the Newton search, the ( 1)-by-1
gradient vector and the ( 1)-by-( 1) Hessian matrix have
to be derived.

To obtain the gradient vector of the contribution (22), the first-
order partial derivatives of vector in (24) with respect to the
adjustable parameters are denoted as

(26)

The gradient vector of the contribution (22) with respect
to is then given by

(27)

where

(28)

The Hessian matrix of (22) is derived as

(29)

where and are the second-order par-
tial derivatives of the basis vector and the contribution with re-
spect to and , respectively, and

(30)

Remark 1: The derivative information of the cost function
with regards to the unknown network parameters is always re-
quired in a gradient-based learning algorithm. Since this paper
deals with the simultaneous RBF neural network construction
and parameter optimization, the derivative information used for
the parameter optimization is therefore also acquired, but in a
quite different approach from the conventional method [29]. In
the conventional approach, the linear output weights in the RBF
networks are treated as independent parameters in the learning
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process. In this paper, due to the introduction of the matrix se-
ries (9), the linear output weights are dependent parameters and
therefore are eliminated from the equation by substituting the
least squares solution (5) into the cost function (10). Thus, the
dimension of the optimization problem is reduced for the whole
network construction and parameter optimization process.

For those RBF neural networks that use Gaussian function as
the basis function, the gradient and the Hessian matrix of the
Gaussian function can be explicitly expressed.

Consider the Gaussian function

(31)

which is ill defined at , which makes it difficult to im-
plement some calculus-based optimization algorithms. To over-
come the problem, define

(32)

then rewrite (31) as

(33)

and the first-order partial derivatives of the Gaussian basis
vector with respect to the adjustable parameters are

(34)

and the second-order partial derivatives are derived as

(35)

where denotes the element-by-element Kronecker product be-
tween two vectors and

(36)

Given (34), the elements of the gradient of the contribution
for the Gaussian function can be computed as

(37)

and the elements of the Hessian matrix for the Gaussian function
are given by

(38)

where are given in (23), (28), and (36), respectively, and

(39)

In (37) and (38), , and are intermediate
quantities which are used to reduce the computational com-
plexity. In addition, and for
can be computed recursively using just the same way as for

given in (18).
Both the gradient vector and the Hessian matrix of the con-

tribution are used in the Newton method to search for the points
in the continuous space that gives the maximum contribution.

To speed up the convergence of the Newton search and also
based on the definition of the RBF centers [29], a subset of
training samples is randomly selected as the initial RBF cen-
ters. When a new RBF node is to be added into the network, the
best one selected from this subset of training samples is used as
the starting point for the continuous gradient-based searching
for the optimal parameter vector. It should be pointed out that,
in the proposed new algorithm, the subset of training samples
used to initialize the RBF centers is usually much smaller in
size than the set of candidate centers used in the conventional
subset selection algorithms [7], [9], [17]. In detail, for conven-
tional subset selection algorithms, all the node centers in the
RBF neural network are selected from the candidates. There-
fore, the number of candidate centers has to be very large. In
the proposed algorithm, the subset of training samples is simply
used as the initial values in the gradient-based search on the con-
tinuous parameter space for the optimal RBF centers. Therefore,
its size can be very small.
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The complete procedure for the Newton search over contin-
uous space can be found in [36], and the Newton search proce-
dure is combined with the forward RBF network construction
procedure presented in Section III, leading to the proposed hy-
brid forward algorithm.

To facilitate efficient numerical implementation, several in-
termediate matrices and vectors have to be introduced. Suppose

RBF basis vectors have been selected and optimized using
the hybrid forward selection procedure. Denote these RBF basis
vectors as to distinguish from the candidate RBF
basis vectors. For these optimized basis vectors, define a
upper triangular matrix as

(40)

and a 1 vector as

(41)

For the candidate RBF basis vectors, define a matrix
as

(42)

and two vectors and as

(43)

where the superscript for vectors and indicates the
updated values for and as the number of RBF nodes
increases.

With these above notations, (22) can be rewritten as

(44)

Now suppose a new RBF node, say, the th optimized
basis vector , will be added into the network. Then all the
intermediate matrix and vectors defined in (40)–(43) have to be
updated.

1) First, the ( 1)th column of the triangular matrix has
to be computed and the new basis vector has to be
updated from to using the following
recursive formulas:

(45)

2) Then the output vector has to be updated and the ( 1)th
element of has to be computed, which can be done as
follows:

(46)

3) Finally, the ( 1)th row of has to be computed ac-
cording to (42), and vectors and have to be up-
dated for further RBF network construction (adding more
RBF nodes)

(47)

With all the above-detailed formulas, the detailed procedures
of the HFA for the RBF network construction can now be given
as follows.

A. Algorithm: HFA for RBF Neural Network Construction

Step 1—Initialization: Assign an initial value for the width
parameter of the basis functions and randomly select a small
set of, say, RBF centers from the whole set of training sam-
ples. Then construct the corresponding candidate RBF basis
vector set . Let , compute

and
according to (43), and compute SSE .

Step 2: Add the ( 1)th RBF node into the network. The
( 1)th RBF node is optimized as follows.

A) Compute the contribution for all the candidate RBF basis
vectors using (44) and identify the one that gives the max-
imum contribution.

B) Use the width and the center vector that gives the max-
imum contribution as the initial parameter value, denoted
as , for the th RBF node. Search for the op-
timum over the continuous parameter space using
the Newton method.

C) Denote the ( 1)th optimized basis vector as
. Compute and the ( 1)th column of ma-

trix in (45), the ( 1)th row of matrix in (42) and
, and the ( 1)th element of vector in (46). Up-

date vectors and into and using (47).
D) Reduce the cost function SSE by SSE SSE

and let .
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Step 3: Repeat Step 2 to add more RBF nodes into the net-
work, until some neural network construction criterion is satis-
fied. This, for example, can be that a certain number, say, , of
RBF nodes have been selected, or the SSE is reduced to a given
level or some information criterion such as AIC [3] is satisfied.

The linear output weights of the final RBF network of, say,
hidden nodes can be solved from a linear equation with an upper
triangular coefficient matrix. Based on the least squares solution
of the linear output weights given in (3) and the definition of ,
it follows that

(48)

(49)

where denotes the regression ma-
trix consisting of the optimized basis vectors and

is the output weight vector.
For to , left-multiplying (49) with

, respectively, and taking into account the property
for given in (14) as well as the notations given

in (40) and (41), it follows that

(50)

Equation (50) is a set of linear equations relating to the upper
triangular coefficient matrix . According to Theorem 2, if the
regression matrix is fully ranked, then and therefore
the linear output weights can then be easily solved from (50)
using back substitution

(51)

V. COMPUTATIONAL COMPLEXITY

For the Gaussian functions (33), if each evaluation of the ex-
ponential function is regarded as one floating-point operation
(FPO), then the total number of FPOs to compute the contribu-
tion for the ( 1)th RBF node using (22) and (23), including
computing for (23) in the same recursive
way as in (45), is

(52)

The additional numbers of FPOs to compute the 1 ele-
ments of the gradient in (37) and the 1 1 elements
of the Hessian matrix in (38) and (39) are, respectively

(53)

If (52) is compared with (53), it could be found that less than
two-thirds of additional FPOs are required to compute the 1
gradient components; and less than 1 times additional FPOs
for the ( 1)-by-( 1) Hessian matrix computation. It should
be noted that, for the Gaussian basis function, no additional eval-
uation of the exponential function is required in computing the
gradient vector and the Hessian matrix.

VI. SIMULATION EXAMPLE

Among various RBF neural network construction algo-
rithms, the forward subset selection such as the modified
Gram–Schmidt (MGS) based OLS is perhaps the most popular
method used in the open literature [7]–[9]. As a most recent
development in this area, the SIR modeling method [10] was
proposed, aiming to improve the network performance. In this
paper, the proposed new algorithm HFA was compared with the
above two algorithms, and these algorithms were tested on all
the simulation examples given in this section. All the following
tests were carried out using MATLAB V5.3 on a PIII-800 MHz
desktop PC with Windows XP.

Example 1: Consider the following nonlinear function taken
from [10]:

(54)

As in [10], 1000 data points were generated using
, where was uniformly distributed within [ 10, 10] and was

a Gaussian white noise with zero mean and variance 0.01. The
first 500 points were used for network training and the other 500
points for network validation.

For MGS all 500 training data samples were used as the can-
didate centers. Based on a series of judicious trial-and-error tests
for , the width for the Gaussian basis
function is chosen as . For HFA, ten candidate cen-
ters are randomly selected from the 500 training samples, and
the initial value for the width parameter for all the ten candi-
date RBF basis vectors was simply set to be (which
can cover the whole input range). For SIR, similar algorithm pa-
rameters as in [10] were used for the boosting search, i.e., the
population size , the number of iterations , and
the repeating times . These three algorithms were then
used to generate the RBF networks of different sizes.

The rooted mean squared error (RMSE) [2], [20] over the
training data set, measured running time, and flops of the three
algorithms are listed in Table I. The RBF networks produced
by the three algorithms were then tested on the validation data
of the rest of the 500 samples, and the RMSE values over the
validation data set are listed in Table II. The RMSE is defined
as

RMSE (55)

where is the RBF neural network predictions for target and
is the vector length.
Both the measured running time and flops listed in Table I

indicate that the computational complexity of the proposed HFA
is significantly lower than the conventional MGS-based OLS al-
gorithm and the SIR method. It should be noted that the running
time and the number of flops in Table I and the following ex-
periments include calculations of all the candidate RBF basis
vectors. The trial and error tests for the optimal width for MGS
were, however, not included.

It is also shown in Tables I and II that the training and valida-
tion RMSE values obtained by the proposed HFA are quite the
same as the MGS and SIR in all cases; however, the proposed
HFA is able to produce a RBF neural network with significantly
reduced computational complexity.
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TABLE I
RMSE VALUES OVER THE TRAINING DATA AND THE COMPUTATIONAL COMPLEXITIES FOR EXAMPLE 1

TABLE II
VALIDATION PERFORMANCES FOR EXAMPLE 1

TABLE III
RESULTS FOR THE HFA USING DIFFERENT NUMBER

OF CANDIDATES FOR EXAMPLE 1

It should be noted again that, in the proposed HFA, the can-
didate set of the RBF basis vectors are randomly selected from
the train samples, and it is only used to initialize the RBF neural
parameters for the Newton search. Therefore the size of the can-
didate set for the proposed algorithm is not as vital as for the
conventional subset selection algorithms.

To further examine how the number of candidate RBF basis
vectors affects the resultant network performance for the pro-
posed algorithm, the experiments on HFA were repeated with
different numbers of candidate centers. The results are listed in
Table III, where T.RMSE stands for the training RMSE values
and V.RMSE stands for the validation RMSE values. It is shown
in Table III that, except for the RBF networks of four nodes with
one and three candidates, respectively, are significantly worse,
all the others have quite similar performance.

Example 2: Prediction of the chaotic time series generated
from the Mackey–Glass differential equation

(56)

The Mackey–Glass time series was widely used as a bench-
mark problem for neural network training in the literature [2],
[20], [34]. Although it was reported in [34] that the predic-
tion error variance for (56) is much smaller when RBF-AR
models are used rather than RBF networks, the objective of
this paper is to test the three algorithms on RBF networks
construction. Therefore, to use other model types to predict
this particular time series is out of the scope of this paper.
According to [20], the input vector to the RBF network is
selected as and the

network output is . The produced networks were used
to predict 6 50 and 84 from for

.
The trapezoidal rule for integration over the time interval

yields

(57)

The discrete equation corresponding to (56) is then given as
follows according to [20]:

(58)

Following [20], by setting and the initial condition
for for , a time series of 4500 samples
was generated using (58). The first 4000 samples were used as
the training data set and the remaining 500 samples for network
validation. The three algorithms were used to construct the RBF
neural networks of different sizes. For MGS, 2000 samples were
randomly selected from the training sample set as the candidate
centers, which is the best choice based on a series of experi-
ments with 500, 1000, and 3500 candidates, respectively. The
experiment failed when all 4000 training samples were used as
the candidates, due to the matrix being too large to carry out
on the PC. The width is chosen as for all 2000 candi-
date Gaussian basis functions again based on a number of ju-
dicious trial-and-error tests. For SIR, a series of tests are per-
formed in advance [10], and the algorithm parameters are tuned
to be , and . For the HFA, 80 candi-
date centers are randomly selected from the 4000 training sam-
ples. The initial value for was simply set at one for all the
80 candidate basis vectors, given the range of the time series
being [0.3, 1.32]. The training RMSE, measured running time,
and flops are listed in Table IV for the three algorithms.

It is shown in Table IV that the three algorithms again gave
equivalent training RMSE values in all the cases. However, the
HFA is computationally much cheaper to implement than MGS
and SIR. It is noticed that the measured flops for the MGS are
about two times of those for the HFA. However, the MGS takes
even longer running time than the HFA because MGS requires
many more evaluations of the exponential function and has to
operate on a very large matrix (a 4000-by-2000 matrix storing
all the candidate RBF basis vectors).

The produced RBF neural networks were then applied to per-
form 6-, 50- and 84-steps-ahead predictions over the validation
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TABLE IV
RMSE VALUES OVER THE TRAINING DATA AND THE COMPUTATIONAL

COMPLEXITIES FOR EXAMPLE 2

TABLE V
LONG-TERM PREDICTION PERFORMANCES (RMSE � 10 ) OVER THE

VALIDATION DATA SET FOR EXAMPLE 2

data set, and the RMSE values of the predictions are compared
in Tables V. It is shown that the proposed HFA produces sig-
nificantly better long-term predictions than the other two algo-
rithms over the validation data set.

Example 3–Modeling of Continuously Stirred Tank Reactor:
Simulated continuously stirred tank reactor (CSTR) [11] repre-
sents a wide class of chemical processes exhibiting a high degree
of nonlinearity. Within a CSTR, two chemicals are mixed and
react to produce a product compound at a concentration ,
and the temperature of the mixture is . The CSTR system
considered here is a single-input single-output system, where
the input variable is the flow rate of a coolant and the
output variable is the concentration of the product . The
reaction is exothermic; if uncooled, the heat it generates acts to
slow it down. Fig. 1 shows a simple schematic of the plant, and
the system can be described as follows:

(59)

(60)

where is the product concentration, is the inlet feed con-
centration, is the process flow rate, and and are the inlet
feed and coolant temperatures, respectively.
and are thermodynamic and chemical constants relating to
this particular problem.

Fig. 1. Schematic of a CSTR plant.

TABLE VI
STATISTICS OF THE CSTR DATA

The system was simulated with a sampling interval of 0.2 s,
and the system input is subject to uniformly distributed
random perturbation over the range [ 10, 10] l/min from the
operating point. A normally distributed random signal was
added to the output to simulate measurement noise. A set of
1500 data samples was generated and used for modeling. The
statistics of the plant data are shown in Table VI.

The inputs to the RBF networks were selected as
, and .

The RBF network output predicts . The plant data were
split into two sets; the first 700 samples were used for network
training, the remaining 800 as validation data. All data samples
were zero meaned and normalized prior to the following mod-
eling experiments.

The three algorithms were used to produce the RBF network
models. For MGS, all 700 training samples are used as the can-
didate centers, and the widths of the Gaussian basis functions
were chosen as again based on a number of judicious
trial and error tests. For SIR, a series of preliminary tests are
performed to determine the algorithm parameters, and the al-
gorithm parameters were chosen as and

. For HFA, 40 candidate centers are randomly se-
lected from the 700 training samples. The initial value for
was simply chosen to be 0.5 for all the 40 candidate basis vec-
tors, given the range of the normalized data as [ 1.85, 1.69] for

and [ 1.86, 5.46] for .
RBF neural networks of size from four to eight were gen-

erated using the three algorithms. The training RMSE values,
running time, and flops are listed in Table VII. It is shown that
the three algorithms produced equivalent training RMSE values.
The computational complexities of both the HFA and the MGS
are quite similar but both are much simpler than the SIR.

The produced networks were then used to perform one-step-
ahead and long-term predictions, and the results are compared in
Table VIII. It is shown that networks produced by the HFA have
the best generalization performance for both one-step-ahead and
long-term predictions. As an example, the long-term predictions
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TABLE VII
RMSE VALUES OVER THE TRAINING DATA AND THE COMPUTATIONAL COMPLEXITIES FOR EXAMPLE 3

Fig. 2. Long-term prediction for the last 100 outputs of the validation set by six-hidden-node RBF networks produced by HFA, MGS, and SIR of eight hidden
nodes with different RBF width settings.

TABLE VIII
VALIDATION PERFORMANCES (RMSE � 10 ) FOR EXAMPLE 3

of the six-hidden-nodes RBF networks for the last 100 outputs
are illustrated in Fig. 2. Note that the RMSE values indicated
in Tables VII and VIII and the data in Fig. 2 are based on the
normalized plant data.

Remark 2: It should be pointed out that, by convention, all
the results shown in the above three case studies were acquired
by optimizing the nonlinear parameters (widths and centers) for
the RBF neurons with regards to the training error (RMSE).
For the proposed HFA, all the parameters were optimized over
the continuous solution space with regards to the training error
(RSME). For the conventional MGS method, the RBF width,
however, has to be set a priori, and in the three examples, this
parameter was set with the optimal value which minimizes the
training error (RMSE) through a series of exhaustive tests for

. Apparently, different choices of the
width parameters could lead to different network performance
for the MGS method. To illustrate this limitation for the MGS

method, the RMSE values of both the one-step-ahead and long-
term prediction errors over both the training and validation data
sets in Example 3 are compiled in Table IX for the MGS method
for . According to Table IX, in terms of
the long-term prediction performance over the validation data
set, would be the best choice for the MGS method,
though the training performance is not the best. Table IX and the
above analysis reflect the difficult issues for the MGS method
in that it requires manual setting of the nonlinear parameters a
priori and the network performance cannot be guaranteed.

VII. CONCLUSION

The performance of an RBF neural network constructed by
the conventional subset selection algorithms mainly depends on
the size and quality of the candidate RBF basis vectors from
which the network is solely selected. In the proposed HFA, the
network structure is determined by combining both the step-
wise forward network configuration and the continuous RBF
parameter optimization. These two tasks are performed within
a unified analytic framework, leading to significantly improved
network performance and reduced memory usage. In the pro-
posed HFA, a small set of candidate RBF center vectors is still
used, but it is only used to initialize the parameter optimiza-
tion in order to speed up the convergence of the Newton search.
Therefore, the resultant network performance is no longer sig-
nificantly dependent on the candidate RBF basis vectors, and the
size of the candidate basis vectors therefore can be very small.
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TABLE IX
MGS TRAINING RESULTS (RMSE � 10 ) FOR RBF NETWORKS

The computational complexity analysis has confirmed the ef-
ficiency of the proposed algorithm, and the simulation results
have demonstrated its effectiveness.

APPENDIX A
PROOF OF THEOREM 1

From the definition of in (9), it is obvious that (11) holds
for . For is of full rank and it
can be verified that

(61)

where the 1 column vector and the scalar are defined as
follows:

(62)

It follows from (9) for and that

(63)

where

(64)

Substitute and in (62) into (64), and note (9) for ,
yielding

(65)

Noting the symmetric property of and based on (63) and
(65), (11) is obvious. It also should be noted, according to The-
orem 2, that when is of full rank, given in (62) is
nonzero. Therefore, defined in (9) is well defined.

APPENDIX B
PROOF OF THEOREM 2

a) Equation (12) is obvious according to the definition (9) of
.

b) For , the result is obvious from (12).
For , from (11) and (12), it follows that

(66)

Similarly, it can be proved that ; therefore
(13) holds for .
For , apply for

, resulting in

(67)

Similarly, using the property for
, gives .

In summary, (13) holds for .
c) First, the following property is to be proved:

(68)

From (11), it is obvious that

(69)

therefore, (68) holds for .
For , noting as proved in the above

(70)

This process continues for all to confirm (68).
Now for an arbitrary vector of appropriate dimension, from

(11) and noting , it follows that

(71)

where is some scalar determined by and .
Therefore, it can be further derived that

(72)
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or rewritten as

(73)

where and are some scalars determined by and .
More generally, for , it holds that

(74)

with the scalar for determined by
and .

In order to prove (14), it is supposed that rank
; then is linear dependent on

, i.e., with ’s
being some scalars, given that rank . Noting
(68), (14) always should hold, i.e.,

(75)

Now if rank and assuming that
, it follows from (74) that
or . This contradicts

the condition that rank . Therefore
should always hold.
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