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Abstract

This paper proposes a novel and successful method for recognizing palmprint based on radial basis probabilistic neural network

(RBPNN) proposed by us. The RBPNN is trained by the orthogonal least square (OLS) algorithm and its structure is optimized by the

recursive OLS algorithm (ROLSA). The Hong Kong Polytechnic University (PolyU) palmprint database, which is pre-processed by a

fast fixed-point algorithm for independent component analysis (FastICA), is exploited to test our approach. The experimental results

show that the RBPNN achieves higher recognition rate and better classification efficiency than other usual classifiers.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, biometric personal identification is emerging
as a powerful means for automatically recognizing a
person’s identity with a higher confidence. Biometric
palmprint verification is such a technology, which recog-
nizes a person based on unique features in his palm, such as
the principal lines, wrinkles, ridges, minutiae points,
singular points and texture, etc. For the designers of
pattern recognition algorithms, palmprint recognition is a
very challenging problem. Many recognition methods, such
as the nearest feature line method [5], the Cosine measure
[1], the Fisher classifier [7] and neural networks (NN)
method [8], etc., have been proposed. This paper focuses on
using a novel radial basis probabilistic neural network
(RBPNN) model [8] to perform the palmprint recognition
task. Features of palmprint images can be extracted by
e front matter r 2006 Elsevier B.V. All rights reserved.
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certain transforms, such as Fourier transform [6], wavelets-
based transform [4], principal component analysis (PCA)
and independent component analysis (ICA) [2], etc. Four-
ier and wavelet transforms have strong mathematical
foundations and fast implementations, but they are not
of adaptive ability to particular data. While the significant
advantage of the PCA and ICA is that they only depend on
the statistic properties of image data. However, the PCA
technique is usually suitable for the second order accumu-
lation variant, whereas the ICA method can be used for
multi-dimensional data. Here, we use a fast fixed-point
algorithm for independent component analysis (FastICA)
to extract successfully features of palmprint images since it
is a neural algorithm particularly efficient and light from
the point of view of computational effort [3].

2. The FastICA algorithm

Independent component analysis (ICA) of observed n-
dimensional random vectors X ðX ¼ ðx1;x2; . . . ;xnÞ

T
Þ is

defined as the process of finding an m-dimensional linear
transform S ¼WX ðS ¼ ðs1; s2; . . . ; smÞ

T
Þ such that the

separation matrix W is a linear transformation and the
hidden components si are as independent as possible.
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Fig. 2. The factorial representation consisted of the independent

coefficients, U, for the linear combination of basis images in

A ¼ (a1,a2,y,an), that comprised each palmprint image. FastICA

factorial representation is in U (U ¼ (u1,u2,y,un)).

Fig. 3. First 25 PC axes of the palmprint image set (columns of V ),

ordered left to right, top to bottom, by the magnitude of the

corresponding eigenvalues.

L. Shang et al. / Neurocomputing 69 (2006) 1782–1786 1783
Usually, the dimension of S is less than that of X ðmpnÞ. In
this paper, note that only the case of m ¼ n is considered.
Here, the matrix W is assumed to be invertible. FastICA is
just such an algorithm, which is based on a fixed-point
iteration scheme for finding a maximum nongaussianity of
WX . There are different measures of nongaussianity, such
as kurtosis (fourth-order cumulant) and negentropy. In this
paper, we make use of the kurtosis as the maximum
nongaussianity measure (i.e., the score function), which is
defined for a zero-mean random variable s as [3]

kurtðsÞ ¼ Efs4g � 3ðEfsg2Þ2. (1)

Using the natural gradient method under the constraint
jjwjjj2 ¼ 1 (where wj is the jth column of W ), the updating
rule of wj is written as

wjðtþ 1Þ ¼ wjðtÞ þ mðtÞ viðtÞ½ðwjðtÞÞ
TviðtÞ�

3
�

�3jjwjðtÞjj
2wjðtÞ þ f ðjjwjðtÞjj

2ÞwjðtÞ
�
, ð2Þ

where vi is the ith row of whitened results of observed
vectors X , ðwjðtÞÞ

T is the transpose of wjðtÞ, mðtÞ is the
learning rate, and f ð�Þ is a penalty term due to the
constraint jjwjjj ¼ 1. The learning rule will stop at a fixed
point for which jwT

j ðtÞ � wjðt� 1Þj is sufficiently close to
unity. The linear combination WX will be one of the
required independent components in accordance with the
formula of S ¼WX .

3. Two architectures of performing FastICA

According to the literature [1], there are two types of
implementation architectures for FastICA in the image
recognition task. Architecture I treats palmprint images as
random variables and pixels as observations, i.e., the
palmprint images are in rows and the pixels in columns.
This goal in this approach is to find a n�m matrix D such
that the rows of U ¼ DX are as statistically independent as
possible. The source images estimated by the row of U are
then used as basis images to represent palmprints.
Palmprint image representations consist of the coordinates
of these palmprint images with respect to the image basis
defined by the rows of U (i.e., coefficients of basis images),
as shown in Fig. 1.

On the contrary, architecture II utilizes pixels as random
variables and palmprint images as observations, i.e., the
pixels are in rows and the palmprint images in columns.
This goal in this approach is to find a representation in
Fig. 1. The independent basis image representation consisted of the

coefficients, S, for the linear combination of independent basis images,

U ¼ (u1,u2,y,un), that comprised each palmprint image. FastICA

representation is in S (S ¼ (s1,s2,y,sn)).
which all coefficients are as statistically independent as
possible. The FastICA representations are in columns of
U ¼ DX . Each column of U contains the coefficients of the
basis images in A (A is the inverse or pseudoinverse of D)
for reconstructing each palmprint image in X , see Fig. 2.
Convenient for calculating, we use PCA to realize data

whitening and a dimensional reduction before performing
the FastICA algorithm. Let Vk denote a matrix with the
size of p� k, namely it contains the first k principal
components (PC) axes in its columns (see Fig. 3, where
k ¼ 25), where p is the number of pixels in a training
image. In architecture I let X I denote the n-dimensional set
of zero-mean images (image data is contained in each row),
the independent basis vector U is computed as follows:

U ¼W I � VT
k , (3)

where W I ¼W � ½2ðCOV ðXT
I ÞÞ
�1=2
�, W is the matrix

learned by ICA, XT
I is the transpose of X I with the size

of n� p, and COV ðXT
I Þ is the covariance matrix of XT

I .
Note that the ICA basis images from this architecture show
more localized features [1], see Fig. 4. Furthermore, by
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Fig. 4. The first 25 basis images (rows of W I VT
k ) that are obtained by

FastICA architecture I. In this approach, the basis images are statistically

independent.

Fig. 5. The first 25 basis images (columns of VkW�1
I ) obtained by

architecture II. In this approach, the coefficients are statistically

independent.
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Fig. 6. The structure of radial basis probabilistic neural network.
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taking Rk as the PCA coefficients, where Rk ¼ X I Vk, the
coefficient matrix can be calculated as S ¼ Rk �W�1

I . But,
in architecture II, the source separation is performed on
pixels. Here, FastICA is performed on the PCA coefficients
rather than directly on the input images. The statistically
independent coefficients are computed as W I RT

k . The basis
vectors are obtained from the columns of VkW�1

I . Note
that the basis generated by this architecture shows more
globalized features, see Fig. 5.

4. The RBPNN model and training algorithm

The radial basis probabilistic neural network (RBPNN)
model [8] proposed by us, as shown in Fig. 6, was derived
from the radial basis function neural network (RBFNN)
and the probabilistic neural networks (PNN). Hence, the
RBPNN possesses the characters of the above two
networks, i.e., the signal is concurrently feed-forwarded
from the input layer to the output layer without any
feedback connections within the three layers network
models. On the other hand, to some extent, it lowers the
demerits of the two original models. It can be seen that this
network consists of four layers. The first hidden layer is a
nonlinear processing layer, generally consisting of the
centers selected from training samples. The second hidden
layer selectively sums the outputs of the first hidden layer
according to the categories, to which the hidden centers
belong. Namely, the connection weights between the first
hidden layer and the second hidden layer are 1’s or 0’s. For
pattern recognition problems, the outputs in the second
hidden layer need to be normalized. The last layer for the
RBPNN is just the output layer.
Mathematically, for an input vector x, the actual output
value of the ith output neuron of the RBPNN, ya

i , is
expressed as

ya
i ¼

XM
k¼1

wikhkðxÞ, (4)

hkðxÞ ¼
Xnk

i¼1

fiðjjx� ckijj2Þ; k ¼ 1; 2; 3; . . . ;M (5)

where hkðxÞ is the kth output value of the second hidden
layer of the RBPNN; wik is the synaptic weight between the
kth neuron of the second hidden layer and the ith neuron
of the output layer of the RBPNN; cki is the ith hidden
center vector for the kth pattern class of the first hidden
layer; nk represents the number of hidden center vectors for
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the kth pattern class of the first hidden layer; jj � jj2 is
Euclidean norm; and M denotes the number of the neurons
of the output layer and the second hidden layer, or the
pattern class number for the training samples set; fið�Þ is
the kernel function, which is generally the Gaussian kernel
function. fiðjjx� ckijj2Þ is written as

fiðjjx� ckijj2Þ ¼ exp �
jjx� ckijj

2
2

s2i

� �
, (6)

where si is the shape parameter for the Gaussian kernel
function.

Generally, the training algorithms for the RBPNN
include the orthogonal least square algorithm (OLSA)
and recursive least square algorithms (RLSA) [8], etc.
These two methods have the common advantages of fast
convergence and good convergence accuracy. The RLSA,
which requires good initial conditions, however, is fit for
those problems with a large training samples set. As the
OLSA makes full use of matrix computation, such as the
orthogonal decomposition algorithm of matrices, its
training speed and convergence accuracy is faster and
higher than the ones of the RLSA. Therefore, the OLSA is
preferred to train the RBPNN in this paper. For N training
samples corresponding to M pattern classes, considering
the form of the matrix, Eq. (4) can be written as [8]

Y a ¼ HW , (7)

where Y a and H are both an N �M matrix, W is a square
M �M matrix. According to the literature [8], it can be
known that the synaptic weight matrix W between the
output layer and the second layer of the RBPNN can be
solved for as follows:

W ¼ R�1Ŷ , (8)

where R is an M �M upper triangular matrix with the
same rank as H, and Ŷ is an M �M matrix. Both of them
can be respectively obtained as follows:

H ¼ Q�

R

� � �

0

2
64

3
75; QT � Y ¼

Ŷ

~Y

" #
, (9)

where Q is an N �N orthogonal matrix with orthogonal
columns satisfying QQT ¼ QTQ ¼ 1, and ~Y is an
ðN �MÞ �Mmatrix. Eq. (9) expresses the orthogonal
decomposition of the output matrix H of the second
hidden layer of the RBPNN.
Table 1

Training and classification CPU time for the PolyU palmprint database

Methods FastICA architecture I

CPU time (s)

Training Classificatio

RBPNN 2.9 0.020

RBFNN 3.2 0.017

BPNN 216.65 0.26
5. Experimental results and conclusions

We make use of the Hong Kong Polytechnic University
(PolyU) palmprint database, available from http://
www.comp.polyu.edu.hk/�biometrics, to verify our
RBPNN algorithm. This database includes 600 palmprint
images with the size of 128� 128 from 100 individuals,
with 6 images from each. For each person, the first three
images are used as training data while the remaining three
are treated as testing data. The interval captured between
training samples and test samples is two months. To reduce
the computational cost, each image is scaled to the size of
64� 64. Thus, the training set is a matrix with 300� 4096.
By PCA, the dimension of the training set is reduced to
214, i.e., the number of the fist k PC is 214.
Using FastICA architectures, basis vectors (features) of

palmprint images are extracted. Then we select all the 214
training samples as the hidden centers of the first hidden
layer. The number of the second hidden neurons and the
output layer neurons is set as 100 (classes of patterns),
respectively. According to [8], the shape parameter si is set
as 650. Using the OLSA to train the RBPNN, the
recognition rate of the testing samples corresponding to
two FastICA architectures is respectively 97.53% and
98.67%. In order to optimize and prune the RBPNN, we
use ROLSA to optimize the structure of RBPNN. As a
result, the number selected of hidden centers of the first
hidden layer is reduced from 214 to 60 and the recognition
rate of testing samples corresponding to each FastICA
architecture is still 97.53% and 98.67%. Clearly, FastICA
architecture II outperforms FastICA architecture I in
classification.
Compared with the RBPNN, with the same training and

testing data, by using all the training samples as the hidden
centers of RBFNN, the maximum recognition rate of
RBFNN corresponding to each FastICA architecture is
respectively 95.53% and 96.76%, where the shape para-
meter of the Gaussian kernel function of the RBFNN is
about 8900. Likewise, the recognition rate of BPNN
corresponding to each FastICA architecture is respectively
95.21% and 97.31%. Thus, it can be clearly seen that the
recognition rate of the RBPNN is higher than both that of
the RBFNN and that of the BPNN. On the other hand, in
experiment, it was found that the training speed and testing
speed with the RBPNN are also very fast. The algorithm
was programmed with MATLAB 6.5, and it was run on a
FastICA architecture II

CPU time (s)

n Training Classification

2.7 0.018

3.1 0.015

214.95 0.22

http://www.comp.polyu.edu.hk/~biometrics
http://www.comp.polyu.edu.hk/~biometrics
http://www.comp.polyu.edu.hk/~biometrics
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Pentium IV with 2.6GHz clock and 256Mb RAM under
the Microsoft Windows XP environment. For each
FastICA architecture, the CPU time needed to recognize
one palmprint image with the RBPNN is respectively
about 0.020 s and 0.018 s, as well as the training CPU time
needed is about 2.9 and 2.7 s, respectively. Distinctly, in
FastICA architectures, the difference in training and
testing speed is very small. As far as the palmprint
recognition based on BPNN being concerned, the corre-
sponding concerning training CPU time and classification
CPU time are much longer than the ones of the RBPNN,
as listed in Table 1.

Therefore, from the above experimental results, it can be
concluded that our palmprint recognition method based on
FastICA architectures and the RBPNN not only achieves
higher statistical recognition rate, but also behaves faster
training speed and testing speed than other classifiers used
usually in practice. This method is indeed effective and
efficient, which greatly support the claim that the RBPNN
proposed by us is a very promising neural network model
in practical applications.
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