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a b s t r a c t

Optimizing the system stiffness and dexterity of parallel manipulators by adjusting the geometrical

parameters can be a difficult and time-consuming endeavor, especially when the variables are diverse

and the objective functions are excessively complex. However, optimization techniques that are based

on artificial intelligence approaches can be an effective solution for addressing this issue. Accordingly,

this paper describes the implementation of genetic algorithms and artificial neural networks as an

intelligent optimization tool for the dimensional synthesis of the spatial six degree-of-freedom (DOF)

parallel manipulator. The objective functions of system stiffness and dexterity are derived according to

kinematic analysis of the parallel mechanism. In particular, the neural network-based standard

backpropagation learning algorithm and the Levenberg–Marquardt algorithm are utilized to

approximate the analytical solutions of system stiffness and dexterity. Subsequently, genetic algorithms

are derived from the objective functions described by the trained neural networks, which model various

performance solutions. The multi-objective optimization (MOO) of performance indices is established

by searching the Pareto-optimal frontier sets in the solution space. Consequently, the effectiveness of

this method is validated by simulation.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Compared with conventional serial manipulators, parallel
manipulators have significant advantages, such as improved
stiffness, increased payload, and high force/torque capacity.
Moreover, they also have simpler inverse kinematics, which is
an advantage for real-time control. Recently, parallel manipulators
have been developed for applications in aircraft simulators [1,2],
telescopes [3], positioning trackers [4], micro-motion [5–7], and
machine tools [8–14]. However, because the theories and
technologies for parallel manipulators are still in the early stages
of development, most existing parallel manipulators are expen-
sive devices that provide less accuracy than conventional
machines. Therefore, further investigation is necessary for making
parallel manipulators more attractive to industries [15].

Since the capabilities of current parallel manipulators are
limited in more extensive applications, such as biotechnology and
automotive manufacturing, performance improvement is one of
the most important issues that need to be addressed. The purpose
of optimization design aims at enhancing the performance
ll rights reserved.
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indexes by adjusting the structural parameters, such as the link
length, the radii of fixed and moving platforms, and the distance
between platform centers. This approach is called the dimensional
synthesis-based performance optimization of parallel manipula-
tors. In the optimum design process, several performance indices
are involved, such as stiffness, dexterity, accuracy, and workspace.

Many scholars have studied the optimum design of robot
manipulators [16–19]. Zhao et al. [20] exploited the least number
method for variables in order to optimize the leg length of a
spatial parallel manipulator for the purpose of obtaining a
dexterous workspace. Furthermore, Stock and Miller [21] pre-
sented a method for the multi-dimensional kinematic optimiza-
tion of the geometry for the linear delta robot architecture.
Specifically, they formulated a utility objective function, incorpor-
ating two performance indices: manipulability and space utiliza-
tion. Kucuk and Bingul [22] optimized the workspace of two
spherical three-link robot manipulators using the local and global
performance indices. Lastly, Ceccarelli and Lanni [23] investigated
the multi-objective optimization (MOO) problem of a general 3R
manipulator for prescribed workspace limits by utilizing an
algebraic formulation. Overall, it is apparent that artificial
intelligence technologies provide effective approaches for inves-
tigating this topic.

As the primary components of artificial intelligence ap-
proaches, genetic algorithms and artificial neural networks play

www.elsevier.com/locate/rcim
dx.doi.org/10.1016/j.rcim.2009.07.002
mailto:Dan.Zhang@uoit.ca
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Fig. 1. CAD model of the spatial six-DOF parallel manipulator (by Thierry Laliberte

and Gabriel Cote).
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important roles in various fields of science and technology. In this
research, the two components are simultaneously utilized as the
optimization criteria for the dimensional synthesis of a symme-
trical six-degree-of-freedom (DOF) parallel manipulator. The two
main performance indices, system stiffness and dexterity, will be
optimized as both single-objective optimization (SOO) and MOO
issues to demonstrate the validity of the proposed integrated
artificial intelligence approaches and to improve the manipulation
capabilities of parallel manipulators.

In this paper, many parameters and complex matrix computa-
tions need to be managed. Hence, it is difficult to search for the
objective values, or optimal configuration, and the corresponding
structural variables, based on the analytical expressions of system
stiffness and dexterity. Moreover, with traditional optimization
methods, only a few geometric variables could be managed due to
the lack of convergence in more complex problems. Genetic
algorithms, as powerful and broadly applicable search methods,
follow the Darwinian evolutionary principle of ‘‘survival-of-the-
fittest,’’ where strong traits are retained in the population and
weak traits are eliminated. Thus, genetic algorithms can avoid the
problems associated with local optima [24], and are therefore
suitable for addressing the convergence problem in this scenario.
On the other hand, neural networks possess the capability of
complex function approximation and generalization by simulating
the basic functionality of the human nervous system in an
attempt to capture some of its computational strengths. Since the
objective function must be solved before using genetic algorithms,
neural networks will be utilized to represent expressions of the
solutions for the two performance indices of a six-DOF parallel
manipulator. For the MOO problem, an algorithm that exhibits
compromise should be executed, since it is impossible to
maximize or minimize all of the objective function values if they
conflict with one another. This methodology will not only provide
effective guidance but will also present a new approach for the
dimensional synthesis of optimal design in general parallel
mechanisms.

The remainder of the paper is organized into distinct sections.
Section 2 presents geometric modeling and kinematic analysis,
where solutions for the inverse kinematics model and the
Jacobian matrix are derived. In Section 3, the optimization criteria
of system stiffness and dexterity are illustrated, and the models of
performance indexes are deduced. Subsequently, Section 4
discusses the results from the applications of genetic algorithms
and neural networks for optimizing the performance indices of
the parallel manipulator. Specifically, both the SOO and MOO
issues are addressed. Finally, Section 5 presents the conclusion
and suggests future work.
Fig. 2. Schematic representation of the spatial six-DOF parallel mechanism.

Fig. 3. Position of the attachment points: on the base (left), and on the platform

(right).
2. Geometric modeling and kinematic analysis

2.1. Geometric modeling

In this work, a six-DOF parallel mechanism and its joint
distributions on both the base and the platform are shown in Figs.
1–3. This mechanism consists of six identical extensible links
connecting the fixed base to a moving platform. The kinematic
chains associated with the six legs, from base to platform, consist
of a fixed Hooke joint, a moving link, an actuated prismatic joint, a
second moving link, and a spherical joint attached to the moving
platform. It is also assumed that the vertices on the base and
platform are located in the circles of radii Rb and Rp, respectively.

A fixed reference frame, O�xyz, is connected to the base of the
mechanism, and a moving coordinate frame, P�x0y0z0, is attached
to the platform. In Fig. 2, the attachment points of the actuated
legs to the base are represented by Bi and the attachment points of
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all legs to the platform are represented by Pi, with i ¼ 1,y, 6,
while point P is located at the center of the platform with the
coordinate of P(x,y,z).

The Cartesian coordinates of the platform are given by the
position of point P with respect to the fixed frame, and the
orientation of the platform, or the orientation of the frame
P�x0y0z0 with respect to the fixed frame, is represented by three
Euler angles f, y, and c, or by the rotation matrix Q.

2.2. Inverse kinematics

The inverse kinematics problem is focused on deducing the
joint motions when the position of the end-effector Te

b is known.
If the coordinates of point Bi in the fixed frame are represented by
vector bi, then

pi ¼ ½xi; yi; zi�
T i ¼ 1; . . . ; 6 ð1Þ

r0i ¼ ½Rp cosypi;Rp sinypi;0�
T ð2Þ

p ¼ ½x; y; z�T ð3Þ

bi ¼ ½Rb cosybi;Rb sin ybi;0�
T ð4Þ

where pi is the position vector of point Pi expressed in the fixed
coordinate frame, whose coordinates are defined as (xi,yi,zi). r0i the
position vector of point Pi expressed in the moving coordinate
frame, and p the position vector of point P expressed in the fixed
frame as defined above, and

ybi ¼ ½yb1; yb2; yb3; yb4; yb5; yb6�
T ¼ ½Tb;2p=ð3� TbÞ; =2p=ð3þ TbÞ;

4p=ð3� TbÞ;4p=ð3þ TbÞ;�Tb�
T ð5Þ

ypi ¼ ½yp1;yp2;yp3;yp4;yp5;yp6�
T ¼ ½Tp;2p=ð3� TpÞ;2p=ð3þ TpÞ;

4p=ð3� TpÞ;4p=ð3þ TpÞ;�Tp�
T ð6Þ

From these equations, one can then deduce

pi ¼ pþ Qr0i; i ¼ 1; . . . ; 6 ð7Þ

where Q is the rotation matrix from the fixed reference frame to
the moving coordinate frame, and Tp and Tb the angles for
determining the attachment points of six symmetrical branched
chains on the base and platform, respectively.

Subtracting vector bi from both sides of Eq. (7), one obtains

pi � bi ¼ pþ Qr0i � bii ¼ 1; . . . ; 6 ð8Þ

Then, taking the Euclidean norm on both sides of Eq. (8), one
has

Jpi � biJ ¼ Jpþ Qr0i � biJ ¼ qii ¼ 1; . . . ; 6 ð9Þ

where qi is the length of the ith leg or the value of the ith joint
coordinate. The solution of the inverse kinematic problem for the
six-DOF manipulator is therefore completed and can be written as

q2
i ¼ ðpi � biÞ

T
ðpi � biÞ; i ¼ 1; . . . ; 6 ð10Þ

2.3. Jacobian matrix

Based on the parallel component of the mechanism, the
parallel Jacobian Matrix can be obtained by differentiating Eq.
(10) with respect to time, which obtains

qi
_qi ¼ ðpi � biÞ

T _pi; i ¼ 1; . . . ; 6 ð11Þ
Since one has

_Q ¼ X � Q ð12Þ

with

X ¼ 1�x ¼

0 �o3 o2

o3 0 �o1

�o2 o1 0

2
64

3
75 ð13Þ

where x is the angular velocity of the platform. Differentiating Eq.
(7), one obtains

_pi ¼ _p þ _Q r0i ð14Þ

Then, Eq. (11) can be rewritten as

qi
_qi ¼ ðpi � biÞ

T
ð _p þ _Q r0iÞ ¼ ðpi � biÞ

T
ð _p þXQr0iÞ

¼ ðpi � biÞ
T _p þ ðpi � biÞ

TXQr0i ¼ ðpi � biÞ
T _p

þðpi � biÞ
T
½x� ðQr0iÞ� ¼ ðpi � biÞ

T _p þ ½ðQr0Þ

�ðpi � biÞ�
Tx; i ¼ 1; . . . ; 6 ð15Þ

Hence, one can write the velocity equation as

At ¼ B _q ð16Þ

where vector t is the twist of the platform, t ¼ ½xT _pT
�T , and

vector _qis defined as

_q ¼ ½ _q1
_q2 . . . _q6�

T ð17Þ

and

A ¼ ½m1m2 . . . m6�
T ð18Þ

B ¼ diag½q1q2 . . . q6�
T ð19Þ

where mi is a vector with 6 components, which can be expressed
as

mi ¼
ðQr0 iÞ � ðpi � biÞ

ðpi � biÞ

" #
ð20Þ

The linear transformation between the speed of the manip-
ulator and each joint can be defined as the Jacobian matrix of the
robot. This Jacobian matrix indicates the velocity ratio from the
space of the joints to the space of the end-effector. According to
Eq. (16), the Jacobian matrix can be written as

J ¼ B�1A ð21Þ

Therefore, the relationship between the Cartesian velocities
and joint rates is determined.
3. Design optimization

3.1. Optimization principles

The goal of structural parameters design, also known as
dimensional synthesis, is to discover the optimal geometric
configuration according to objective functions and geometric
restrictions. Specifically, optimization-based dimensional synth-
esis, one of the significant steps in the design process, ensures that
the parallel manipulator will perform strongly in areas such as
system stiffness and dexterity.

For parallel manipulators, the aim of optimization is to
maximize the system stiffness and minimize the dexterity, which
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is expressed with the condition number in the Jacobian matrix. If
these two aspects are addressed separately, then it will be treated
as two SOO issues. Contrarily, if the two aspects are considered
together, then it will be considered a MOO issue.

Due to the lack of convergence, only a few geometrical
parameters can be managed at one time. The lack of convergence
exists because traditional optimization methods use a local search
by a convergent stepwise procedure, such as gradient, Hessians,
linearity, and continuity, which compare the values of the
subsequent points and then examine the relative optimal points
[25]. Global optima can only be found if the problem possesses
certain convexity properties, which essentially guarantee that any
local optima are a global optimum. In other words, conventional
methods are based on a point-to-point rule, which has the danger
of failing in the case of local optima.

On the other hand, genetic algorithms are based on the
population-to-population rule, which can avoid the problems
caused by local optima. Genetic algorithms have the advantages of
robustness and strong convergence properties, which include the
following:
�
 They require no knowledge or gradient information about the
optimization problems; only the objective function and
corresponding fitness levels influence the directions of the
search.

�
 Discontinuities present in the optimization problems have

little effect on the overall optimization performance.

�
 They are generally more straightforward to introduce, since

there are no restrictions for the definition of the objective
function.

�
 They use probabilistic transition rules rather than determinis-

tic ones.

�
 They perform well in large-scale optimization problems.
Fig. 4. Schematic representation of the optimization rationale based on genetic

algorithms.

Fig. 5. The basic element of neural networks.
Genetic algorithms have been shown to solve linear and
nonlinear problems by exploring all regions of state space and
exponentially exploiting promising areas through mutation,
crossover, and selection operations that are applied to individuals
in the population. Since evolution is an inherently parallel
process, the greatest potential for the application of evolutionary
optimization to real-world problems will entail their implemen-
tation on parallel machines [26,27].

Although a single population genetic algorithm performs well
on a wide variety of problems, for multi-variable and complicated
optimization problems, it is inconvenient to find optima using
limited population size and evolutionary generations [28]. Alter-
natively, more effective results can be obtained by introducing
multiple sub-populations. For instance, Fig. 4 depicts the
behavioral rationale for the extended multi-population genetic
algorithm, which is adopted in this research.

One problem with implementing genetic algorithms concerns
how to model the objective function. Although genetic algorithms
can be used to search the best solution set, it is very difficult and
time-consuming, especially when the parameters are diverse and
the objective functions are too complex for genetic algorithms to
work effectively based on the analytical expression of the
performance indices, especially in the case of MOO. Consequently,
neural networks will be applied to address this problem. In
particular, the output error for neural networks is constrained in a
minimal threshold value that will not affect the computing
accuracy with CPU.

Artificial neural networks are parallel adaptive networks
consisting of simple nonlinear computing elements called neu-
rons. Neurons are intended to abstract and model some functions
of the human nervous system to simulate its powerful computa-
tion ability. A network is viewed as a weighted directed graph,
where artificial neurons are the basic elements and directed
weighted edges represent connections between neurons. Net-
works are used to calculate the training error for the cost function,
which is done by performing a random initialization of weights
and by training the network with one of the most commonly used
learning algorithms, such as backpropagation [29,30]. The basic
element of neural networks is illustrated in Fig. 5.

The following equation describes the relationship among
inputs and outputs for the artificial neuron:

yi ¼ fið
Xn

t¼1

xtwt þ biÞ � yi ð22Þ

where fi is the transfer function, such as the sigmoid function, xt

the input signal, which is the corresponding output from the
anterior neuron, wt the weight value of the related input signal, bi

the bias, whose weight value is 1, and yi the threshold value. The
overall structure of neural networks is organized with many
neurons arranged in a specific order. Subsequently, the corre-
sponding learning rule should be confirmed for the training
process.

The main function of neural networks is to establish a complex
nonlinear relationship between the inputs and outputs without
deducing a mathematical expression, which is referred to as a



ARTICLE IN PRESS

Z. Gao et al. / Robotics and Computer-Integrated Manufacturing 26 (2010) 180–189184
‘‘black box’’. For real-world applications, the primary properties of
neural networks include the capacities for associative recall and
function approximation.

Furthermore, neural networks are widely noted for their
model-free estimation capability, as they are able to create
internal representations solely through training example sets
and without the use of a mathematical model depicting the
relationship between inputs and outputs. Sometimes, this ability
is referred to as similarity based generalization. Using powerful
learning algorithms, neural networks are able to approximate
functions by sifting through vast repositories of data. Because of
their learning capability, they are referred to as adaptive function
estimators. Therefore, they can be utilized to represent the
expressions of system stiffness and dexterity for the six-DOF
parallel manipulator.

3.2. Solution for system stiffness

From the viewpoint of mechanics, stiffness is the measured
ability of a body or structure to resist deformation due to the
action of external forces. Specifically, the stiffness of a parallel
mechanism at a given point in its workspace can be characterized
by its stiffness matrix. This matrix relates the forces and torques
applied at the gripper link in Cartesian space to the corresponding
linear and angular Cartesian displacements.

Two primary methods have been used to establish mechanism
stiffness models: first, matrix structural analysis models struc-
tures as a combination of elements and nodes. Alternatively, the
second method relies on calculating the Jacobian matrix for the
parallel mechanism; accordingly, this latter method is adopted in
this research.

For the parallel mechanisms in this work, the velocity
relationship can be written as in Eq. (23)

_h ¼ J _x ð23Þ

where _h is the vector of joint rates and _x is the vector of Cartesian
rates. This latter variable is a six-dimensional twist vector
containing the velocity and angular velocity of a point on the
platform. Matrix J is usually termed the Jacobian matrix, which is
described in Eq. (21).

The stiffness matrix of the mechanism in Cartesian space is
then given by the following expression:

KC ¼ JT KJ J ð24Þ

In this case, KJ is the joint stiffness matrix of the parallel
mechanism. Specifically, KJ ¼ diag[k1,y, kn], where each of the
actuators in the parallel mechanism is modeled as an elastic
component. Furthermore, ki is a scalar representing the joint
stiffness of each actuator, which is modeled as a linear spring.

In the case where all actuators have the same stiffness, such as,
k ¼ k1 ¼ k2 ¼? ¼ kn, then Eq. (24) will be reduced to

KC ¼ kJT J ð25Þ

Moreover, the diagonal elements of the stiffness matrix are
used as the system stiffness value. These elements represent the
pure stiffness in each direction as well as reflecting the rigidity of
machine tools more clearly and concisely. The objective function
for system stiffness optimization can be written as

Stiffness Val ¼
X6

i¼1

ZiKii ð26Þ

where for i ¼ 1,y, 6, Kii represents the diagonal elements of the
mechanism’s stiffness matrix, ZI the weight factor for each
directional stiffness, which characterizes the priority of the
stiffness in this direction. For the optimization of system stiffness,
this factor should be a maximum.

3.3. Solution for dexterity

The condition number of the Jacobian matrix will be a measure
of the dexterity indices for the six-DOF parallel manipulator

Dexterity ¼ CondðJÞ ð27Þ

where Cond(J) is the condition number of the Jacobian matrix and
is defined as

CondðJÞ ¼ JJJJJ�1J ð28Þ

where J � J represents the norm of the related vector or matrix. If
the Frobenius norm is considered, then

JJJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðJT JÞ

q
ð29Þ

In this case, the Frobenius norm is defined as the extracting
roots of the quadratic sum for each element in the Jacobian
matrix. Hence, the dexterity indices can be deduced as

CondðJÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðJT JÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trððJ�1

Þ
T
� J�1
Þ

q
ð30Þ

If the spectral norm is introduced, the dexterity indices will be
described as

CondðJÞ ¼
SVmaxðJÞ

SVminðJÞ
ð31Þ

where SVmax(J) and SVmin(J) represent the singular maximum and
minimum values of Jacobian matrix J, respectively. This expres-
sion is selected as the objective function for the optimization of
dexterity, especially because of its efficient computing time. The
value of Cond(J), which is directly related to the singular values of
the Jacobian matrix, is between one and positive infinity. All
singular values in the Jacobian matrix will be the same and the
manipulator is isotropic when Cond(J) is equal to 1. On the other
hand, when Cond(J) is potentially equal to positive infinity, then
the Jacobian matrix is singular. Therefore, when the condition
number is considered, Cond(J) should be a minimum for the
optimization of dexterity.

For SOO issues, these two objective functions should be
considered, respectively. On the other hand, for a MOO issue, the
two goals might be in conflict, so a strategy for addressing both
objectives equally should be considered in the optimization
process. The integration of neural networks, genetic algorithms,
and the Pareto approach can be viewed as one type of evolutionary
neural network that searches the optimal solution sets of MOO.

3.4. Multi-objective genetic algorithms

Three main multi-objective genetic algorithms will be intro-
duced as follows:

3.4.1. Clustering function approach

The main principle of this approach involves converting the
MOO problem into SOO by distributing the weighting factors of
different objective function values.

For instance, if there are objective functions, such as f1(x),f2(x),
y, fr(x), it becomes

min
Xr

i¼1

wi � fiðxÞði ¼ 1;2; . . . rÞ ð32Þ
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where

Xr

i¼1

wi ¼ 1

Then, the multi-objective issue becomes a single-objective
problem. A typical application of the clustering function approach
can be found in [31].
3.4.2. Population-based approach

The population-based approach originates from the conception
of population division [32], where co-evolution, including com-
petition and cooperation, is the basic feature of this approach.
However, there are still no effective methods for population
decomposition; sub-population size determination, representa-
tive selection, and their application modes and domains require
further expansion. The act of decomposing the co-evolutionary
population is based on using piecewise interval correlation with
the iteration linkage learning method. For multi-population
genetic algorithms, the strategy for dynamically changing the
search area depends on the distribution of the best individual in
each population. The adaptive adjustment method of the popula-
tion size is based on the dimensions of the search area. For
instance, a typical application of the population-based approach
can be found in [33].
Table 1
Variables of structural parameters.

Rp (0.05, 0.1) m

Rb (0.12, 0.22) m

Z (0.16, 0.26) m

Tp (181, 281)

Tb (381, 481)
3.4.3. Pareto-based approach

The concept of the Pareto Method was originally introduced by
Francis Ysidro, and subsequently, it was generalized by Vilfredo
Pareto [34]. Basically, the Pareto set includes the best solutions
when there are no other results that can improve at least one of
the objectives without degrading any other objective. Usually,
there will be a set of solutions that provides a maximum amount
of information about the optimization for multi-objective pro-
blems. After comparing each solution to every other one, those
solutions that satisfy the least number of objectives are flagged as
inferior [35–37]. For maximizing the k objective functions, the
decision vector (sets of variables) x*AF is the Pareto-optimal
solution if no other decision vectors satisfy both of the following
conditions:

fiðxÞZfiðx
�Þ; 8i 2 f1;2; . . . ; kg ð33Þ

fjðxÞ4fjðx
�Þ; (j 2 f1;2; . . . ; kg ð34Þ

Likewise, if both of the following conditions are true, decision
vector x dominates y in the maximization issue, as noted by x4y.
This is expressed as

fiðxÞZfiðyÞ; 8i 2 f1;2; . . . ; kg ð35Þ

fjðxÞ4fjðx
�Þ; (j 2 f1;2; . . . ; kg ð36Þ

According to Eqs. (33)–(36), the Pareto-optimal set can be
defined in the following manner: if there is no solution in the
search space that dominates any member in the set P, then the
solutions belonging to the set P constitute a global Pareto-optimal
set. An application of the Pareto-based approach, which is the
method adopted in this research, can be found in [38].
4. Simulation

4.1. Objective optimization of system stiffness

Five architectural and behavioral parameters are used as the
optimization parameters for obtaining the maximum system
stiffness of the spatial six-DOF parallel manipulator, as shown in
Figs. 1 and 2. The vector of optimization variables is expressed as

s ¼ fRP ;Rb; z; Tp; Tbg ð37Þ

where Rp, Rb are the radius of the moving platform and the base,
respectively, z the height of the platform, Tp and Tb the angles for
determining the attachment points on the base and on the
platform, and their boundaries are shown in Table 1.

As the most popular training method for the feedforward
neural network, the standard backpropagation learning algorithm
is based on the steepest descent gradient approach to the
minimization of a criterion function representing the instanta-
neous error between the target output and the predicted output.
The criterion function can be expressed as follows:

E ¼
1

2N
ðTout � YoutÞ

T
ðTout � YoutÞ ð38Þ

where Tout is the vector of the desired network output, Yout the
vector of the actual output, and N the vector dimension. In this
scenario, the five geometrical parameters of this six-DOF parallel
manipulator are chosen as the inputs of the feedforward neural
network, and the performance index is used as the output.

The basic training step of a neural network with the standard
backpropagation algorithm is:
(A)
 Initialize the weights and biases in each layer with small
random values to ensure that the weighted inputs of the
network will not be saturated.
(B)
 Confirm the set of input/output pairs and the network
structure. Set some of the related parameters, such as the
desired minimal E, the maximum number of iterations and
the learning speed.
(C)
 Compare the actual output with the desired network response
and calculate the deviation.
(D)
 Train the updated weights based on the criterion function in
each epoch.
(E)
 Continue the previous two steps until the network satisfies
the training requirement.
Fig. 6 depicts the topology of the neural network, which is
developed as the objective function for modeling the analytical
solution of system stiffness. In this case, two hidden layers with
the sigmoid transfer function are established, where 16 neurons
exist in each hidden layer. The input vectors include the random
arrangement of discretization values from the five structural
variables.

Fig. 7 illustrates the training result from using the standard
backpropagation learning algorithm, where the blue curve
denotes the quadratic sum of the output errors with respect to
the ideal output values. After the neural network has trained for
206 times, it reaches the target error goal.
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Fig. 6. The topology of the feedforward neural network for the solution of system

stiffness.

Performance is 9.98983e-006, Goal is 1e-005
108

106

104

102

100

Tr
ai

ni
ng

-B
lu

e 
G

oa
l-B

la
ck

10-2

10-4

10-6

0 20 40 60 80 100
206 E pochs

120 140 160 180 200

Fig. 7. Training result of the objective function for system stiffness using the BP

neural network.

Best stiffness values per subpopulation

103.7824

103.7823

0 10 20
generation

30 40

X: 40

Y : 6060

G
lo

ba
l s

tif
fn

es
s 

va
lu

es

Fig. 8. The evolution of system stiffness.

Fig. 9. The evolution of architectural and behavioral parameters for system

stiffness optimization.
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After the trained neural network is ready for the objective
function, the genetic algorithm can be implemented to search for
the best solutions. The evolution of the best individual over 40
generations is depicted in Fig. 8, where the optimal system
stiffness value is 6060.

In terms of architectural and behavioral variables, the evolu-
tion for the best individuals in the population is shown in Fig. 9.
By simultaneously adjusting the five parameters, the optimization
results for system stiffness are obtained. After 40 generations,
they are convergent as follows:

s ¼ fRP ;Rb; z; Tp; Tbg

¼ f0:1 m;0:12 m;0:26 m;0:31416 rad;0:74837 radg

4.2. Objective optimization of dexterity

In some respects, the optimization of dexterity differs from
that of system stiffness. Since the analytical expression of the
dexterity indices is more complex than the case of system
stiffness, computing time and error accuracy should be prioritized
for the design of the neural network’s structure and the choice of
its learning algorithm.

As shown in Fig. 10, a neural network containing a single hidden
layer of 100 neurons is developed. Using more neurons and fewer
hidden layers assists in reducing the computing time and improving
the error accuracy. Additionally, this study introduces an improved
training method, the Levenberg–Marquardt (LM) algorithm, which
disregards directions in the parameter spaces that marginally
influence the criterion and increases the learning rate. Besides, it
still performs similarly to the efficient Gauss–Newton directions
within the subset of the important parameters [39]. The core of the
LM algorithm is the calculus and inversion of an approximation to
the Hessian in each training cycle [40]. This method improves the
solution to problems that are much more difficult to solve by
repeatedly adjusting the learning rate. It can be expressed as

f ðXðkþ1Þ
Þ ¼ minf ðXðkÞ þ ZðkÞSðXðkÞÞÞ ð39Þ

Xðkþ1Þ
¼ XðkÞ þ ZðkÞSðXðkÞÞ ð40Þ
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Fig. 10. The topology of the feedforward neural network for the solution of

dexterity.
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where X(k) is the vector constituting all of the weights and biases of
the neural network, S(X(k)) the search direction for each component
of X, Z(k) the step index for minimizing f(X(k+1)) in the direction of
S(X(k)). The Levenberg–Marquardt algorithm integrates the steepest
descent gradient approach with the Newton method, which is a
common numerical optimization method. Its searching direction is
represented by

SðXðkÞÞ ¼ �ðHðkÞ þ lðkÞIÞ�1rf ðXðkÞÞ ð41Þ

where H is the Hessian matrix, I an identity matrix, and l produces
a conditioning effect, which is automatically selected until a
downhill step is produced for each stage. Therefore, this modified
algorithm of backpropagation is adopted for the optimization of
dexterity.

Fig. 11 describes the training result using a feedforward neural
network with the Levenberg–Marquardt learning algorithm. In
this figure, the blue curve denotes the quadratic sum of the output
errors with respect to the ideal values. Specifically, the target error
of 10�8 is much smaller than that of the training result for system
stiffness, which is 10�5. Furthermore, the neural network achieves
its target error after training 82 times. Therefore, by using the
Levenberg–Marquardt algorithm to train the neural network, the
number of repetitions is decreased while the computational
precision is vastly improved.

The optimization process for dexterity based on the condition
number of the Jacobian matrix is illustrated in Fig. 12. After a
global search of 40 generations, the optimal dexterity value
converges at 353.1.

The evolution of architectural and behavioral parameters for
dexterity optimization is described in Fig. 13. In comparing this
figure to Fig. 9, it is evident that the corresponding convergent
points for the five parameters in these two figures are different.

s ¼ fRP ;Rb; z; Tp; Tbg

¼ f0:1 m;0:22 m;0:16 m;0:31416 rad;0:83733 radg

More precisely, it is evident that the two objective functions
conflict with each other. This issue will be discussed in the
following section, where the Pareto-optimal solution for MOO is
addressed.

4.3. Multi-objective optimization

MOO problems consist of simultaneously optimizing several
objective functions that differ from those of SOO. For a SOO task,
one single global optimal search is adequate. However, in a MOO
problem, it is necessary to find all possible compromises among
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Fig. 14. Pareto-optimal solutions and the pareto frontier in the solution space.

Table 2
Objective functions values from pareto sets and the corresponding design

variables.

Dexterity/system stiffness Rp (m) Rb (m) zZ (m) Tp (rad) Tb (rad)

a 357.62/6055.2 0.1 0.20928 0.16064 0.31416 0.83762

b 384.82/6056.4 0.1 0.19281 0.16 0.31416 0.83448

c 452.65/6058 0.1 0.17055 0.16021 0.31442 0.83775

d 555.44/6059.1 0.1 0.1498 0.16149 0.31416 0.83775

e 749.62/6059.8 0.1 0.12739 0.16426 0.31483 0.8377

f 1000.6/6060 0.1 0.12006 0.17632 0.31956 0.82563
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multiple objective functions that conflict with each other.
Consequently, the set of Pareto-optimal solutions is generally
used to make the final decision.

Prior to implementation, the following initial parameters of the
Pareto-based genetic algorithms are created:

Number of sub-populations 5
Number of individuals in each sub-population {50, 30, 30, 40, 50}
Mutation range 0.01
Mutation precision 24
Maximum generations for algorithm termination 300

After optimization, all possible solutions in the entire solution
space are obtained without the need for combining all objective
functions into one. Fig. 14 shows the Pareto-optimal frontier sets,
where the designers can determine the final solutions depending on
their preferences. Hence, the analysis process and cycle time is
greatly reduced. In this figure, a compromise between the objectives
of system stiffness and dexterity is demonstrated in the distributing
trend of these Pareto points. If any other pair of design variables is
chosen from the lower-right area in Fig. 14, its corresponding values
will locate an inferior point with respect to the Pareto frontier.
Furthermore, the upper-left side is an inaccessible area for all the
possible solution pairs, which is the reason why Pareto solutions are
called Pareto-optimal frontier sets. Lastly, there are six optimum
design points, labeled ‘‘a’’ to ‘‘f,’’ whose corresponding objective
values and design parameters are shown in Table 2.
5. Conclusions

Performance optimization is an integral issue for the more
extensive industrial applications of parallel manipulators. By
adjusting the architectural and behavioral parameters, the
optimal performance indices of the six-DOF parallel mechanism,
such as system stiffness and dexterity, can be searched. Only a few
geometrical parameters can be managed due to the lack of
convergence of the optimization algorithm for complex objective
functions with traditional optimization methods. Consequently,
neural networks and genetic algorithms are the two important
artificial intelligence approaches simultaneously implemented as
the optimization guidelines in this paper. Single-objective and
multi-objective optimization issues are both addressed to demon-
strate the validity of the artificial intelligence approaches, both of
which are naturally compatible. Specifically, in the case of MOO,
Pareto evolutionary neural networks possess high efficiency,
strong generalization, and programmable features regardless of
whether the objective functions have an analytical solution.
Future work will focus on the comprehensive MOO problem for
complicated parallel mechanisms with the objective of realizing
the simultaneous optimization of additional performance indices,
such as system stiffness, workspace, dexterity, and malleability. In
particular, the physical parallel manipulator is under development
using the proposed performance evaluation criteria.
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