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a b s t r a c t

From the perspective of manifold learning, the weight between two nodes of graph plays an

indispensable role, which provides the similarity between pairwise nodes, and can effectively reveal

the intrinsic relationship between data classes. In the original Locality Preserving Projections (LPP),

Unsupervised Discriminant Projection (UDP), Orthogonal LPP (OLPP), and other spectral mapping

which cannot effectively reflect the sample class information. In Orthogonal Discriminant Projection

(ODP), the weight between two points was defined based on their local information and class

information, but it is not a monotonically decreasing with the increase of the distance between two

nodes, so it is not very sound. In this paper, we first analyze the defect of the weight in ODP, then

propose a novel weight measure between two nodes of a graph by combining their label information

and local information, finally present a modified ODP algorithm following the ODP technique. The

modified ODP algorithm can explore the intrinsic structure of original data and enhance the

classification ability. The experimental results show that the modified ODP algorithm is effective and

feasible.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Manifold learning based methods are becoming the most
promising dimensional reduction approaches. Among them, Lapla-
cian Eigenmap (LE) [1] and Locally Linear Embedding (LLE) [2] are
two representative spectral mapping methods, which can impli-
citly find the optimal feature subspace by solving a generalized
eigenvalue problem. However, LE and LLE are nonlinear dimen-
sional reduction techniques, whose generalization ability is much
weak. They are defined only on the training data points and it is
unclear how to evaluate the projection of new test points. That is
to say, a sample of the test set in the low dimensional space
cannot be easily obtained with the projection results of the
training set. Linearization, kernelization, tensorization and some
other tricks have been introduced to avoid this problem [3–8].
Locality Preserving Projections (LPP) [5,6] is a linear approxima-
tion to LE. Different from the nonlinear dimensional reduction
techniques such as LE and LLE, LPP is linear. Particularly, it is
defined everywhere in ambient space rather than just on the
training data points. LPP shares many of the data representation
properties of nonlinear techniques such as LE or LLE. But in the
original LPP, the linear transformation matrix is not under the
ll rights reserved.
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orthogonal constraint. In order to solve the problem, Cai, et al. [9]
proposed an orthogonal LPP (OLPP) algorithm, which shows more
locality preserving power than LPP. However both LPP and OLPP
are unsupervised dimension reduction methods. They ignore the
class information and often cause small sample size (SSS) problem
when the sample number is less than the dimension of the
samples. Some techniques are introduced to solve the problem
at the cost of discarding some useful information [10–12].
Recently, Li et al. [13] proposed an orthogonal discriminant
projection (ODP) algorithm. ODP maximizes the weighted differ-
ence between the non-local scatter and the local scatter. In ODP,
the weights between two nodes of a graph are adjusted according
to their class information and local information. Although ODP can
offer higher recognition rate than some other feature extraction
methods, it is found that the weight definition is not sound. In this
paper, we first analyze the defect of the weight in ODP, and
propose a modified weight measure, then present a modified ODP.

The rest of this paper is organized as follows: Section 2 analyses
the shortage of the weight in ODP. Section 3 introduces the modified
ODP algorithm. Experimental results are given in Section 4. Finally,
some concluding remarks are provided in Section 5.
2. Motivation

In this section, we firstly introduce the definition and plot
illustrate of the weight in ODP [13], and then analyze the defect of
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the weight. Given n data points x1,x2,y,xn, xi ¼ fx
m
i 9m¼ 1,2,. . .,Mg,

let ci and N(xi) be the label and k nearest neighbors of the point xi,
respectively. The weight Wij between two nodes is defined as
follows:

Wij ¼

expð�
d2ðxi ,xjÞ

b Þ, If xiANðxjÞ andxjANðxiÞ and ci ¼ cj

expð�
d2ðxi ,xjÞ

b Þ 1�expð�
d2ðxi ,xjÞ

b Þ
� �

If xiANðxjÞ andxjANðxiÞ and ciacj

0, otherwise

8>>><
>>>:

ð1Þ

where d(xi,xj) is the Euclidean distance between xi and xj, and b is
a control parameter.

Fig. 1 shows that the typical plot of Wij is a function of
d2(xi,xj)/b, where S1 denotes the case that both xi and xj are
the k nearest neighbors of each other sharing the same
label; S2 denotes the case that both xi and xj are k nearest
neighbors of each other with different labels and S3 denotes the
other cases.

From Eq. (1) and Fig. 1, we find that the weight Wij is not a

monotonically decreasing function of d2(xi,xj)/b. More specifically,
for the case of two points with the different labels, when

0od2(xi,xj)/bo0.71, Wij is monotonically increasing. But, in
actual applications, Wij should decrease with the increase of

d2(xi,xj)/b. Moreover the authors [13] pointed that the parameter

b can be set to b-þN. That is to say, there are many pairwise

points satisfying 0od2(xi,xj)/bo0.71. According to the physical
meaning of the weight, the definition of Wij in ODP is not entirely
correct.
3. Modified ODP

In this section, combining the class information and the local
information of the original data, a new weight measure between
two nodes of the neighbor graph is proposed. Based on the
weight, a modified ODP is presented. The procedure of the
modified ODP algorithm is similar to that of the ODP algorithm
except Wij is replaced by Hij.
Fig. 2. Seven images of one perso
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Fig. 1. Typical plot of Wij as a function of d2(xi,xj)/b.
Given n data points x1,x2,y,xn in RD, like ODP, the aim of the
modified ODP is to find a linear transformation matrix A and to
map the n points to a set of points y1,y2,y,yn in Rd, such that yi

provides the most faithful representation of xi in the lower
dimensional space, where yi¼ATxi and d5D.

3.1. Weight definition

To obtain a suitable weight, we modify Eq. (1) as follows:

Hij ¼

expð�
d2ðxi ,xjÞ

b Þ, If xiANðxjÞ and xjANðxiÞ and ci ¼ cj

expð�
d2ðxi ,xjÞ

b ÞSðxi,xjÞ If xiANðxjÞ and xjANðxiÞ and ciacj

0, otherwise

8>>><
>>>:

ð2Þ

where S(xi,xj) is the correlation coefficient between xi and xj,
which is expressed as

Sðxi,xjÞ ¼
:ðxi�xi Þðxj�xj Þ

T:

:ðxi�xi Þ:U:ðxj�xj Þ:
¼

P
m
ðxm

i �xi Þðx
m
j �xj Þ

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m
ðxm

i �xi Þ
2P

m
ðxm

j �xjÞ
2

r ð3Þ

where

xi ¼
1

M

XM
m ¼ 1

xm
i , xj ¼

1

M

XM
m ¼ 1

xm
j

Like Wij, Hij integrates the local neighbor structure and the
class information of the original data, and displays the discrimi-
nant similarity between xi and xj. The primary difference between
Hij and Wij is that Hij is strictly monotonically decreasing in the k

nearest neighbors of xi and xj. Hij not only shares the properties of
Wij, but also has following properties:
1.
n in
Due to introducing the correlation coefficient S(xi,xj) into Hij,
Hij can reflect the data similarity relationship.
2.
 Since 0oS(xi,xj)o1, Hij incurs a heavy penalty if the neighbor-
ing points xi and xj belong to the different labels.
3.
 Note that expð�d2ðxi,xjÞ=bÞ and expð�d2ðxi,xjÞ=bÞSðxi,xjÞ always
decrease when xi and xj are far apart and they increase when xi

and xj are close. So if we replace Wij by Hij in ODP, the modified
ODP does not impose far apart points to be close, by which the
neighborhood structure of the original data tends to be
preserved.

3.2. Computing the local and non-local scatter matrix

Due to introducing the weight matrix H, by simple algebraic
formulation, the local scatter matrix JL(A) can be expressed as follows:

JLðAÞ ¼
Xn

i ¼ 1

Xn

j ¼ 1

Hijðyi�yjÞðyi�yjÞ
T

¼
Xn

i ¼ 1

Xn

j ¼ 1

HijðA
T xi�AT xjÞðA

T xi�AT xjÞ
T

¼ AT
Xn

i ¼ 1

Xn

j ¼ 1

Hijðxi�xjÞðxi�xjÞ
T A

¼ AT SLA ð4Þ
the FERET face database.
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where SL ¼
Pn

i ¼ 1

Pn
j ¼ 1

Hijðxi�xjÞðxi�xjÞ
T
¼ XLXT and X¼[x1,x2,y,xn], L is

the Laplacian matrix with the definition of L¼M�H; M is a diagonal
matrix, its entries are column (or row, since H is symmetric) sum of H,
i.e. Mii¼

P
jHij.

The matrix M provides a natural important measure of the
data points. If Mii is large, it implies that the class containing xi has
a high density around xi. Therefore, the bigger the value Mii is, the
more important the data point xi is.

The non-local scatter matrix JN(A) is characterized as follows:

JNðAÞ ¼
Xn

i ¼ 1

Xn

j ¼ 1

ð1�HijÞðyi�yjÞðyi�yjÞ
T

ð5Þ

Similarly, JN can be derived as

JNðAÞ ¼ AT ðST�SLÞA¼ AT SNA ð6Þ

where

ST ¼
Xn

i ¼ 1

Xn

j ¼ 1

ðxi�xjÞðxi�xjÞ
T and

SN ¼ ST�SL ¼
Xn

i ¼ 1

Xn

j ¼ 1

ð1�HijÞðxi�xjÞðxi�xjÞ
T

3.3. Extracting classification feature

Like ODP, with the constraint ATA¼ I, the objective function of
the modified ODP is as follows:

arg max
AT A ¼ I

JðAÞ ¼ arg max
AT A ¼ I

AT ðð1�gÞST�gSLÞA ð7Þ

where g is an adjustable parameter.
So we can find that A consists of the eigenvectors associated

with d top eigenvalues of the following eigen-equation:

ðð1�gÞST�gSLÞa¼ la ð8Þ

Let a1,a2,y,ad be the first d solution of Eq. (8), which are
selected according to their top d eigenvalues l1,l2,. . .,ld, where
l14l24 � � �4ld. The optimal projection matrix Aopt is obtained
by Aopt¼[a1,a2,y,ad]. Then the optimal linear feature ynew of any
new test point xnew is obtained by the following linear
Fig. 3. Sample images from one person

Table 1
Recognition rates (percent) of the modified ODP and ODP on FERET database and

their corresponding dimensions (shown in parentheses).

Method l¼3 l¼4 l¼5 l¼6

ODP 80.73 (100) 82.58 (100) 83.24 (100) 83.95 (100)

Modified ODP 81.79 (100) 83.31 (98) 84.05 (98) 84.86 (98)
transformation:

ynew ¼ AT xnew ð9Þ

where ynewARd.

3.4. Modified ODP for classification

The algorithmic procedure for data classification of the mod-
ified ODP algorithm is formally summarized as follows:

Step 1: Construct the adjacency graph using the training data;
Step 2: Calculate the weight of any two data nodes by Eq. (2);
Step 3: Compute the top d eigenvalues and its corresponding
eigenvectors of the generalized eigenvalue problem in Eq. (8),
and obtain the final linear projection matrix A;
Step 4: Project the test data into low-dimensionality feature
representation by Eq. (9);
Step 5: Predict the corresponding class labels using the optimal
classifier.

4. Experiments

To evaluate the performance of the modified ODP algorithm, in
this section, we conduct a series of experiments on the FERET face,
Extended Yale B face, and the plant leaf datasets, and compare with
ODP. Since the main purpose of the experiments is to compare the
performances of ODP and the modified ODP, the 1-NN classifier is
used in during all the experiments for its simplicity.

4.1. Experiments on FERET face database

In this experiment, a subset is selected from the original FERET
face database. It contains 100 individuals with seven images for each
person. It is composed of images whose names are marked with
two-character strings, i.e., ‘‘bd’’, ‘‘bj’’, ‘‘bf’’, ‘‘be’’, ‘‘bc’’, ‘‘ba’’, and ‘‘bk’’,
which denotes two facial expression images, two left pose images,
two right pose images and an illumination image, respectively. All
images in this subset are cropped to be the size of 32�32. Fig. 2
shows the cropped images of one person in FERET face database.

We selected the l¼3, 4, 5, and 6 images from each class as
training set, and the rest of each class for test set. For each value
of l, 20 runs are performed with different random partitions
between training set and test one. The experimental conditions,
in the extended Yale B database.

Table 2
Recognition rates (percent) of the modified ODP and ODP on Extended Yale B

database and their corresponding dimensions (shown in parentheses).

Method l¼10 l¼50

ODP 86.31 (65) 97.39 (67)

Modified ODP 88.54 (71) 97.95 (60)
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Fig. 4. Fifteen leaf images of Spica Prunellae under three periods and five illuminations: (A) Original images; (B) Pre-processed images; (C) Pre-processed gray images.

Table 3
Recognition rates (percent) of the modified ODP and ODP on the plant leaf image database and their corresponding dimensions (shown in parentheses).

Method l¼4 l¼6 l¼8 l¼10 l¼12 l¼14

ODP 76.81 (35) 82.04 (35) 87.72 (35) 89.55 (35) 90.36 (35) 91.04 (35)

Modified ODP 81.07 (35) 85.69 (35) 90.84 (35) 91.73 (30) 92.04 (30) 92.87 (30)
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parameters, and procedures of the ODP and modified ODP are
basically same. When constructing the k nearest neighborhood
graph, k is set to be l�1. After the discriminant features have been
extracted by performing the two algorithms, the 1-NN classifier is
adopted to predict the labels of the test data, where the control
parameter b¼800 and the adjustable parameter g¼0.8. Table 1
illustrates the optimal recognition rates and their corresponding
dimensions from the 20 runs for the ODP and modified ODP, From
Table 1, it can be found that the modified ODP consistently
outperforms ODP among all the cases.

4.2. Experiments on Extended Yale B face database

The Extended Yale B database consists of 2414 frontal-face
images of 38 individuals, where each subject has about 64 images
captured under various laboratory-controlled lighting conditions.
We simply used the cropped images and resized them to 32�32
pixels. Sixty four sample images of one individual are displayed in
Fig. 3. We set the parameters k, b, and g to be the same as before. For
the ODP and modified ODP methods, two random subsets with ten
and fifty images per individual were selected for training. The rest of
the database was used for testing. Such a trial was independently
performed 20 times, and then the average recognition results were
calculated. The maximal recognition rate of each method and the
corresponding reduced dimension are given in Table 2. As can be
seen, the modified ODP performs better than ODP regardless of
whether the training sample size is 10 or 50.

4.3. Experiments on ICL plant leaf database

To more comprehensively verify the proposed method, we
apply it to the plant leaf classification. The ICL-PlantLeaf1
1 http://www.intelengine.cn/ dataset/index.html.
database was constructed at the Intelligent Computing Laboratory
(ICL) of Institute of Intelligent Machines, Chinese Academy
of Sciences. It contains more than 30,000 leaf images of 362
plant species. The images were captured at different periods,
and have different locations and natural illuminations. In this
experiment, we employed a subset containing 750 leaf images
of 50 classes. Each kind of plant leaf was sampled and imaged
from 3 different periods under 5 different nature illuminations
(or locations). Fig. 4 shows the 15 leaf images of Spica Prunellae.
In this experiment, each original leaf image is cropped and
normalized (in scale and orientation), as shown in Fig. 4(B). The
size of each cropped image is 32�32 pixels by histogram
equilibrium in the experiment with 256 Gy levels per pixel and
with the white background, as shown in Fig. 4(C). Thus, each
image is represented by a 1024-dimensional vector in image
space.

All images are randomly divided into the training subset
and test subset with different numbers, i.e., we randomly
choose l images from each class as training subset, the rest
as test subset. We set k¼ l�1, b¼500 and g¼0.8. For each
given l, we perform 20 splits to randomly choose the training
set. Table 3 shows the average recognition rates with their
corresponding standard deviations and dimensions over 20 ran-
domly splits. As can be seen, the modified ODP significantly
outperforms the ODP, irrespective of the variations in training
sample size.

The proposed modified ODP consistently achieves the best
recognition rate in all the experimental cases. The datasets used
in this study are FERET face, Extended Yale B face, and ICL plant
leaf. The multifaceted nature of the datasets enables us to
perform a more objective comparison of the tested algorithms.
Compared to the ODP, the modified ODP encodes more discrimi-
nant information in the reduced feature subspace by more
faithfully preserving local geometry and incorporating the data
similarity information.

http://www.intelengine.cn/ dataset/index.html
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5. Conclusions

In pattern recognition and classification, dimensional reduc-
tion algorithms are widely employed to reduce the dimension-
ality of the original data and enhance the discriminant
information. The orthogonal discriminant projection (ODP) algo-
rithm makes use of the local information and the non-local
information as well as the sample class information to model
the manifold data, in which the weight between two nodes of the
graph is adjusted according to their class information and local
information. Although ODP is suitable for the task of classifica-
tion, the weight definition in ODP is not very sound. In this paper,
we analyzed the defect of the weight in ODP, and proposed a
novel weight measure of any two points by combining the label
information and local and non-local information, which can be
introduced to improve the discriminant ability and preserve the
local neighborhood structure of the original data. Based on the
weight, we presented a modified ODP algorithm. We have applied
the modified ODP algorithm to face and plant leaf recognition.
The experiments on the FERET face, Extended Yale B face, and ICL
plant leaf datasets demonstrate that the modified ODP algorithm
is effective and feasible.
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