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In this paper, an efficient feature extraction algorithm called orthogonal local spline discriminant projec-
tion (O-LSDP) is proposed for face recognition. Derived from local spline embedding (LSE), O-LSDP not
only inherits the advantages of LSE which uses local tangent space as a representation of the local geom-
etry so as to preserve the local structure, but also makes full use of class information and orthogonal sub-
space to improve discriminant power. Extensive experiments on several standard face databases
demonstrate the effectiveness of the proposed method.
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1. Introduction

In the past two decades, appearance-based face recognition has
attracted considerable interests in computer vision and pattern rec-
ognition. It is well known that there are two central issues in
appearance-based face recognition: one is feature extraction for
face representation; the other is classification of a new face image
based on the extracted features. Generally, in many classical
appearance-based methods, a face image of size n1 � n2 pixels is
represented as a vector in a n1 � n2-dimensional space. Obviously,
operating directly on such high-dimensional image space is ineffec-
tive and may lead to high computational and storage demands as
well as poor performance. A typical way to circumvent the ‘‘curse
of dimensionality’’ problem (Donoho, 2000) and other undesired
properties of high-dimensional spaces is to use dimensionality
reduction techniques.

Currently, many dimensionality reduction techniques for face
recognition have been proposed, which can be broadly categorized
into two classes: linear and nonlinear. Classical linear dimensional-
ity reduction approaches, such as principal component analysis
(PCA) (Jolliffe, 1989; Turk and Pentland, 1991) and linear discrim-
inant analysis (LDA) (Duda et al., 2001), seek to find a meaningful
low-dimensional subspace in a high-dimensional input space by
linear transformation. This subspace can provide a compact repre-
sentation of high-dimensional input data when the intrinsic struc-
ture of data embedded in the input space is linear. However, they
may fail to discover the intrinsic structures of complex nonlinear
data. In order to address this problem, a number of nonlinear
ll rights reserved.
dimensionality reduction techniques have been proposed. Among
them, the manifold learning-based methods attracted extensive
attention. The representative algorithms include isometric feature
mapping (ISOMAP) (Tenenbaum et al., 2000; Silva and Tenenbaum,
2003; Law and Jain, 2006), locally linear embedding (LLE) (Roweis
and Saul, 2000; Saul and Roweis, 2003), Laplacian eigenmaps (LE)
(Belkin and Niyogi, 2003), Hessian-based locally linear embedding
(HLLE) (Donoho and Grimes, 2003), maximum variance unfolding
(MVU) (Weinberger and Saul, 2004), manifold charting (Brand,
2003), local tangent space alignment (LTSA) (Zhang and Zha,
2005), diffusion maps (Coifman and Lafon, 2006; Lafon and Lee,
2006), Riemannian manifold learning (RML) (Lin et al., 2006; Lin
and Zha, 2008), and local spline embedding (LSE) (Xiang et al.,
2006, 2009). Each manifold learning algorithm attempts to pre-
serve a different geometrical property of the underlying manifold.
Local approaches such as LLE, HLLE, LE, LTSA, RML and LSE aim to
preserve the proximity relationship among the data, while global
approaches like ISOMAP aim to preserve the metrics at all scales.
These nonlinear methods do yield impressive results on some
benchmark artificial and real world data sets due to their nonlinear
nature, geometric intuition, and computational feasibility. How-
ever, some limitations are exposed when they are applied to pat-
tern recognition.

One limitation is the out-of-sample problem. These nonlinear
manifold learning algorithms yield maps that are defined only on
the training data points, while how to evaluate the maps on novel
test data points still attracts a lot of attention (He et al., 2005a,b).
To overcome the drawback, Bengio et al. (2003), DeCoste (2001)
proposed a kernel method to embed the new data points because
of the generalization ability of Mercer kernel. He and Niyogi
(2003) and He et al. (2005b) proposed a method named locality

http://dx.doi.org/10.1016/j.patrec.2010.11.024
mailto:icg.jiawei@gmail.com
http://dx.doi.org/10.1016/j.patrec.2010.11.024
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


616 Y.-K. Lei et al. / Pattern Recognition Letters 32 (2011) 615–625
preserving projection (LPP) to approximate the eigenfunctions of
the Laplace–Beltrami operator on the manifold and the new testing
points can be mapped to the learned subspace without trouble. He
et al. (2005a), Zhang et al. (2007) introduced an explicit linear
mapping to the original LLE and LTSA, respectively, which made
it straightforward for handling new data samples. Yan et al.
(2007) utilized the graph embedding framework for developing a
novel algorithm called marginal Fisher analysis (MFA) to solve
the out-of-sample problem. In addition, Chin and Suter (2008)
tuned data-dependent kernel functions derived from Gaussian
basis functions for extrapolating manifolds learned via MVU to no-
vel out-of-sample data. Among the approaches mentioned above,
the linear approaches based on manifold learning can address
the out-of-sample problem with the cheapest computational cost.

Another limitation is that classical manifold learning ap-
proaches neglect the class information, which will inevitably lead
to a heavy weakening of their performances on pattern recogni-
tion. Many modified manifold learning-based approaches have
been recently proposed to make use of the label information. A
typical approach to overcome this limitation of manifold learning
for pattern recognition is to modify input space distances by taking
into account class labels of individual data points, such as super-
vised ISOMAP (Geng et al., 2005) using a certain kind of dissimilar-
ity based on Euclidean distance, supervised LLE (Ridder et al., 2003)
using Euclidean distance considering the known class label infor-
mation, probability-based LLE (Zhang and Zhao, 2007) using a
probability-based distance, and weighted locally linear embedding
(Pan et al., 2008) using a cam weighted distance. These supervised
manifold learning approaches have achieved good classification
performance on some data sets. At the same time, they tend to
divide all the sample points into disconnected parts instead of an
entire neighborhood graph, which also bring a problem about
how to apply original manifold learning approaches to discon-
nected components. Alternatively, some approaches combine ori-
ginal manifold learning techniques with supervised linear
subspace methods. The seminal approach is LLE + LDA (Zhang
et al., 2004), which comprises two steps. Sample points are first
mapped into the intrinsic low-dimensional space based on LLE
and then LDA is adopted to enhance between-class distances and
decrease within-class distances. There are still some weaknesses
in this proposed approach. Firstly, the embedding dimension of
LLE must be reduced to be smaller than the number of the classes
in order to avoid the small sample size problem (SSS), thus some
useful classification information may be discarded. Furthermore,
the simple addition of LLE and LDA makes the two-step approach
more complicated. Another alternative is to add a penalty term
to the cost function favoring embeddings with small within-class
distances (Pang et al., 2006). Such approaches must manage a
tradeoff between class discrimination and trustworthiness of the
visualizations.

In this paper, inspired by the idea of LSE (Xiang et al., 2006,
2009), we propose a novel linear subspace learning technique,
called orthogonal local spline discriminant projection (O-LSDP).
The tangent space in the neighborhood of each data point is firstly
built in our method which can represent the local geometry of the
intrinsic manifold structure. According to the notion of the com-
patible mapping in LSE, smooth splines are constructed to align
those local tangent spaces to its own single low-dimensional global
coordinates. We then compute a transformation matrix which
maps the data points to a subspace. The linear transformation ma-
trix is obtained by optimizing an objective function, which cap-
tures the discrepancy of the local geometries in the reduced
space and introduces the maximum margin criterion (MMC) (Li
et al., 2006) simultaneously. Therefore, our method effectively
combines the ideas of LSE and MMC, i.e. it can hold the strong dis-
criminant power of MMC and preserve the intrinsic geometry of
the data samples simultaneously. In order to improve the discrim-
inant power, we present a new method for obtaining a set of
orthogonal basis eigenvectors.

O-LSDP constructs a local tangent space at each data point,
which models explicitly the data topology. Similar to LSE, the cor-
responding tangent space projection is estimated to capture the
geometry of the neighborhood of each point and those local tan-
gent coordinates are nonlinearly aligned in the reduced space by
different spline functions to obtain a global coordinate system.
However, in contrast to LSE, O-LSDP has a number of desirable
properties:

1. O-LSDP computes an explicit linear mapping from the input
space to the reduced space. Note that in LSE, the mapping is
implicit and it is not clear how new data samples can be
embedded.

2. O-LSDP attempts to manage the trade-off between MMC, which
emphasizes discriminant power, and LSE, which is based mainly
on preserving local structure.

3. O-LSDP seeks to find a set of orthogonal basis functions and sig-
nificantly improves its recognition accuracy.

The rest of this paper is organized as follows: Section 2 de-
scribes the MMC and LSE algorithms. The O-LSDP algorithm is
developed in Section 3. Section 4 demonstrates the experimental
results. Finally, conclusions are presented in Section 5.
2. Related works

Given a data set of n data points X ¼ ½x1; x2; . . . ; xn� 2 Rm�n, the
goal of dimensionality reduction is to project the high-dimensional
data into a low-dimensional feature space. Let us denote the corre-
sponding set of n points in the reduced space as Y ¼ ½y1;

y2; . . . ; yn� 2 Rd�n, with d�m, in which yi is a low-dimensional rep-
resentation of xi (i = 1, 2, . . . , n).

2.1. Maximum margin criterion

MMC (Li et al., 2006) aims at maximizing the average margin
between classes in the projected space. Let Sw and Sb be the
within-class scatter matrix and the between-class scatter matrix
defined by

Sw ¼
Xc

i¼1

Xni

j¼1

ðxi
j �miÞðxi

j �miÞT ; ð1Þ

Sb ¼
Xc

i¼1

niðmi �mÞðmi �mÞT ; ð2Þ

where c is the number of classes, m is the total sample mean vector,
mi is the average vector of the ith class, ni is the number of samples
in the ith class, and xi

j is the jth sample in the ith class. The objective
function of MMC under projection matrix W is

JðWÞ ¼ trfWTðSb � SwÞWg: ð3Þ

Confining the column vectors in W to be unit vectors, W that max-
imizes Eq. (3) can be calculated through the following eigenvalue
equation

ðSb � SwÞw ¼ kw: ð4Þ

Comparing MMC with the classical LDA, we find that the former
avoids calculating the inverse within-class scatter, i.e. (Sw)�1Sb is
substituted by Sb � Sw. This can not only make the computation
more efficient but also avoid the SSS problem of the within-class
scatter.
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2.2. Local spline embedding

LSE (Xiang et al., 2006, 2009) is a recently proposed manifold
learning method for nonlinear dimensionality reduction. This
method is developed from the framework of part optimization
and whole alignment. Each data point is represented in different
local coordinate systems by part optimization. But its global coor-
dinate should be maintained unique. Whole spline alignment is
used to achieve this goal. The outline of LSE can be summarized
as follows:

Step 1: Identify neighbors. For each data point xi, Let
Xi ¼ ½xi1 ; xi2 ; . . . ; xik � 2 Rm�kdenote the collection of its k nearest
neighbors. Use the KNN or e-ball criterion to identify the indices
corresponding to the k nearest neighbors.
Step 2: Obtain tangent coordinates. Perform a singular value
decomposition of the centralized matrix of Xi, we have

XiH ¼ Ui

X
i

VT
i ; i ¼ 1; . . . ;n;

where H is the centering operator. The local tangent space coor-
dinates can be obtained from the following formula:

Hi ¼ UT
i XiH ¼ ½hðiÞ1 ; h

ðiÞ
2 ; . . . ; hðiÞk �; ð5Þ

where hðiÞj is the local tangent coordinate of the jth nearest neigh-
bor of data point xi. In essence, this step is equal to performing a
local principal component analysis (PCA); Hi is the projection of
the points in a local neighborhood on the local PCA.
Step 3: Align global coordinates. For the ith local tangent space
projection Hi, let Yi ¼ ½yi1 ; yi2 ; . . . ; yik

� 2 Rd�k contain the corre-
sponding global coordinates of the k data points in Hi. Further,
denote the rth row of Yi by ½yðrÞi1

; yðrÞi2
; . . . ; yðrÞik

�. We determine d
spline functions gðrÞi : Rd#R; r ¼ 1;2; . . . ; d, such that the coordi-
nate components can be faithfully mapped:
yðrÞij
¼ gðrÞi ðh

ðiÞ
j Þ; j ¼ 1;2; . . . ; k: ð6Þ

Because Yi is unknown, the desirable splines not only can satisfy
the conditions in Eq. (6) but also make the reconstruction error to
be formulated explicitly in terms of Yi. The spline developed in
Sobolev space meets our tasks:

gðrÞðtÞ ¼
Xl

i¼1

br
i piðtÞ þ

Xk

j¼1

ar
j /jðtÞ; r ¼ 1;2; . . . ; d; ð7Þ

where fpiðtÞg
l
i¼1 are a set of polynomials in Rd, and uj is a Green’s

function (Xiang et al., 2009). Let

Ai ¼
K P
PT 0

� �
2 RðkþlÞ�ðkþlÞ; ð8Þ

where K is k � k symmetrical matrix with elements Kst ¼
/ðkhðiÞs � hðiÞt kÞ, and P is a k � l matrix with elements Pts ¼ psðh

ðiÞ
t Þ.

Then, The coefficients ar ¼ ½ar
1;ar

2; . . . ;ar
k�

T 2 Rk and br ¼
½br

1;b
r
2; . . . ;br

l �
T 2 Rl in Eq. (7) can be solved via the following linear

equations:

Ai �
a1 ; . . . ; ad

b1 ; . . . ; bd

 !
¼ YT

i

0

 !
: ð9Þ

To preserve as much of the local geometry in the low-dimen-
sional feature space, we intend to find Yi to minimize the penalized
reconstruction error, i.e.

EðYiÞ ¼
Xd

r¼1

Xk

j¼1

ðyðrÞij
� gðrÞi ðh

ðiÞ
j ÞÞ þ k

Xd

r¼1

ðarÞT Kar: ð10Þ
Here, the regularization parameter k controls the amount of
smoothness of the spline. With an enough small k, the first term
on the right of Eq. (10) can be neglected. Therefore, we have

EðYiÞ /
Xd

r¼1

ðarÞT Kar ¼ trðYiBiY
T
i Þ; ð11Þ

where Bi is the upper left k � k subblock of A�1
i .

Summing all the reconstruction errors together, we have

EðYÞ ¼
Xn

i¼1

trðYiBiY
T
i Þ: ð12Þ

Let Si be a column selection vector such that YSi = Yi. The objec-
tive function is converted to the following form:

EðYÞ ¼ trðYSBST YTÞ ¼ trðYMYTÞ; ð13Þ

where S = [S1, . . . , Sn], B = diag(B1, . . . , Bn), and M = SBST.
To uniquely determine Y, we impose the constraint YYT = I.

Then, the minimum of E(Y) for the d-dimensional global embed-
ding is given by the d eigenvectors of the matrix M, corresponding
to the 2nd to (d + 1)st smallest eigenvalues of M.

3. Orthogonal local spline discriminant projection

In this section, we propose a new linear subspace algorithm
based on LSE and MMC. Firstly, the linearization of the original
LSE is presented. Then we propose a new method which makes
class separability and neighborhood structure preservation to be
attained at the same time. In order to improve the discriminability
of the proposed method, we also present a method for obtaining
orthogonal basis functions which can provide a more faithful rep-
resentation for the input data.

3.1. A linear approximation to the original LSE

It is well known that the original LSE algorithm might be
unsuitable for pattern recognition tasks because it yield an embed-
ding only based on the training data set. In order to overcome the
out-of-sample problem, an explicit linear mapping from X to Y, i.e.
Y = VTX, is imposed. Thus the objective function for the original LSE
can be converted to the following form:

J1ðYÞ ¼min trðYMYTÞ ¼min trðVT XMXT VÞ: ð14Þ

Once linear transformation matrix V is determined, mapping
new data points to the lower dimensional space becomes trivial.
We refer to this algorithm as the linearization of LSE (LLSE). Con-
sidering a new test data sample xt that needs to be mapped, the
test sample is projected onto the subspace using the dimensional-
ity reduction matrix V. So we have yt = VTxt and mapping the new
data point reduces to a simple matrix vector product. Fig. 1a shows
a simple artificial example that LLSE successfully solves the two-
class classification problem. In this example, the data of the first
class is represented as a single Gaussian distribution, while the sec-
ond is represented as two separated Gaussians. The dash-dot line
and dashed one represent the learned optimal projection direc-
tions from LLSE and MMC, respectively. The result indicates that
LLSE can effectively find an optimal projection such that the mul-
timodal data samples can preserve their intuitively natural way
in the reduced space whereas MMC collapses samples of different
classes into a single cluster. Moreover, the experimental results in
Section 4 also demonstrate that LLSE can achieve satisfactory
performances in some real world data sets. But we have to confess
that LLSE does not take class information into account, and so the
linear transformation derived from LLSE is not always optimal
for recognition problem. For example, Fig. 1b shows another



Fig. 1. Examples of dimensionality reduction by LLSE, MMC and LSDP. (a) Toy data set 1. (b) Toy data set 2.
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example where 300 sample points from the two classes are
mapped into 1-dimensional feature subspace by LLSE and MMC.
In this artificial problem, two classes are represented as two differ-
ent Gaussian distributions. Obviously, two data clusters are so
close that there are some overlapping data points between two
classes. It can be seen that LLSE mixes the samples of different clas-
ses into one cluster and fail to find the optimal direction due to its
unsupervised nature. In contrast to LLSE, MMC can find a more dis-
criminative direction.

3.2. Optimal linear discriminant projection

Based on the analysis mentioned above, it can be found that the
linear approximation to the original LSE (LLSE) seeks to preserve as
much as possible local structure defined by the nearest neighbors.
It often fails to preserve within-class local geometry, which is very
important for pattern classification, because the nearest neighbors
may belong to different classes due to influence of complex varia-
tions, such as pose, illumination, and expression. Thus, in order to
obtain optimal linear discriminant projection, we introduce the
MMC presented above to the LLSE such that it can preserve the
intrinsic geometry of the neighbors as LLSE (Xiang et al., 2009;
He et al., 2005a,b; Kokiopoulou and Saad, 2007) and at the same
time hold the strong discriminant power of MMC. That is to say,
the linear transformation obtained by LLSE can satisfy Eq. (3)
simultaneously. Then, the problem can be written as the following
multi-object optimization:

min trfVT XMXT Vg;
max trfVTðSb � SwÞVg:

(
ð15Þ

Furthermore, there are two constraints in LSE, that is

VT XXT V ¼ I; ð16Þ
Ye ¼ 0: ð17Þ

Eq. (17) requires the outputs fyig
n
i¼1 to be centered on the origin,

which removes the translational degree of freedom. However, in
order to improve the discriminant ability of our proposed method,
MMC is chosen as a criterion to implicitly construct different
optimal translation and rescaling operators for each class. There-
fore, in contrast to the original LSE, our proposed method should
neglect this centering constraint for maximizing the average
margin between different classes in the embedded space. Then,
the above optimization can be deduced to solve the following
constrained objective function:

min trfVT XMXT VgmaxtrfVTðSb � SwÞVg
�

s:t: VT XXT V ¼ I: ð18Þ

The constrained multi-object optimization is conducted to min-
imize the reconstruction error and maximize the margin between
difference classes simultaneously. We formulate this discriminator
by using the linear manipulation as follows:

min trfVTðXMXT � ðSb � SwÞÞVg
s:t: VT XXT V ¼ I: ð19Þ

It is easily shown that the above optimization problem can be
converted into solving a generalized eigenvalue problem as follows:

ðXMXT � ðSb � SwÞÞv ¼ kXXTv : ð20Þ

Let the column vectors v1, v2, . . . , vd be the d smallest generalized
eigenvectors of XMXT � (Sb � Sw) and XXT corresponding to the d
smallest eigenvalues. The transformation matrix V which minimizes
the objective function is as follows:

V ¼ ½v1;v2; . . . ;vd�: ð21Þ

In practical problems, one often suffers from the difficulty that
XXT is singular. This stems from the fact that sometimes the num-
ber of samples in the training set is much smaller than the dimen-
sion of each data point. To address the complication of a singular
XXT, a PCA step is adopted to project the data set to a PCA subspace
so that the resulting matrix XXT is nonsingular.

We call the new linear subspace method as local spline discrim-
inant projection (LSDP). With using LSDP, we perform the classifi-
cation task on the two toy data sets shown in Fig. 1. The results
demonstrate that LSDP holds the advantages of both MMC and
LLSE.

3.3. Obtaining orthogonal eigenvectors

The generalized eigenvectors obtained by solving Eq. (20) are
nonorthogonal. This makes it difficult to obtain the optimal low-
dimensional representation of the original high-dimensional input
data. In this paper, we propose a method for producing orthogonal
basis functions, which is called O-LSDP. Note that the derivation
presented here is motivated by (Duchene and Leclercq, 1988).

Let L = XMXT � (Sb � Sw). The O-LSDP algorithm seeks to find a
set of orthogonal basis vectors v1, v2, . . . , vd by solving the follow-
ing optimization problem:

min trfVT LVg
s:t: vT

1v2 ¼ vT
1v3 ¼ � � � ¼ vT

d�1vd ¼ 0;

vT
1XXTv1 ¼ vT

2XXTv2 ¼ � � � ¼ vT
dXXTvd ¼ 1: ð22Þ



1 http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
2 http://www.cam-orl.co.uk/facedatabase.html.
3 http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.
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It is easy to check that v1 is the eigenvector of the generalized
eigenproblem

Lv ¼ kXXTv

associated with the smallest eigenvalue. Since XXT is always nonsin-
gular in the PCA subspace, v1 is the eigenvector of the matrix
(XXT)�1L associated with the smallest eigenvalue.

In order to get the kth basis vector, we minimize the following
objective function

minfvT
k Lvkg ð23Þ

with the constraints

vT
1vk ¼ vT

2vk ¼ � � � ¼ vT
k�1vk ¼ 0; vT

k XXTvk ¼ 1:

To solve the above optimization problem, we use the Lagrang-
ian multiplier:

Jk ¼ vT
k Lvk � kðvT

k XXTvk � 1Þ � l1v
T
1vk � � � � � lk�1v

T
k�1vk:

We set the partial derivative of Jk with respect to vk to zero and
obtain

2Lvk � 2kXXTvk � l1v1 � � � � � lk�1vk�1 ¼ 0: ð24Þ

Multiplying the left side of Eq. (24) by vT
k , we obtain

2vT
k Lvk � 2kvT

k XXTvk ¼ 0: ð25Þ

Multiplying the left side of Eq. (24) successively by
vT

1ðXXTÞ�1; . . . ;vT
k�1ðXXTÞ�1, now we can obtain a set of k-1 equa-

tions as follows:

l1v
T
1ðXXTÞ�1v1 þ � � � þ lk�1v

T
1ðXXTÞ�1vk�1 ¼ 2vT

1ðXXTÞ�1Lvk;

l1v
T
2ðXXTÞ�1v1 þ � � � þ lk�1v

T
2ðXXTÞ�1vk�1 ¼ 2vT

2ðXXTÞ�1Lvk;

:::::: ð26Þ
l1vT

k�1ðXXTÞ�1v1 þ . . .þ lk�1vT
k�1ðXXTÞ�1vk�1 ¼ 2vT

k�1ðXXTÞ�1Lvk:

We define

lk�1 ¼ ½l1; . . . ;lk�1�
T
;Vk�1 ¼ ½v1; . . . ;vk�1�; and

Q k�1 ¼ VT
k�1ðXXTÞ�1Vk�1:

So Eq. (26) can be represented in a matrix equation

Q k�1lk�1 ¼ 2VT
k�1ðXXTÞ�1Lvk:

Thus

lk�1 ¼ 2Q�1
k�1VT

k�1ðXXTÞ�1Lvk: ð27Þ

Let us now multiply the left side of Eq. (24) by (XXT)�1

2ðXXTÞ�1Lvk � 2kvk � l1ðXXTÞ�1v1 � � � � � lk�1ðXXTÞ�1vk�1 ¼ 0:

This can be expressed using matrix notation as

2ðXXTÞ�1Lvk � 2kvk � ðXXTÞ�1Vk�1lk�1 ¼ 0:

With Eq. (27), we obtain

fI � ðXXTÞ�1Vk�1Q�1
k�1VT

k�1gðXXTÞ�1Lvk ¼ kvk: ð28Þ

As shown in Eq. (25), k is just the criterion to be minimized, thus
vk is the eigenvector of

Rk ¼ fI � ðXXTÞ�1Vk�1Q�1
k�1VT

k�1gðXXTÞ�1L ð29Þ

associated with the smallest eigenvalue of Rk.
According to the above preparation, the main steps for our O-

LSDP algorithm can be summarized as follows:

Step 1: Project the data set X into the PCA subspace by discard-
ing the minor components.
Step 2: For each data point xi, determine its k nearest neighbors
by KNN or e-ball algorithm.
Step 3: Compute the d left singular vector matrix Ui of XiH. Set
Hi as in Eq. (5).
Step 4: Compute matrix Ai based on Eq. (8).
Step 5: Construct spline alignment matrix M by locally summing
as follows:

MðIi; IiÞ  MðIi; IiÞ þ Bi; i ¼ 1;2; . . . ;n

with the initial M = 0, where Ii = {i1, . . . , ik} denotes the set of
indices for the k nearest neighbors of xi and Bi is the upper left
k � k subblock of A�1

i .
Step 6: Compute matrix XMXT.
Step 7: Compute the between-class scatter Sb, within-class scat-
ter Sw, and their difference Sb � Sw, respectively.
Step 8: Compute the d orthogonal basis vectors V =
[v1, v2, . . . , vd] based on Eq. (28) and obtain the d dimensional
projection Y = VTX.

4. Experimental results

This section evaluates the performance of the proposed O-LSDP
in comparison with seven representative algorithms, i.e., MMC (Li
et al., 2006), LDA (Belhumeour et al., 1997), SLPP (Cai et al., 2005),
supervised LLTSA (SLLTSA) (Zhang et al., 2007), marginal Fisher
analysis (MFA) (Yan et al., 2007), the linearization of LSE (LLSE),
and local spline discriminant projection (LSDP), on three face im-
age databases, i.e., Yale database,1 Olivetti Research Laboratory
(ORL) database,2 and Extended Yale B database.3 Among these
algorithms, SLPP, SLLTSA, MFA, LLSE, and LSDP are manifold learn-
ing-based algorithms. Preprocessing was performed to crop all face
images from three databases. The size of each cropped image in all
the experiments is 32 � 32 pixels, with 256 gray levels per pixel.
Thus, each image can be represented by a 1024-dimensional vector
in an image space. No further preprocessing is done.

The k nearest neighborhood parameter for constructing the
nearest neighbor graph in SLPP, SLLTSA, LLSE, LSDP, and O-LSDP
can be chosen as k = l � 1, where l denotes the number of training
samples per class. The justification for this choice is that the l sam-
ples of the same class should be located in the same local geomet-
rical structure provided that within-class samples are well
clustered in the observation space. For the MFA method, the
important parameters include k1 (the number of the nearest in-
class neighbors) and k2 (the number of the closest out-of-class
sample pairs). We chose the best k1 between one and l � 1. We
similarly selected the best k2 between l and 8c, where c denotes
the number of classes. Note that all algorithms involve a PCA
phase. In this phase, we kept 100% image energy and selected all
principal components corresponding to the non-zero eigenvalues
for each method. Different pattern classifiers have been applied
for face recognition, including KNN, Support Vector Machine, and
Neural Network (Huang, 1996, 1998, 1999; Huang and Ma,
1999), etc. In this study, we adopt the 1-NN classifier for its sim-
plicity. The Euclidean metric is used as our distance measure.

4.1. Yale database

The Yale database contains 165 gray-scale images of 15 individ-
uals (each person providing 11 different images). The images dem-
onstrate variations in lighting condition (left-light, center-light,
right-light), facial expression (normal, happy, sad, sleepy, surprised,

http://www.cvc.yale.edu/projects/yalefaces/yalefaces.html
http://www.cam-orl.co.uk/facedatabase.html
http://www.vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
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and wink), and with/without glasses. Fig. 2 shows sample images of
one person.

Firstly, we test the impact of selecting different dimensions in
the reduced subspace on the recognition rate. During the testing
phases, the 1NN classifier was used. Note that, for LDA, there are
at most c � 1 nonzero generalized eigenvalues, and so an upper
bound on the dimension of the reduced space is c � 1. Fig. 3 illus-
trates the recognition rates versus the variation of subspace
dimensions when 3, 5, and 7 images per individual were randomly
selected for training. In general, the performance of all these meth-
ods varies with the number of dimensions. At the beginning, the
recognition rates improve with the increase of the dimensions.
However, more dimensions will not lead to higher recognition rate
after these methods attain the best results.

Secondly, we randomly select the seven images as training sets
and the rest four images as testing sets for each class. The training
sets were used to learn the low-dimensional subspace with the
Fig. 2. Sample images from one
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Fig. 3. The recognition rates of MMC, LDA, SLPP, SLLTSA, MFA, LLSE, LSDP, and O-LSDP v
samples for training. (c) Seven samples for training.
projection matrix. The testing sets were used to report the final
recognition accuracy. Fig. 4 shows the best mean recognition rates
for 20 times. It can be found that our proposed method
outperforms the other techniques. The recognition approaches
the maximal average results at 77.83(±5.02)%, 82.25(±4.72)%,
82.92(±4.71)%, 82.25(±5.52)%, 83.42(±4.03)%, 78.42(±4.24)%,
82.33(±4.73)%, and 85.50(±3.29)% for MMC, LDA, SLPP, SLLTSA,
MFA, LLSE, LSDP, and O-LSDP, respectively.

Thirdly, the experiments are conducted to examine the effect of
the training number on the performance. For each method, five ran-
dom subsets with three, four, five, six, seven images per individual
were selected for training. The rest of the database was used for
testing. For the baseline method, the recognition is simply per-
formed in the original 1024-dimensional image space without
any dimensionality reduction. Such a trail was independently per-
formed 20 times, and then the average recognition results were cal-
culated. Table 1 shows the maximal average recognition accuracy,
person in the Yale database.
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the corresponding standard deviations (std), and the reduced
dimensions for MMC, LDA, SLPP, SLLTSA, MFA, LLSE, LSDP, and
O-LSDP. As can be seen, O-LSDP significantly outperforms the other
algorithms among all the cases.
4.2. ORL database

The ORL face database contains 400 face images of 40 individu-
als (each one has ten images). The images were captured at differ-
ent times and have different variations including expressions
(open or closed eyes, smiling or nonsmiling) and facial details
(glasses or no glasses). The images were taken with a tolerance
for some tilting and rotation of the face up to 20�. Ten sample
images of one individual are displayed in Fig. 5.

The experimental design is the same as before. We averaged the
results over 20 random splits. The recognition rates versus the var-
iation of dimensions with 3, 5, and 7 images per individual ran-
domly selected for training are illustrated in Fig. 6. From Fig. 6,
we can see that the discrimination power of these methods will
be enhanced with the increase of final projected dimensions, but
they will not increase all the time. When the final dimensions
are higher than some threshold, the final recognition rates will
stand still.
Table 1
The maximal average recognition rates and the corresponding standard deviations (%) with
O-LSDP on the Yale database.

Method 3 Train 4 Train 5 Tra

Baseline 50.79 ± 4.53 54.19 ± 4.94 56.00
MMC 61.08 ± 4.84 (14) 67.43 ± 5.20 (13) 72.11
LDA 68.25 ± 4.21 (14) 74.86 ± 5.51 (14) 77.22
SLPP 67.92 ± 4.25 (14) 75.14 ± 5.46 (16) 77.22
SLLTSA 62.75 ± 4.30 (14) 69.71 ± 5.24 (15) 75.72
MFA 64.04 ± 5.63 (12, 2, 117) 71.48 ± 5.82 (12, 3, 115) 77.06
LLSE 60.25 ± 4.54 (12) 65.14 ± 5.15 (13) 70.89
LSDP 67.17 ± 5.05 (14) 73.67 ± 5.82 (14) 76.50
O-LSDP 68.75 ± 4.76 (15) 76.48 ± 4.43 (16) 79.72

For MFA, the first numbers in the parentheses are the selected subspace dimensions, th

Fig. 5. Sample images from one
Fig. 7 shows the best mean recognition rates for 20 times, where
seven images for each individual were randomly selected for train-
ing and the rest were used for testing. As can be seen, O-LSDP algo-
rithm significantly performs the best, while SLLTSA performs
poorly. Besides, LDA and SLPP almost achieve the same accuracy
rate. We investigate the maximal average recognition accuracy at
36, 39, 39, 111, 51, 30, 39, and 34 dimensions for MMC, LDA, SLPP,
SLLTSA, MFA, LLSE, LSDP, and O-LSDP, respectively. The best mean
recognition rates of MMC, LDA, SLPP, SLLTSA, MFA, LLSE, LSDP, and
O-LSDP are 94.92%, 95.71%, 95.79%, 94.21%, 96.46%, 94.04%, 95.42%,
and 97.08%, and the standard deviations are 1.77%, 1.86%, 1.90%,
1.92%, 1.97%, 2.50%, 2.00% and 2.12%, respectively. The correspond-
ing face subspaces obtained by carrying out the methods men-
tioned above are called optimal face subspace for each method.

Moreover, the effect of the training sample number is also
tested in the following experiment. We randomly selected 3, 4, 5,
6, and 7 training samples and then the rest samples for test ones.
We repeated these trails 20 times and computed the average re-
sults. The best result obtained in the optimal subspace and their
corresponding standard deviations and dimensions for each meth-
od are shown in Table 2. It can be seen that our O-LSDP algorithm
significantly performs the best among all the cases. LLSE yields the
lowest recognition rate. MMC performs better than SLLTSA, and
achieves comparable performance to LDA with the increase of
the number of training samples. LDA, SLPP, and LSDP performed
comparably to each other. The performance of MFA approaches
that of our algorithm as the number of training samples is
increased.
4.3. Extended Yale B database

The Extended Yale B database consists of 2414 frontal-face
images of 38 individuals, where each subject has about 64 images
captured under various laboratory-controlled lighting conditions.
We simply used the cropped images and resized them to 32 � 32
pixels. Sixty-four sample images of one individual are displayed
in Fig. 8. It is well known that MFA improves its discriminant abil-
ity at the cost of affording intolerable computational complexity.
Therefore, in this experiment, we did not use the MFA method
for comparison. For training, we randomly selected different num-
bers (10, 30, 50) of images per individual, and used the rest images
for testing. Such a trial was independently performed 20 times, and
then the average recognition results were calculated. Fig. 9 shows
the average recognition rates versus subspace dimensions. The
the reduced dimensions for BASELINE, MMC, LDA, SLPP, SLLTSA, MFA, LLSE, LSDP, and

in 6 Train 7 Train

± 5.44 59.20 ± 4.61 60.58 ± 4.87
± 3.42 (14) 75.40 ± 4.29 (14) 77.83 ± 5.02 (14)
± 3.50 (14) 81.73 ± 5.05 (14) 82.25 ± 4.72 (14)
± 3.50 (14) 81.60 ± 4.94 (14) 82.92 ± 4.71 (14)
± 4.62 (33) 80.27 ± 4.69 (32) 82.25 ± 5.52 (32)
± 4.19 (13, 4, 77) 80.80 ± 4.82 (17, 5, 99) 83.42 ± 4.03 (16, 4, 109)
± 5.77 (12) 76.00 ± 3.82 (13) 78.42 ± 4.24 (12)
± 3.52 (15) 80.93 ± 4.70 (15) 82.33 ± 4.73 (16)
± 3.69 (19) 84.27 ± 3.95 (22) 85.50 ± 3.29 (26)

e second and the third numbers are the parameters k1 and k2, respectively.

person in the ORL database.
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Fig. 6. The recognition rates of MMC, LDA, SLPP, SLLTSA, MFA, LLSE, LSDP, and O-LSDP versus the dimensions on the ORL database. (a) Three samples for training. (b) Five
samples for training. (c) Seven samples for training.
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maximal recognition rate of each method and the corresponding
standard deviation with the reduced dimension are given in Table
3. From Table 3, we can see two main points. First, O-LSDP outper-
forms MMC, LDA, SLPP, SLLTSA, LLSE, and LSDP, whether the train-
ing sample size is 10, 30, or 50. Second, the orthogonalization step
can significantly improve the performance of LSDP.

4.4. Discussion

Several experiments have been conducted on three different
face databases. Here, it is necessary to highlight some observations
about these tests:

1. The proposed O-LSDP consistently achieves the best recognition
rate in all the experimental cases. The data sets used in this
study are Yale, ORL, and Extended Yale B face databases. The
images for each person vary from pose, illumination to expres-
sion. Some research efforts have shown that such face datasets
may reside on or close to a low-dimensional sub-manifold
embedded in the ambient space (Tenenbaum et al., 2000; Silva
and Tenenbaum, 2003; Roweis and Saul, 2000; Saul and Roweis,
2003). Different from PCA and LDA which see only the Euclid-
ean structure of face space, our proposed method explicitly
considers the face manifold structure which is modeled by a
neighborhood graph. Moreover, our proposed method is
obtained by finding the optimal linear approximations to the
original nonlinear local spline embedding. Therefore, it can effi-
ciently extract intrinsic features that preserve local information,
and obtain a face subspace that best detects the essential face



Table 2
The maximal average recognition rates and the corresponding standard deviations (%) with the reduced dimensions for BASELINE, MMC, LDA, SLPP, SLLTSA, MFA, LLSE, LSDP, and
O-LSDP on the ORL database.

Method 3 Train 4 Train 5 Train 6 Train 7 Train

Baseline 77.14 ± 2.23 82.48 ± 2.22 86.90 ± 2.12 89.34 ± 2.55 90.92 ± 2.26
MMC 83.45 ± 1.90 (39) 88.83 ± 2.15 (38) 92.47 ± 2.13 (37) 93.88 ± 2.34 (34) 94.92 ± 1.77 (36)
LDA 85.86 ± 1.68 (38) 90.33 ± 1.66 (39) 93.23 ± 1.91 (39) 94.62 ± 1.96 (39) 95.71 ± 1.86 (39)
SLPP 85.84 ± 1.62 (39) 90.25 ± 1.63 (39) 93.28 ± 1.92 (39) 94.66 ± 1.91 (39) 95.79 ± 1.90 (39)
SLLTSA 81.00 ± 2.13 (81) 86.02 ± 2.06 (83) 90.30 ± 1.64 (95) 92.34 ± 2.6 (99) 94.21 ± 1.92 (111)
MFA 81.38 ± 2.79 (34,2,305) 89.85 ± 2.26 (42,3,319) 93.47 ± 2.35 (43,4,215) 95.44 ± 1.69 (44,5,246) 96.46 ± 1.97 (51,6,242)
LLSE 77.54 ± 3.25 (32) 84.92 ± 2.93 (32) 89.43 ± 2.22 (33) 92.44 ± 2.23 (27) 94.04 ± 2.50 (30)
LSDP 85.29 ± 1.55 (39) 89.88 ± 1.70 (39) 92.80 ± 1.79 (38) 94.50 ± 1.94 (39) 95.42 ± 2.00 (39)
O-LSDP 86.73 ± 1.55 (40) 93.15 ± 1.72 (43) 95.40 ± 1.37 (37) 96.22 ± 1.51 (35) 97.08 ± 2.12 (34)

For MFA, the first numbers in the parentheses are the selected subspace dimensions, the second and the third numbers are the parameters k1 and k2, respectively.

Fig. 8. Sample images from one person in the extended Yale B database.
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Fig. 9. The recognition rates of MMC, LDA, SLPP, SLLTSA, LLSE, LSDP, and O-LSDP versus the dimensions on the extended Yale B database. (a) 10 samples for training. (b) 30
samples for training. (c) 50 samples for training.
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Table 3
The maximal average recognition rates and the corresponding standard deviations (%)
with the reduced dimensions for BASELINE, MMC, LDA, SLPP, SLLTSA, LLSE, LSDP, and
O-LSDP on the extended Yale B database.

Method 10 Train 30 Train 50 Train

Baseline 53.44 ± 0.82 77.39 ± 0.98 84.22 ± 1.46
MMC 84.70 ± 1.30 (37) 96.38 ± 0.47 (40) 98.27 ± 0.41 (40)
LDA 86.84 ± 1.13 (37) 85.46 ± 1.26 (37) 97.28 ± 0.56 (35)
SLPP 87.38 ± 1.06 (60) 86.70 ± 1.11 (39) 97.49 ± 0.56 (60)
SLLTSA 85.25 ± 1.57 (103) 84.09 ± 1.47 (38) 96.69 ± 0.68 (38)
LLSE 85.72 ± 1.34 (68) 85.19 ± 1.42 (38) 96.35 ± 0.52 (43)
LSDP 86.54 ± 1.14 (37) 85.44 ± 1.21 (36) 97.19 ± 0.53 (37)
O-LSDP 89.89 ± 0.99 (231) 97.24 ± 0.43 (957) 98.55 ± 0.43 (775)
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manifold structure (He et al., 2005a,b). In addition, compared to
other manifold learning-based methods, O-LSDP encodes more
discriminant information in the reduced feature subspace by
more faithfully preserving local geometry and incorporating
the class information.

2. O-LSDP significantly outperforms SLLTSA, irrespective of the
variations in training sample size. There are two reasons con-
tributing to this phenomenon. On the one hand, although both
SLLTSA and O-LSDP use local tangent space coordinates as their
local geometry, they are intrinsically different in the global
alignment stage. In SLLTSA, an affine transformation is used to
align the local coordinates while in O-LSDP, smooth spline func-
tions are constructed to perform the whole alignment. Com-
pared to the affine transformation, splines can more faithfully
preserve local geometry, which is directly related to the dis-
criminant power (He et al., 2005a,b). On the other hand, orthog-
onalization contributes to the noise removal (Ye, 2005) and
more locality preserving power.

3. MFA has comparative recognition rates with O-LSDP when
training sample size is 6 or 7 in ORL database. This is because
MFA can also effectively capture both the local geometry and
the discriminant information of data by setting k1 and k2 suit-
ably. However, it is necessary to traverse all possible values of
k1 and k2 for model selection. Therefore, the computational cost
of the MFA algorithm grows quickly as the sample size is
increased.

5. Conclusions

In this paper, we have introduced a novel linear dimensionality
reduction algorithm for face recognition, called orthogonal linear
local spline discriminant projection (O-LSDP). The most prominent
property for O-LSDP is to successfully manage the trade-off be-
tween the discriminant power and local geometrical structure hid-
den in the data. We have applied our algorithm to face recognition.
The experimental results on Yale, ORL, and Extended Yale B dat-
abases show that the proposed method is indeed effective and
efficient.
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