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a  b  s  t  r  a  c  t

Nonnegative  matrix  factorization  has  been  widely  used  in  many  areas  and  has  been  applied  for  com-
ponent  recognition  with  three  dimensional  fluorescence  spectra  recently.  However,  nonnegative  matrix
factorization  is a  nonconvex  programming  in the iteration  process,  thus  the solution  is dependent  on  the
initial values  and  consequently  not  unique.  Up  to  now,  an  effective  global  convergent  algorithm  is still
eywords:
onnegative matrix factorization
-means clustering
ingular value decomposition

absent.  In this  work,  we  propose  an initialization  scheme  based  on  independent  component  analysis.
Compared  with  other  initialization  schemes,  the optimal  solution  of  nonnegative  matrix  factorization
based  on  independent  component  analysis  is  much  better  and  it is  demonstrated  by typical  experiments
of  component  recognition  with  three-dimensional  fluorescence  spectra.

© 2011 Elsevier B.V. All rights reserved.
ndependent component analysis
hree-dimensional fluorescence spectra

. Introduction

Since it was first proposed in 1999 [1],  nonnegative matrix fac-
orization (NMF) has attracted more and more attention [2–11].
ow it has been widely used in many areas and very recently,

t has been applied to realize component recognition with three-
imensional fluorescence spectra in the study of multi-component
ixtures [12]. After decades of development, there have been many

lgorithms proposed for NMF, such as multiplicative iterative algo-
ithms [2],  projected gradient algorithms [3,4] and second-order
lgorithms [5],  etc. With these algorithms, enhanced convergence
ates are achieved. However, since NMF  is a nonconvex pro-
ramming, the non-unique property of the solution frequently
esults in local optima in many algorithms. In order to obtain the
lobal optima, some researchers have tried to improve the ini-
ial solutions. For example, Lee and Seung [2] proposed a random
nitialization method; Wild proposed two initialization meth-
ds based on spherical k-means clustering [6] and on structure
nitialization [7] and Koren and Carmel proposed the SPCA initial-
zation method [8].  Langville et al. compared random initialization,
entroid initialization, SVD-centroid initialization, random acol

nitialization, random C initialization and Co-occurrence initializa-
ion [9]. Then, Zheng et al. compared random initialization, PCA
nitialization, fuzzy clustering initialization and Garbor wavelets

∗ Corresponding author. Tel.: +86 551 5593147.
E-mail address: yjzhang@aiofm.ac.cn (Y. Zhang).

386-1425/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
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initialization [10]. Boutsidis and Gallopoulos proposed NNDSVD
initialization based on singular value decomposition [11]. All these
previous initialization methods can be classified into two  groups,
with one based on first-order statistics and the other based on
second-order statistics. The initial values obtained by these initial-
ization methods are often far away from the global optima and
consequently eventually may  lead to inaccurate results. For exam-
ple, when it is used for component recognition of fluorescence
spectra [12], sometimes it will obtain the wrong components [12].
Thus, a much more effective initialization scheme for NMF  is still
highly required.

Independent component analysis (ICA) is a new technology
which was  first proposed at the end of 20th century and devel-
oped together with blind source separation. Up to now, a set of
models and algorithms have been developed for ICA. For example,
Comon proposed the concept of ICA and constructed a mathe-
matical model for it in 1994 [13]. Separation algorithms of ICA
were presented by Bell and Sejnowski in 1995, which attracted
great attention [14]. Hyvarinen presented fast fixed-point algo-
rithm which has high convergence rate and becomes a classical
algorithm of ICA [15]. As a statistics method, ICA can divide mixing
signals into statistical independent signals according to which we
can find out the hidden information in the mixing signals. Because
the signals extracted from ICA are related to the characteristics of

practical problems, ICA has been applied in many fields in recent
years with the development and improvement of its own theory, for
example, in biomedical signal processing [16–18],  speech separa-
tion [14], face recognition [19], and financial data processing [20],

dx.doi.org/10.1016/j.saa.2011.10.042
http://www.sciencedirect.com/science/journal/13861425
http://www.elsevier.com/locate/saa
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Table 1
Mixtures of tryptophan, tyrosine and pyrocatechol with different concentration
(units: mg/l).

No 1 No 2 No3 No 4

Tryptophan 0.24 0 0.11 0.18

si,j/

⎛
⎝

16 S. Yu et al. / Spectrochimica

tc. As an effective preprocessing method, ICA has been applied
o the preprocessing of multi-dimensional data, which removes
ayleigh and Raman scattering simultaneously [21]. In this work,
s an initialization method, ICA is applied to the preprocessing of
he NMF. Compared with other initialization methods, the initial
alues based on ICA initialization method are closer to the global
ptima. In our experiment of component recognition with NMF,
t is found that the similarity index with ICA as the initialization
cheme is much higher than other initialization schemes and thus
s beneficial for component recognition.

The rest of the paper is divided into three sections. In Section
, the basic concepts of NMF  and ICA are introduced. In Section 3,
he detailed description and analysis of the typical experiments are
iven and the results of different initialization methods are shown.
inally, a short conclusion is given in Section 4.

. Theory

.1. NMF

The basic decomposition model of NMF  is as follows

 = AS + E, (1)

here Y ∈ RM×N is the mixing spectra signal, A ∈ RM×K and S ∈ RK×N

re mixing matrix and source spectra signal, respectively and
 ∈ RM×N is the noise. With the known measured data Y, the mixing
atrix A and the approximation of source spectra signal X com-

uted by formula (1) can be converted to the following optimization
roblem [22],

min  DF (Y
∥∥AX ) =

∥∥Y − AX
∥∥2

F
/2

s.t A ≥ 0, X ≥ 0
. (2)

his is a nonconvex programming with respect to A and X. The
ultiplicative iterative update of formula (2) is

 = X(AT Y/AT AX)  A = A(YXT /AXXT ), (3)

nd the projected gradient update is

X = [X − ˛XPX ]+
A = [A − PA˛A]+

, (4)

here [ ]+ means that the value is forced to be nonnegative, PA and
X are the descent directions of A and X respectively and ˛A,˛X are
he learning rate.

.2. ICA

According to the law of large number in statistics, a single spec-
rum signal has greater independence than mixing spectra signal.
o, the aim of solving Eq. (1) by ICA is to obtain a demixing matrix

,  which can produce independent component X as independent
s possible by the following expression,

 = WY.  (5)

he independent component X can be considered as the approx-
mation of source spectra signal S. When ICA based on maximum

C =
M∑

i=1

N∑
j=1

xi,j
ntropy principle is applied to extract independent component, the
ontrast function is as follows,

G(w)  = [E{G(wT X)} − E{G(v)}]2
, (6)
Tyrosine 0 0.3 0.107 0.125
Pyrocatechol 0.2 0.16 0 0.15

where G is a nonquadratic function and v is a Gaussian variable of
zero mean and unit variance. w is one of the M dimensional weight
vector in W.  According to different problems, G in contrast function
has different choices [23]. Solving Eq. (6) by Newton method, the
approximate Newton iteration from the kth iteration to the k + 1th
iteration is

wk+1 = E{Yg(wT
k Y)} − E{g′(wT

k Y)}wk, (7)

where g and g′ are the first derivative and the second derivative
of G respectively. To estimate several independent components,
we should remove the extracted independent component from the
measured mixing spectra signal Y [23] and the procedure in Eq. (7)
is repeated until all the independent components are extracted. In
the following, we take ICA as the initialization method of NMF  and
demonstrate its feasibility in component recognition with three
dimensional fluorescence spectra.

3. Experiments

3.1. Experiment description

Three representative reagents (tryptophan, tyrosine and pyro-
catechol) are selected. The mixtures of the three reagents with
different concentrations are prepared (Table 1). Each mixture is
scanned by Hitachi F-7000 fluorescence spectrophotometer with
excitation wavelength EX 230–320 nm and emission wavelength
EM 290–450 nm.  In the measurement, the scanning intervals are
taken as 4.0 nm and 2.0 nm,  respectively for excitation wavelength
and emission wavelength and three-way data array Y is obtained.

At first, three-way data array Y is preprocessed by ICA. The
extracted components X are inaccurate compared with the source
spectra signals S, because the fluorescence spectra of the three com-
ponents are severely overlapping. Taking the results of ICA as initial
values, we can compute the solutions by NMF  accurately. For com-
parison, the three-way data array Y is also preprocessed by random
initialization [2],  k-mean clustering initialization [6] and NNDSVD
initialization [11], respectively. The parameter for comparison is
the relative error of the approximation spectra signal X

R = ||Y − AX||/||Y || × 100%, (8)

and the similarity coefficient between approximation spectra sig-
nal X and the source spectra signal S is calculated by

√√√√
M∑

i=1

N∑
j=1

x2

√√√√
M∑

i=1

N∑
j=1

s2

⎞
⎠ xi,j ∈ Xn, si,j ∈ Sk,

n = 1, · · ·, K, k = 1, · · ·,  K
. (9)

3.2. Results and discussion

Without loss of generality, tests are performed by two represen-
tative algorithms of NMF  which are multiplicative iterative updates
[2] and projected gradient updates [4].  The maximum of iteration

number of NMF  is set as 500. In order to avoid the influence of the
randomness, each initialization method runs 20 times. The relative
errors of multiplicative iterative updates and projected gradient
updates are shown in Fig. 1.
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Fig. 1. The relative error of different initialization methods in 20 times: (a) multiplicative iterative updates; (b) projected gradient updates. Random initialization: ‘–o–’,
k-mean  clustering: ‘–*–’, ICA initialization: ‘–♦–’, NNDSVD initialization: ‘–�–’.
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Fig. 2. The similarity coefficients between approximation spectra signals and source spectra signals for multiplicative iterative updates in 20 times. (a) First spectra signal,
(b)  second spectra signal, (c) third spectra signal. Random initialization: ‘–o–’, k-mean clustering: ‘–*–’, ICA initialization: ‘–♦–’, NNDSVD initialization: ‘–�–’.
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ig. 3. The similarity coefficients between approximation spectra signals and sour
econd  spectra signal; (c) third spectra signal. Random initialization: ‘–o–’, k-mean

It can be seen from Fig. 1 that the relative errors of k-mean
lustering initialization, NNDSVD initialization and ICA initializa-
ion change very little during the iterations of 20 times. This is
ainly because these three initialization methods compute the
ame measured spectra signal each time. On the contrary, the
elative error of random initialization changes greatly in the iter-
tion of different times, as the initial value produced by random
ctra signals for projected gradient updates in 20 times: (a) first spectra signal; (b)
ring: ‘–*–’, ICA initialization: ‘–♦–’, NNDSVD initialization: ‘–�–’.

initialization method has nothing to do with the measured spectra
signal. At the same time, we  can see the relative error of k-mean
clustering initialization is the lowest for both multiplicative iter-

ative updates (see Fig. 1(a)) and projected gradient updates (see
Fig. 1(b)). Though the relative error of ICA initialization is the
highest for projected gradient updates (see Fig. 1(b)), the relative
errors of four initialization methods change between 0.014 and
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ig. 4. The relative error with the increasing iteration number: (a) multiplicative
lustering: ‘–*–’, ICA initialization: ‘–♦–’, NNDSVD initialization: ‘–�–’.

.0165, thus the difference is negligible. Relative error only shows
he accuracy of the iterative updates and the relative error will
ecome smaller and smaller by increasing iteration number. To
how how much different initialization methods affect the com-
onent recognition of three-dimensional fluorescence spectra, we
ompare the similarity coefficient between approximation spec-
ra signals X and source spectra signals S by different initialization

ethods. The similarity coefficients of three spectra signals are
hown in Figs. 2 and 3, respectively.

From Fig. 2, it can be seen that the similarity coefficients of
hree spectra signals based on ICA initialization are quite large
nd one of the similarity coefficients based on k-mean cluster-
ng initialization and NNDSVD initialization is smaller than that
ased on ICA initialization (see Fig. 2(c)). Two of the similarity
oefficients based on random initialization are quite smaller (see
ig. 2(b) and (c)), and the similarity coefficient of the first spectra
ignal will occasionally produce small value in multiple times (see
ig. 2(a)).

The similarity coefficients in Fig. 3 show that the algorithms
ased on ICA initialization result in much higher similarity coef-
cient and thus recovers the single spectra signals the best,
hich implies that the global optima is found. This is what

s expected in component recognition with three dimensional
uorescence spectra since the similarity coefficient should be
s close to 1 as possible if one component in the decom-
osed spectra (approximation spectra signals X) is identified
s one in the reference spectra (source spectra signals S). By
omparing Fig. 2 and Fig. 3, we can draw a conclusion that dif-
erent iterative algorithms of NMF  based on ICA initialization
an accurately find the source spectra signal, namely, the global
ptima, though the descent rate is a little slower than other
chemes.

Finally, the relative errors with increasing iteration number
re shown in Fig. 4. It is found that the relative error magni-
udes of the initial value obtained by four different initialization

ethods satisfy the inequality Rrand > RNNDSVD > RICA > Rk-mean. The
ain reason is that random initialization has nothing to do with

he measured spectra signal Y, so the relative error is the largest.
lthough NNDSVD initialization produces the initial value accord-

ng to the measured spectra signal, the orthogonality of these
nitial values results in a big difference between the approxi-

ation spectra signals and the source spectra signals. k-mean
lustering initialization gets the initial value by the clustering anal-
sis of the measured spectra signal, so the relative error is the

mallest. Although the initial value obtained by ICA initialization
ethod does not give the smallest relative error, it is the closest

o the source spectra signal and thus it is the best for component
ecognition.
ive updates; (b) projected gradient updates. Random initialization: ‘–o–’, k-mean

4. Conclusion

It  is very important to find a good initialization method so as
not to get into the local optima in NMF. We  analyzed the exist-
ing initialization methods in this paper. According to statistics,
these initialization methods can be classified into two  classes. One
is based on first-order statistics of the measured spectra signals,
which is represented by k-mean clustering initialization method
and the other is based on second-order statistics of the measured
spectra signals, which is represented by NNDSVD initialization
method. The advantage of the first class is that the relative error
is small and the disadvantage is that it cannot reveal the charac-
teristics of the source spectra signals because it only averages the
measured spectra signals. The disadvantage of the second class lies
in the fact that the approximate spectra signals are much different
from the source spectra signals due to the orthogonality of the ini-
tial values. The ICA initialization method proposed in this paper
preprocesses the measured spectra signals by high-order statis-
tics, which can extract independent components and the initial
value is closer to the source spectra signals. Compared with other
initialization methods, ICA initialization method produces higher
similarity coefficients between the approximation spectra signals
and the source spectra signals (Figs. 2 and 3). As a result, it can
recover the source spectra signals very well. Although the descent
rate of relative error with the ICA initialization is a little slower than
other initialization methods, it behaves much better in component
recognition with NMF. As a matter of fact, the ICA-based NMF  does
not only provide an important way for component recognition of
three-dimensional fluorescence spectra, but also it may  find wide
application in many other areas.
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