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Crystal-melt interfacial free energies and mobilities in fcc and bcc Fe
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Molecular-dynamics simulations have been used to compute thermodynamic and kinetic properties of the
solid-liquid interface for both the fcc and bcc phases of Fe. Pure Fe was modeled using two different inter-
atomic potentials of the embedded atom type as well as an effective pair potential. Free solidification simula-
tions were used to determine the kinetic coefficientm for the different models of pure Fe. The anisotropy ofm
with respect to growth direction in the bcc phase is similar to that observed in fcc systems, namelym100

.m110;m111, and the kinetic coefficient of bcc is larger thanm for the fcc phase. The kinetic coefficient
results are discussed in terms of a kinetic density-functional-theory-based model of crystal growth. In addition,
results for solid-liquid interfacial free energiesg computed via the capillary fluctuation method, are summa-
rized.
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I. INTRODUCTION

The magnitude and associated crystalline anisotropy
the solid-liquid interfacial free energyg and mobilitym are
known to be critical factors governing crystallization rat
and growth morphologies accompanying crystal growth fr
the melt~e.g., Ref. 1!. Due to significant challenges assoc
ated with direct experimental measurements,2,3 much of the
current theoretical understanding of crystal-melt interfa
properties has been derived from atomic-scale molecu
dynamics~MD! and Monte Carlo~MC! simulations~e.g.,
Ref. 4!.

Two different methods, i.e., the cleaving method5–7 and
the capillary fluctuation method~CFM!,8 have been propose
to calculate the crystal-melt interfacial free energies direc
from MD. The cleaving method was originally developed
Broughton and Gilmer in studies of the Lennard-Jones~LJ!
system,5 and later extended by Davidchack and Laird, w
calculatedg for both the hard-sphere and Lennard-Jon
models.6,7 Hoyt, Asta, and Karma8 developed an alternativ
approach for the calculation ofg, which relies on an analysi
of the equilibrium capillary fluctuations in MD simulation
for molecularly rough solid-liquid interfaces. The capilla
fluctuation method was originally applied to studies
embedded-atom-method~EAM! metals8–10 and alloys11 and
recently the approach was applied to the Lennard-Jones
tem by Morris and Song,12 who obtained results consiste
with those derived independently by the cleaving metho7

As discussed elsewhere,4,7 the cleaving technique typically
yields more precise values of the interfacial free ener
whereas the CFM is more effective in resolving the sm
(;1%) anisotropy ing found in typical solid-liquid sys-
tems.

The mobility of the solid-liquid interface is characterize
by the so-called kinetic coefficientm, which is defined as the
constant of proportionality between the isothermal grow
velocity and the interface undercooling. For calculating
kinetic coefficient from MD simulation, several alternativ
0163-1829/2004/69~17!/174103~9!/$22.50 69 1741
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methods have been proposed as reviewed in Refs. 4 and
Kinetic coefficients have been calculated for the
system14–19 and a number of fcc metals,20–22 as well as for
bcc sodium.23,24Simulations for LJ and fcc metals have dem
onstrated an important kinetic anisotropy given bym100
.m110;m111. From a phase field study of solidifcation i
pure Ni, the kinetic anisotropy was shown to have import
consequences for dendrite growth rates and morphologie
high undercooling.25

Until recently, detailed simulation studies of solid-liqu
interfacial properties have focused primarily on syste
whose equilibrium solid phase is the face centered cu
~fcc! crystal structure. Previous density-functional theo
~DFT! calculations, experiments, and simulation-bas
nucleation studies have demonstrated a pronounced effe
crystal structure ong. Specifically, in systems with stable fc
solids, formation of the body-centered-cubic~bcc! structure
during crystallization has been frequently observed in exp
ments on deeply undercooled melts,26–33 as well as in MD
simulations34 and DFT calculations for the LJ system.35 The
nucleation of metastable bcc crystals suggests lower va
of g for a bcc solid relative to fcc. Such observations mo
vated a recent study by the authors to examine the effec
bcc vs fcc crystal structure upon calculated values ofg in
Fe.36 In the current paper, we describe these calculation
further detail, and present an extension of this work to
study of the effect of crystal structure upon solid-liquid i
terface mobilities.

To date, only one MD simulation ofm has been per-
formed for a bcc metal, namely, the work of Tymczak a
Ray23,24 who studied melting and crystallization of~100!
solid-liquid interfaces in Na. To the best of our knowled
there has been, to date, no MD studies comparing results
m and its anisotropy for fcc and bcc structures. Such a st
is of significant interest within the context of experimen
studies of dendrite growth rates in Fe-based alloys.29,37 As
discussed further below, significantly slower growth ra
have been measured for dendrites of bcc crystals relativ
©2004 The American Physical Society03-1
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TABLE I. The calculated melting properties of bcc and fcc Fe for various interatomic potentials.
experimental melting point and latent heat are taken from Ref. 40; the volume change on melting is
from Ref. 46.

L Tm DVmelt rsolid

Structure ~eV/atom! ~K! (Å3/atom) (atom/Å3)

Expt. bcc 0.143 1811.0 0.45 0.0783
ABCH bcc 0.218 2358.764.0 0.81 0.0784
ABCH fcc 0.200 2251.066.0 0.60 0.0774
Pair bcc 0.259 2311.863.0 1.28 0.0794
Pair fcc 0.212 2202.067.0 0.84 0.0779
MH(SA)2 bcc 0.162 1772.062.0 0.62 0.0801
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fcc, an effect that has traditionally been attributed to low
values of the kinetic coefficient for bcc.

The remainder of the paper is organized as follows. T
following section describes computational details, includ
the choice of interatomic potentials. Interfacial free energ
calculated by the CFM are summarized in Sec. III, wh
results for isothermal crystallization and melting kinetics a
presented in Sec. IV. In Sec. V, the results of the present
studies are discussed in the context of theoretical models
the magnitude and crystalline anisotropy ofm. The conclu-
sions drawn from this work are summarized in Sec. VI.

II. NUMERICAL PROCEDURES AND THEORETICAL
BACKGROUND

A. Interatomic potentials

Two different many-body EAM potentials for Fe deve
oped by Acklandet al.38 and Mendelevet al.39 are used in
the present MD simulations. Hereafter, these potentials
be referred to by the initials of the authors: ABCH f
Ackland et al. and MH(SA)2 for Mendelevet al. Both po-
tentials have the common EAM form for the energy of
configuration ofN atoms:

E~$Ri%!5
1

2 (
i , j

N

f~Ri j !1(
i

N

US (
j

N

r~Ri j !D , ~1!

whereRi j is the distance between atomsi andj. In Eq.~1!, f
is the pair interaction, while the termU gives rise to a many-
body contribution to the energy of atomi that depends on its
local environment, as characterized by the sum over
‘‘density’’ function r. In both EAM potentials, thef andr
contributions were represented as sums of basis function
the ABCH model,U has the standard form of the tigh
binding model,U(r)52Ar, while the MH(SA)2 potential
adopts the formU(r)52Ar1br2, with b a fitting param-
eter. The ABCH potential was derived by fitting to sta
properties of bcc Fe at zero temperature, including lat
constants, cohesive and vacancy-formation energies,
elastic moduli. MH(SA)2 developed a more accurate pote
tial by expanding the fitting database to include fir
principles calculated interatomic forces in liquid Fe. In co
parison to the original ABCH model, the MH(SA)2 potential
leads to much better agreement with experimental meas
17410
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ments for liquid structure factors and melting propertie
With the ABCH potential, the melting temperature of b
and fcc are very close, which is in agreement with pha
diagram assessments~e.g., Refs. 40,41! and previous theo-
retical data42,43!. By contrast, with the MH(SA)2 potential,
the fcc phase was found to be unstable at relatively l
temperatures. In the present study we thus employ the AB
to make direct comparisons between fcc and bcc crystal-m
interfacial properties, and employ the MH(SA)2 to derive
refined values for bcc interfaces.

In addition to calculations based on the EAM potent
described above, we examine also a simpler ‘‘effective’’ p
potential.44 By comparing to EAM, we can thus investiga
the role of many-body interactions and the effect of the
tailed form of the potential on calculated interfacial prope
ties. The effective pair potential is obtained from the man
body ABCH interatomic potential by Taylor expanding th
nonlinear density dependence of the embedding function
first order, employing the formula given by Carlsson:44

F~$Ri%!5f~Ri j !12U8~ r̄ !r~Ri j !. ~2!

In Eq. ~2!, r̄ is a reference electron density, andU8 denotes
a derivative of the embedding function with respect tor. In
the present workr̄ is taken as the average of the bcc so
and liquid densities at the melting point. In our earli
paper,36 F($Ri%) was compared to a LJ potential with th
same equilibrium spacing and well depth, and was show
be significantly shorter in range, and less repulsive at sh
distances.

B. Melting properties and interfacial free energies

Melting temperatures were first determined for each
tential by employing a slight modification of the MD coex
istence technique45 as described in detail in our previou
paper.13 Refined estimates were also derived by fitting int
face velocity versus undercooling data obtained from M
simulations of crystal growth~see below!. Calculated melt-
ing temperaturesTM , as well as latent heatsL, volume
change on melting (DVmelt), and solid densities atTM are
listed in Table I. The error quoted forTM reflects primarily
the uncertainty originating from finite system size effec
since the statistical uncertainties were estimated to be r
tively small. The finite-size effect was estimated throu
3-2
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CRYSTAL-MELT INTERFACIAL FREE ENERGIES AND . . . PHYSICAL REVIEW B69, 174103 ~2004!
the melting temperature spanned for different size MD ce
For the bcc phase, the latent heat and melting tempera
calculated by the MH(SA)2 potential are much closer to th
experimental data, i.e.,TM51772.062.0 K and L50.162
eV/atom for MH(SA)2, while the experimental values ar
1811.0 K and 0.143 eV/atom for the melting temperature
latent heat, respectively.40 All the potentials overestimate th
volume difference between solid and liquid atTM for the bcc
phase. The experimental value of the volume change
melting is 0.45 Å3/atom,46 the MH(SA)2 potential overesti-
mates the expansion by about 60%, and the ABCH and
fective pair potentials yield values 2 and 3 times higher,
spectively. For the fcc phase the melting point at ze
pressure extrapolated from phase diagram assessments
timated to be 1800.8 K~e.g., Ref. 41!, which is lower than
the melting point for the bcc phase by roughly 0.6%. Sim
larly, calculations based on a model that combines a ne
free-electron treatment of thes electrons and a tight-binding
description ofd electrons also predicts a zero-pressure m
ing temperature for fcc 50 K lower than bcc,42 in good agree-
ment with the present results obtained with the ABCH p
tential. Interestingly, the effective pair potential gives a ve
similar melting temperature as the many-body ABCH mod
i.e., theTM changes by only 2%. However, the latent he
differs by approximately 20% and volume changes on m
ing are roughly 30% different.

C. Interfacial free energies

Solid-liquid interfacial free energies were calculated
employing the capillary fluctuation method. The primary a
vantage of this method is that it measures directly the in
face stiffness, which is an order of magnitude more ani
tropic than the interface free energy itself. As discussed
Hoyt et al.,8 the method thus facilitates precise calculatio
of the anisotropy. The method is based on the capillary fl
tuation spectrum of a quasi-one-dimensional interface:

^uA~k!u2&5
kBT

bW~g1g9!k2
, ~3!

whereA(k) is the Fourier transform of the interface heig
profile and angular brackets correspond to equilibrium v
ues.W andb, with b!W, denote the length and thickness
the solid-liquid boundary, andkBT is Boltzmann’s constan
times the temperature. The termg1g9 corresponds to the
interface stiffness, whereg9 is the second derivative ofg as
a function of the angle of the local interface normal relat
to its average orientation.

The size and geometries of the simulation cells, the equ
bration procedure, and the method for locating the posit
of the solid-liquid interface have been described in detai
our earlier paper.36 A total of six CFM cell orientations have
been investigated in the present study. The large numbe
orientations is used to test, for bcc systems, the accurac
the cubic harmonic expansion describing the orientation
pendence ofg.
17410
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D. Kinetic coefficients

The preparation of solid-liquid systems for the calculati
of m follows the approach described by us previously13

Solid-liquid coexisting MD cells with roughly 20% solid
~liquid! for melting ~growth!, corresponding to different ori-
entations of the fcc and bcc solid-liquid interface, are us
for calculatingm. The orientations for each of these cells a
listed in Table II. The geometries of these different cells a
denoted as follows. For each cell (hkl) refers to the orienta-
tion of the solid-liquid interfaces. For the fcc~001! orienta-
tion, labeled as (103103100), the cell dimensions are 1
fcc nearest-neighbor spacings in length along thex andy ~fcc

@11̄0# and @110#) directions parallel to the interface and
prior to melting, the initially crystalline cell contains 10
layers along the normal directionz. The fcc~110! orientation,
labeled as (83103120), has dimensions of 8 times the fc
lattice constant alongx (@001#), 10 times the nearest
neighbor distance alongy (@11̄0#), and 120 initially crystal-
line layers inz. For the bcc~001! orientation, labeled (10
3103100), the cell is constructed with periodic lengths th
are ten lattice constants alongx andy @bcc (100), and (010)
respectively#, and contains 100 initially crystalline layer
along z. The simulation cell for bcc~110!, labeled as (14
3103100), is chosen to have 7A2 lattice constants alongx
@bcc (11̄0) direction# and 10 lattice constants alongy @the
bcc (001) direction#, with 100 crystalline layers inz. Finally,
the bcc~111! cell, labeled as (14383120), is 7A2 lattice
constants inx (1̄10), 4A6 lattice constants alongy (1̄1̄2),
and 120 crystal layers alongz.

For the calculation of the kinetic coefficients, we use t
free solidification method described in detail in our previo
paper.13 In this method, for a given undercooling, the sy
tem was simulated by employing Andersen-Parinel
Rahman47–50 and Nose´-Hoover51,52 dynamics, and the inter
face velocityV can be readily extracted through the slope
volume or energy versus time. In all the simulations form,
only the length normal to the interface is allowed to chan
The initial states for these coexisting solid and liquid pha
were prepared as described in detail in previous work.13 For

TABLE II. Values for the kinetic coefficient derived from th
free solidification method for different interface orientations, sy
tem sizes, and potentials.

Orientation Size Potential m ~cm/s K!

bcc~100! (103103100) ABCH 32.561.6
fcc~100! (103103100) ABCH 24.061.6
bcc~110! (143103100) ABCH 24.661.4
fcc~110! (83123100) ABCH 19.362.2
bcc~111! (14383120) ABCH 25.662.0
bcc~100! (103103100) Pair 30.867.0
bcc~110! (143103100) Pair 22.664.0
bcc~111! (14383120) Pair 23.163.6
bcc~100! (103103100) MH(SA)2 45.863.8
bcc~110! (143103100) MH(SA)2 33.561.0
bcc~111! (14383120) MH(SA)2 31.861.8
3-3



n
ps
t

or

cc
efl
of

s
t
e
t

c
e
he

al
l

nd
la-
tion
om
e

in
e

bcc
e
o-
ee
,

v-

he
lue
t.

or
ly-

es

al

ugh
bcc

aller

ny-
l

that
r-
-
s

D
lt
s
air
-
oss

s
d

D. Y. SUN, M. ASTA, AND J. J. HOYT PHYSICAL REVIEW B69, 174103 ~2004!
each undercooling, four different uncorrelated configuratio
are chosen~obtained from equilibration runs spaced 50
apart! as the starting configurations for subsequent compu
simulations of melting or growth and the total run time f
each structure/orientation was'1 ns.

III. INTERFACIAL FREE ENERGIES

Results for the solid-liquid interfacial free energies in f
and bcc Fe have been reported in Ref. 36. Here we bri
summarize the findings. Figure 1 is a log-log plot
bW^uA(k)u2&/kBT versus wave numberk derived from
the MD simulations for both fcc~upper panel! and bcc
~lower panel! Fe using the ABCH potential. Error bar
represent standard statistical uncertainties, estima
according to the following formula for the variance in th
mean value of̂ uA(k)u2&, derived from the property tha
^uA(k)u2& obeys Gaussian statistics:s252@(bW/kBT)
3^uA(k)u2&#2tc(k)/t run .53 The correlation timestc(k) were
calculated by integrating over time the autocorrection fun
tions ^A(k,t)A(k,0)& calculated from the simulations. Th
solid lines in Fig. 1 correspond to a fit to the data of t

FIG. 1. Equilibrium fluctuation spectrabW^A(k)2&/kBT, plot-
ted on a log-log scale vs wave numberk for both fcc~upper panel!
and bcc~lower panel! Fe using the ABCH potential. The solid line
indicate the theoretical slope ofk22. Error bars represent estimate
standard statistical uncertainties.
17410
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theoretical 1/k2 form. For each orientation, the theoretic
prediction of Eq.~3! is seen to hold well within the statistica
error bars for both phases over a wide range ofk values.
Similar results are obtained for the effective pair a
MH(SA)2 potential. As has been found in previous simu
tions, at the highest wave numbers, where the fluctua
wavelengths approach atomic dimensions, deviations fr
the predictions of Eq.~3! are observed. The offset of th
curves from one another in Fig. 1 reflects the anisotropy
stiffness. Lower anisotropy for bcc is evident, as will b
discussed further below.

The average solid-liquid interfacial free energiesg0, and
anisotropy parameterse1 and e2 ~see Ref. 36! are listed in
Table III. From the average values, one can see that the
solid-liquid interface has significantly lower interfacial fre
energies than fcc for both the ABCH and effective pair p
tentials. For the ABCH potential, the average interfacial fr
energy is about 206 mJ/m2 for the bcc solid-melt interface
which is about 0.6 times smaller than the 319 mJ/m2 found
for the fcc interface. For the effective pair potential, the a
erage interfacial free energy is 311 mJ/m2 for fcc and
221 mJ/m2 for bcc. Since the latent heats are similar for t
bcc and fcc phases of a given EAM potential, the lower va
of g for the bcc phase implies a lower Turnbull coefficien
As described in Ref. 36, the lower Turnbull coefficient f
bcc relative to that in the fcc phase is consistent with a po
tetrahedral model of the solid-liquid interface structure,54–56

computer simulations of nucleation in the Lennard-Jon
system,34 a direct computation ofg in the 1/r 6 system,57 and
a numerical study of nucleation in weakly charged colloid
spheres.58 In several experiments,29,31,33,37,59nucleation of
the bcc phase was found at high undercooling even tho
the stable solid phase is fcc. Again the appearance of the
phase was successfully explained by assuming a sm
Turnbull coefficient for bcc relative to fcc.

The present results show that the effective pair and ma
body form of the ABCH model give very similar interfacia
free energy and anisotropy parameters, which implies
many-body interactions play a relatively minor role in dete
mining equilibrium solid-liquid interface properties. In a re
cent MD simulation, the solid-liquid interface structure
for both EAM Au and the LJ system were studied60 and
very similar interface structures were found. Also, in an M
simulation of the structure of the nickel crystal-me
interface,61 it was found that the EAM potential produce
a similar interface structure as that obtained by the LJ p
potential.62 Both the EAM potential for Ni and the LJ poten
tial yield a similar layer spacing and density change acr
e ABCH,
TABLE III. Calculated average interfacial free energy and anisotropy parameters for the fcc and bcc structures based upon th
MH(SA)2, and ABCH effective-pair~Pair! potentials.

g0 e1 e2 g1002g110

2g0

g1002g111

2g0

Crystal Potential a (mJ/m2) ~%! ~%! ~%! ~%!

bcc ABCH 0.3260.02 206610 1.660.12 20.0460.28 0.460.4 0.560.4
bcc Pair 0.2960.02 221614 1.360.18 0.2660.28 0.560.5 0.460.6
bcc MH(SA)2 0.3660.02 175611 3.360.18 0.2460.32 1.060.6 1.060.2
fcc ABCH 0.5560.02 319612 11.760.12 20.1760.28 2.860.4 3.960.4
fcc Pair 0.5060.02 311614 10.060.14 20.1760.26 3.960.4 3.460.5
3-4
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CRYSTAL-MELT INTERFACIAL FREE ENERGIES AND . . . PHYSICAL REVIEW B69, 174103 ~2004!
the interface. The situation for the solid-liquid interfa
is quite different from that for solid-vapor and liquid-vap
interfaces where many-body interactions are required to
rectly reproduce effects associated with reduced co
dination.44,60 Reduced coordinations, or lower electron de
sity, in the EAM model will enhance the strength of th
effective bond and the enhancement of bond strength
change locally the atom density. Thus, liquid-vapor int
faces in the EAM model usually exhibit a peak in the atom
density, which is absent in the pairwise LJ system. For so
liquid interfaces, the difference in atomic coordination
small across the phase boundary and it is perhaps not
prising that the EAM model and effective pair potential pr
dict similar interface structures and properties.

Another important feature of the present results is the
that the bcc phase has a significantly lower anisotropy of
interfacial free energy than fcc. The anisotropy parametere1
ande2 listed in Table III are almost one order of magnitu
smaller for bcc than those for fcc. To make the anisotro
more clear, in Fig. 2 we have plotted the stiffness~solid
lines! and interfacial free energy~dashed lines! as a function

FIG. 2. Interfacial stiffness~solid line! and interfacial free en-
ergy ~dash line! vs orientation predicted by the ABCH potential, fo

interfaces with normals in~a! the ~001! plane and~b! the (11̄0)
plane. The full orientation dependence was generated from an
pansion of the interfacial energy in terms of cubic harmonics. In~a!,
the orientation is characterized by the rotation angle about the@001#
direction, with the~100! interface definingu50. For ~b!, the ~110!
interface definesu50. Points indicate the value of the stiffines
obtained directly from MD simulations of the interface height flu
tuations. The dotted line lying close to the free energy curve is
contour defined byg(n)5g0.
17410
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of orientation in both the~100! and ~110! planes. Here we
use the cubic harmonic expansion forg(n) given in Ref. 36.
Also shown are the data points for the stiffness obtain
directly from fits of the MD height fluctuation spectra. As
made clear in this figure, the interfacial free energy plot
bcc is almost identical to a circle, indicating a nearly isotr
pic g, while there is a clear deviation from a circle for th
case of fcc. Also, as mentioned above, the stiffness is
order of magnitude more anisotropic thang and this can be
very clearly seen in the figure by comparing the solid a
dashed lines.

Although only a few experiments have attempted to m
sure the anisotropy ing, the lower anisotropy for bcc rela
tive to that of fcc found here is consistent with results fro
transparent organic materials. In succinonitrile, a bcc str
ture, the anisotropy is one order of magnitude lower than
fcc material pivalic acid.63 In addition, the low anisotropy in
bcc may help to explain the observation from experimen
studies of Fe and Fe alloys that solidification rates of
metastable bcc phase are much slower than those of
stable fcc structure~see the following section!.

IV. THE KINETIC COEFFICIENT

Interface velocitiesV vs DT (DT5T2Tm) for the
bcc~100!, bcc~110!, and bcc~111! interfaces calculated with
the ABCH potential, are shown in Fig. 3~lower panel!. As
discussed previously,V is calculated from the change of th
total volume accompanying melting/solidification and
knowledge of the equilibrium atomic volumes in the so
and liquid phases. The linear relationshipV5mDT is seen to
hold fairly well over the range ofDT considered. Addition-
ally, the results are found to be highly symmetric with r
spect to melting and growth. In Fig. 3 error bars denote
timated uncertainties~standard errors! in the mean value of
V, obtained from the variance of the interface velocities d
rived separately from each of four independent simulatio
for a givenDT. The kinetic coefficient (m) is obtained by a

x-

e

FIG. 3. Velocities of solid-liquid interfaces as a function ofDT
calculated using the ABCH potential for both fcc~upper panel! and
bcc ~lower panel!. The error bars denote standard errors on
mean values of the measured velocities derived from the four in
pendent simulations and solid lines correspond to least-square
to the data.
3-5
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D. Y. SUN, M. ASTA, AND J. J. HOYT PHYSICAL REVIEW B69, 174103 ~2004!
least-squares fit of theV vs DT data. For bcc Fe modele
with the ABCH potential, the resulting values ofm are
32.561.6 cm/s K, 24.661.4 cm/s K, and 25.662.0 cm/s K
for the ~100!, ~110!, and~111! orientations, respectively. Th
kinetic coefficient for~100! is thus largest, while them for
~110! and ~111! are close in magnitude. The anisotropi
m100/m110 andm100/m111 are 1.3260.06 and 1.2760.07, re-
spectively. To the best of our knowledge, the only previo
MD calculation ofm for bcc was that for the~100! orienta-
tion of Na by Tymczak and Ray,23,24 and therefore the
present calculation is the first to compute the kinetic anis
ropy for a bcc system.

Figure 3~upper panel! shows the interface velocity vsDT
for the fcc~100! and fcc~110! interfaces calculated usin
again the ABCH potential.m is calculated to be 24.0
61.6 cm/s K and 19.362.2 cm/s K for the~100! and ~110!
growth directions, respectively. For fcc Fe, the kine
anisotropies are consistent with the previous results for o
fcc metals, namely,m100.m110 andm100/m11051.2460.11.
Comparing with them obtained for bcc, we find thatm of
fcc~100! is 0.74 times smaller than bcc~100!.

We have repeated the same calculation for bcc interfa
employing instead the effective pair potential. Here the v
ues m100530.867.0, m110522.664.0, and m111523.1
63.6 were obtained and the anisotropiesm100/m110 and
m100/m111 are 1.3660.21 and 1.3360.21, respectively. One
can see that nearly identical anisotropies and magnitude
m are obtained with the effective-pair and many-body pot
tial forms of the ABCH potential.

To further check the anisotropy inm for the bcc phase, the
same simulations were also performed using the more a
rate MH(SA)2 potential andm was found to be 45.863.8,
33.561.0, and 31.861.8 for the~100!, ~110!, and~111! in-
terfaces, respectively. Interestingly, although the MH(SA2

and ABCH potentials have substantially different forms, t
anisotropy results are similar, namely,m100/m11051.37
(60.065) andm100/m11151.44(60.070).

For all three potentials, the kinetic anisotropy is found
be approximatelym100/m110;1.35 andm100/m111;1.35 for
bcc Fe, in the order ofm100.m110;m111, which is indepen-
dent of the detailed form of the potentials. Interestingly,
kinetic anisotropies derived for bcc Fe are very similar
those for fcc Fe and other fcc metals conside
previously.13,20–22Furthermore, for all the models of Fe con
sidered,m for the bcc phase is found to be larger than for fc

The data in Fig. 3@as well as that obtained with the e
fective pair and MH(SA)2 potentials# feature highly sym-
metric results for melting and growth kinetics in the regim
of low undercoolings explored in this work, which is i
agreement with our earlier study of Ni~Ref. 13! and previous
simulation results for the Lennard-Jones system.17,18 This
feature of the results is interesting in light of the large asy
metry between melting and growth kinetics derived for A
by Celestini and Debierre22 using a ‘‘glue’’ potential of the
form given by Eq.~1!. Possible reasons for this discrepan
between the results for Au and those derived for Ni, Fe,
the LJ system were discussed by us previously.13
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V. DISCUSSION

The present MD results yield the following kinetic aniso
ropy values for the bcc phase:m100/m110;1.35 and
m100/m111;1.35. The ordering ofm with crystallographic
orientation, namelym100.m110;m111, is similar to the fcc
Fe result obtained here, as well as all previous MD results
fcc-based systems. It has been pointed out previously by
eral authors13,21,22,62that this ordering is inconsistent with th
commonly suggested scaling of the kinetic coefficient w
crystalline interplanar spacingdhkl for fcc.

An alternative framework for understanding the origin
m anisotropy is offered by the kinetic DFT formulation o
Mikheev and Chernov.64 It has been shown that the Mikhee
and Chernov model can provide reasonable estimates o
anisotropy for fcc materials.13 In the kinetic DFT formulation
of Mikheev and Chernov,64 it is assumed that isotherma
solid-liquid interface velocities are governed by the rate
propagation of crystalline ‘‘density waves’’ in advance of th
moving solid-liquid interface. The model yields the follow
ing expression for the kinetic coefficient:

m5
L

kBTM
2

S~G1!jb

t~G1!As
. ~4!

S(G1) is the structure factor evaluated at the magnitude
the minimal reciprocal-lattice vector of the crystal,G1, i.e.,
the first main peak inS(k). t(G1) is the relaxation time of
the liquid, which can be determined experimentally from t
inverse half-width of the dynamical structure factorS(k
5G1 ,v). Also in Eq.~4!, jb is the correlation length in the
liquid, defined as the inverse half-width ofS(k) evaluated at
the main peak andAs is a factor governing the anisotropy o
m and is given by

As5 (
uGu5G1

jb

jG
. ~5!

Here jG represents the effective width of the Fourier tran
form of the number density profile,hG , across the solid-
liquid interface ~a more precise definition ofhG will be
given below!. The sum in the above expression is over all t
first-neighbor reciprocal lattice vectors~8 for fcc and 12 for
bcc!. The effective widthsjG are unknown quantities, an
thus the Mikheev and Chernov model relies on an anal
approximation, derived in an earlier paper,65 for the density
profile of a liquid in contact with a solid whose underlyin
periodicity is described by any given set of reciprocal latt
vectors. For pure fcc metals, the approximate relationship
the effective widths is given byjG5jbcosu, whereu is the
angle between the vectorG and the interface normal. Th
remaining unknowns in the Mikheev-Chernov expressi
S(G1), jb , andt, are also not known for most liquid metal
For these quantities Mikheev and Chernov use results f
the well-studied hard-sphere system.

With the hard-sphere approximation and the approxim
form for the interface widths, the Mikheev and Chern
model predictsm100'10.0 for fcc Fe, which is 2.5 times
smaller than the MD results. The magnitude ofm predicted
3-6
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by the Mikheev and Chernov model was also found to be
low for LJ, Ni, and Pb.3,13,14 How to improve/modify the
Mikheev and Chernov model is a subject of work
progress. However, for the purposes of the present dis
sion, we will continue to use the theory as a way of und
standing the trends observed in the MD results. For exam
the ratiosm100/m110 and m100/m111 can be found by evalu
ating only the factorsAs in Eq. ~4!. Furthermore, the growth
rate of the fcc phase relative to the bcc structure can
determined from the following ratio:

m f cc

mbcc
5

L f cc~TM
bcc!3/2

Lbcc~TM
f cc!3/2

jb
f ccAs

bcc

jb
bccAs

f cc
, ~6!

where the exponent of 3/2 on the temperature arises by
suming that relaxtion times in the liquid are proportional
the thermal velocity of atoms, which in turn varies asTM

1/2.
Also, the small variation ofS(G1) with temperature has bee
neglected. From Eq.~6! it is clear that the only unknowns in
the ratio ofm ’s are again theAs terms. Since theAs coeffi-
cients also determine the kinetic anisotropy, it is importan
computeAs as precisely as possible. Therefore, rather th
using the approximationjG5jbcosu to obtain the widths
appearing in Eq.~5!, we instead evaluatejG , and henceAs ,
directly from MD simulations of equilibrium solid-liquid
systems.

In the Mikheev and Chernov formulation, anisotropy inm
originates from the geometric projection upon the grow
direction of density waves with wave vectorsG1. The den-

FIG. 4. ThehG number density profiles for the bcc solid-liqui
interface using the ABCH potential. The profiles are shown a
function of position along the interface normal. Results from all
nonequivalentG vectors from the minimal set are shown.

FIG. 5. ThehG profiles for the bcc solid-liquid interface usin
the MH(SA)2 potential.
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sity profilehG along the interface normal direction increas
sharply as the boundary is traversed from the liquid phas
the solid and the width of these density profiles determi
the anisotropy factorsAs . To calculatehG from MD simu-
lations, we use a technique similar to the one developed
Chen, Barnett, and Landman.61 The system is first divided
into layers normal to the interface where the spacing of
layers corresponds to the layer spacing in the solid. For e
layer, we calculatehG( l ) according to the following:

hG~ l !5K 1

Nl
(
i P l

Nl

exp~ iG•r !L , ~7!

whereNl is the number of atoms inl th layer and the angula
brackets denote an average over configurations. We h
modified the method by Chen, Barnett, and Landman in t
ways. First, in the present calculation, the average is o
over those configurations in which the length of the so
region and the pressure of the system are close to the ave
value. Second, for each configuration, the lower interfa
was always shifted to a fixed position. The above two mo
fications help eliminate the effects due to fluctuations in
interface position over the course of an MD run. The mo
fications were important since the deviation in the bound
position due to fluctuations was found to be on the order
interface width itself.

Figure 4 shows thehG profile for the bcc phase of Fe
~ABCH potential! where the interface normal is the~110!
direction. The three curves in Fig. 4 represent the entire
of nonequivalentG1 vectors. It is clear that the effectiv
width of thehG profile depends on the orientation of theG1
vector with respect to the interface normal and the profi
are sharpest for those orientations with the smallest value
the angleu. In Fig. 5, hG curves are plotted for the cas
MH(SA)2 Fe in the bcc phase. Similar features are obtain
as in Fig. 4. ThehG computations were also performed fo
the fcc structure of Fe and the results were used to determ
the anisotropy factors and the ratio ofm ’s.

To calculateAs , the hG profiles were fit to a tanh form
and the widthsjG were extracted. The anisotropy factorAs
was then calculated through Eq.~5!. In Table IV, we list the
kinetic anisotropy calculated from the Mikheev and Chern
model using theAs obtained directly from MD simulation.
The calculated anisotropy ism100/m11051.08 and
m100/m11151.14 for the ABCH bcc phase. The anisotrop

TABLE IV. The bcc anisotropy of the kinetic coefficient calcu
lated by MD simulation and by the Mikheev-Chernov model.

Mikheev-Chernov MD Potential

m100/m110 1.08 1.3260.06 ABCH

m100/m111 1.14 1.2760.07 ABCH

m100/m110 1.14 1.3760.07 MH(SA)2

m100/m111 1.23 1.4460.07 MH(SA)2

a

3-7
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predicted by the Mikheev and Chernov model is consiste
lower than the MD results. However, the model does rep
duce the correct ordering of the kinetic coefficient, i.
m100.m110;m111, and, as mentioned above, this result ca
not be explained by the ratiod spacings in the bcc crysta
structure.

The values of theAs coefficients obtained from MD simu
lation can also be used to compute the crystallization rat
the bcc phase relative to that of the fcc phase. Evaluating
~6!, we find that the Mikheev and Chernov model predi
roughly equal crystallization rates for the fcc and bcc phas
Recall, the MD results show that bcc is slightly faster th
fcc ~Table II!. Using an electromagnetic levitation techniqu
Zambonet al.29 measured the dendrite growth velocity as
function of undercooling for various compositions of Fe-
alloys. The authors found that below a critical undercooli
which depends on alloy composition, the metastable
phase, rather than fcc, is formed and subsequently solidi
Therefore a direct experimental comparison between
growth rates of fcc vs bcc was possible. The kinetic res
were found to be in good agreement with a dendrite gro
model due to Boettingeret al.66 only if the kinetic coefficient
of the bcc was assumed to be a factor of 4 lower than tha
fcc. The much lower value ofm for the bcc structure contra
dicts both the MD results for pure Fe given in Table II a
the prediction of the Mikheev-Chernov growth model. The
is, however, an alternative explanation for the slugg
growth kinetics of the bcc phase observed in experiment.
generally accepted theoretical model of dendrite growth
the so-called microscopic solvability theory.67,68Microscopic
solvability predicts that the operating point of a dendrite, i
its growth velocity and tip radius, are determined by t
anisotropy in the solid-liquid interfacial free energy a
smaller values of the anisotropy lead to slower growth ra
Since the anisotropy ing was not known, Zambonet al. did
not consider this effect. However, the MD results forg pre-
sented in Fig. 2 demonstrate that the anisotropy of the
phase is in fact considerably less than that of the fcc phas
rigorous comparison between theory and experiment requ
a full phase field calculation of dendrite growth as was do
by Bragardet al.25 for pure Ni, but the small bcc anisotrop

*Permanent address: Institute of Solid State Physics, Acade
Sinica, 230031-Hefei, China.
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in g found in the present study offers a plausible explanat
for the slow growth rates of the bcc phase seen in Fe
alloys.

Finally, the Mikheev and Chernov model can also be us
to predict the ratio of kinetic coefficients for the various F
potentials. Using the latent heat, melting point, structure f
tor and As , we also calculated the ratio ofm100 for the
MH(SA)2 and ABCH potentials. We find thatm100 for the
MH(SA)2 potential is 1.16 times larger than that for th
ABCH potential, which is in reasonable agreement with M
free solidification results.

VI. SUMMARY

In this paper, we have calculated the solid-liquid inter
cial free energy and mobility in pure Fe where two separ
EAM potentials and an effective-pair potential were used.
addition to a stable bcc phase, the potential due to AB
produces a metastable fcc phase with a melting point tha
only slightly lower. Thus a direct comparison of interfac
properties for the bcc and fcc structures can be made u
the same interatomic potential. We find that the kinetic co
ficient of bcc is larger than fcc, but the associated kine
anisotropies are quite similar. The calculated anisotropies
m100/m110;1.35 andm100/m111;1.35 for bcc. The presen
results for kinetic anisotropies are similar to most fcc sol
liquid interfaces studied previously. MD results for the k
netic anisotropy are higher than, but in reasonable agreem
with the Mikheev-Chernov growth model.
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59W. Löser, A. Garcia-Escorial, and B. Vinet, Int. J. Non-Equili

Process.11, 87 ~1998!.
60O. Tomagnini, F. Ercolessi, S. Iarlori, F.D. Di Tolla, and E. T

satti, Phys. Rev. Lett.76, 1118~1996!.
61E.T. Chen, R.N. Barnett, and U. Landman, Phys. Rev. B40, 924

~1989!.
62H.E.A. Huitema, M.J. Vlot, and J.P. van der Eerden, J. Che

Phys.111, 4714~1999!.
63M.E. Glicksman and N.B. Singh, J. Cryst. Growth98, 277

~1989!.
64L.V. Mikheev and A.A. Chernov, J. Cryst. Growth112, 591

~1991!.
65L.V. Mikheev and A.A. Chernov, Sov. Phys. JETP65, 971~1987!.
66W.J. Boettinger, S. R. Coriell, and R. Trivedi, inRapid Solidifi-

cation Processing, Principles and Technologies IV, edited by R.
Mehrabian and P.A. Parrish~Claitor’s, Baton Rouge, 1988!, p.
13.

67J.S. Langer, inChance and Matter, Proceedings of the Lecture
on the Theory of Pattern Formation, edited by J. Souletie
Vannimenus, and R. Stora, Session 46~North Holland, Amster-
dam, 1987!, p. 629.

68D. Kessler, J. Koplik, and H. Levine, Adv. Phys.37, 255 ~1988!.
3-9


