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Abstract

Magnetic flux pinning classification based on the pinning center size is found to be imperfect because of the prox-

imity effect of superconducting state. The application of this idea to the Dew-Hughes model shows that the eight flux

pinning functions in it are linearly dependent, which implies that some of these pinning mechanisms are not the primal

ones, but a combination of others. Based on the physical considerations, �core, normal, surface pinning� and �core, nor-
mal, point pinning� are abandoned. A pinning function that is related to the self-field critical current is induced. Then

seven linearly independent pinning functions are picked out to represent the seven primal pinning mechanisms, respec-

tively. The application of these seven functions to the experimental data shows that they contribute to a better general

description of the complex mechanism of the pinning of the superconductors.
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1. Introduction

The pinning, or the interaction, of the flux-line

lattice with various crystal imperfections in type-
II superconductors is responsible for the existence

of a critical current density Jc, usually defined as
ed.
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the current density at which an arbitrarily small

voltage is observed. Flux-line interaction with

crystal imperfections, or pinning centers, because

the superconducting properties of the latter are

different from those of the bulk of the supercon-
ductor. The strength of the interaction is a func-

tion of the magnitude of this different. The

difference may be small, and manifest itself as a

different in critical temperature, critical field, or

Ginsburg–Landau parameter j. The difference

may be large as is the case when the pinning center

is non-superconducting. Of all the various possibil-

ity, only two are believed responsible for flux-line
in the majority of superconducting materials [1]:

(i) small differences in j, arising from changes in

the normal state resistivity due to composition

fluctuations, or non-uniform distributions of dislo-

cations, (ii) non-superconducting particles, which

may be normal metal, insulator or void. The two

types of pinning centers give rise to what will sub-

sequently be referred to as �Dj pinning� and �nor-
mal pinning� by the superconducting nature of

the pinning centers. The pinning centers are fur-

ther classified as point pins, line pins, surface pins

and volume pins by the number of the pinning cen-

ters� dimensions that are large compared with the
inter-flux-line spacing d(=1.07(U0/B)

1/2) [2]. Point

pins are regions whose dimensions in all directions

are less than d, line pins have one dimension long
compared with d, surface pins have two dimen-

sions greater than d and volume pins have all

dimensions larger than d.

The investigation of the pinning properties in

superconductors is usually accomplished by the

determination of the volume pinning forces, Fp.

As is well known, the volume pinning forces, Fp,

is mainly determined by the pinning center size be-
cause the pinning center size determines the total

length of interacting flux-lines, and the geometrical

nature of the interaction. Thus, the magnetic flux

pinning classification based on the size of pinning

centers is preferred in most cases. However, be-

cause the transition of superconducting regions to

non-superconducting regions happens in a layer

of thickness of coherence length n [3,4], which is
known as the proximity effect of the superconduct-

ing state, those small non-superconducting parti-

cles may be induced to become superconducting,
and their interaction with the flux-line lattice will

not present as �normal pinning�. Thus the definition
of �core, normal pins� will be invalid in most cases.
In this paper, the imperfection of flux pinning

classification based on the pinning center size will
be discussed in detail and linear algebra will be em-

ployed to investigate the primality of the flux pin-

ning mechanisms.
2. Methods description

Bibby [5] has shown that the pinning strength of
non-superconducting particles is independent of

the nature of the particles. If non-superconducting

metallic particles have a diameter less than or

equal to the superconducting coherence length n
of the matrix, the proximity effect will induce them

to become superconducting, and their presence can

be regarded as producing a change in the Ginz-

burg–Landau parameter j. Those small �core, nor-
mal, point pinning� centers will actually present as
�core, Dj pinning� centers. Thus, �core, normal,
point pinning� is believed to be negligible in most
cases.

On the other hand, according to Josephson�s
theory [6–8], two superconductors act to preserve

their long-range order across an insulating barrier.

With a thin enough barrier, the phase of the elec-
tron wavefunction in one superconductor main-

tains a fixed relationship with the phase of the

wavefunction in another superconductor because

of the so-called phase coherence. The insulating

barrier becomes superconducting but with spatial

variations of the Ginzburg–Laudau parameter j,
and then the �core, normal, surface pinning� will
actually present as �core, Dj, surface pinning� or
�core, Dj, volume pinning�. Hence �core, normal,
surface pinning� can be also ignored in real super-
conducting materials.

Basing on the above discussion, we may ignore

�core, normal, point pinning� and �core, normal,
surface pinning� in the investigation of the pinning
properties in superconductors. These ideas can be

also applied to Kramer�s scaling law [9].
The scaling of volume pinning forces Fp versus

the reduced field h=H/Hc2, where Hc2 denotes the

upper critical field, implies [10,11]
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F p ¼ ½H c2ðT Þ�m � f ðhÞn; ð1Þ

where m and n are numerical parameters describ-
ing the actual pinning mechanism, and f(h) is a

function that depends only on the reduced field

h. Dew-Hughes model [1] is one of the excellent

summation models of the elementary pinning

forces. In this model, there are two pinning func-

tions describing the magnetic pinning and six pin-

ning functions describing the core pinning. The

latter can be written in a uniform function

F pðhÞ=F p;max ¼ Ahpð1� hÞq; ð2Þ

where p and q are parameters describing the actual

pinning mechanism, and A is a numerical parame-

ter. For various high temperature superconducting

materials, the scaling of Fp is found as well, how-

ever, experiments have shown that the appropriate

scaling field is the irreversibility field Hirr instead
of Hc2, namely h=H/Hirr [12–14].

Let us now use linear algebra to investigate the

primality of the flux pinning equations of the Dew-

Hughes model. Extending the eight pinning func-

tions in the form of h0, h1/2, h1, h3/2, h2, h5/2 and

h3, we obtain

f 1 ¼ h1=2ð1� 2hÞ ¼ h1=2 � 2h3=2 ¼ ð0; 1; 0;�2; 0; 0; 0Þ;

f 2 ¼ hð1� hÞ ¼ h� h2 ¼ ð0; 0; 1; 0;�1; 0; 0Þ;

f 3 ¼ h3=2ð1� hÞ ¼ h3=2 � h5=2 ¼ ð0; 0; 0; 1; 0;�1; 0Þ;

f 4 ¼ h2ð1� hÞ ¼ h2 � h3 ¼ ð0; 0; 0; 0; 1; 0;�1Þ;

f 5 ¼ h1=2ð1� hÞ ¼ h1=2 � h3=2 ¼ ð0; 1; 0;�1; 0; 0; 0Þ;

f 6 ¼ ð1� hÞ2 ¼ 1� 2hþ h2 ¼ ð1; 0;�2; 0; 1; 0; 0Þ;

f 7 ¼ h1=2ð1� hÞ2 ¼ h1=2 � 2h3=2 þ h5=2 ¼ ð0; 1; 0;�2; 0; 1; 0Þ;

f 8 ¼ hð1� hÞ2 ¼ h� 2h2 þ h3 ¼ ð0; 0; 1; 0;�2; 0; 1Þ:

In a linear algebra way, we refer the above func-

tions as vectors. It is easy to show that these eight

vectors are of dimension seven. Because the num-

ber of these vectors (eight) is greater than the num-

ber of their dimension (seven), the eight vectors

must be linearly dependent [15]. It implies that
some of these vectors are not the primal pinning

mechanisms but a combination of other pinning

mechanisms. We have checked them carefully

and find that f2= f4+ f8 and f5= f3+ f7. Thus, two
of these functions must be abandoned. Basing on

the above discussion, we now throw away �core,
normal, surface pinning, f7� and �core, normal,
point pinning, f8�.
As for the appearance of f5= f3+ f7, we may fur-

ther ascribe it to the fact that, when deducing the

specific pinning functions of core interaction,

Dew-Hughes has used Gibbs� function [1,16] per
unit length of flux-line

g ¼ �l0U0ðH c2 � HÞ2

2:32ð2j2 � 1ÞB : ð3Þ

This includes the magnetic and the inter-flux-

line interaction terms as well as the core energy,

and also the sums of the energy for each flux-line

over a radius d/2, where d is the inter-flux-line

spacing. The core pinning functions f7 and f8
may contain parts of the magnetic pinning, thus
it causes the appearance of equation f5 = f3+ f7.

The pinning force is usually suggested to be

zero when no applied field H is present [1]. How-

ever, this may be somewhat incorrect. The critical

current Ic is at its maximum when no applied field

H is present; we call it �self-field critical current�.
When this �self-field critical current� flows in a

superconductor, it will induce a magnetic field. A
superconductor that has stronger pinning effect

will have a higher self-field critical current, which

implies that the pinning force always exists only

if a superconductor carries a current, even when

no applied field H presents. According to the

model of Bean and Livingston [17], the pinning

force that causes the self-field critical current,

noted as Fself, will always be exceeded by the repul-
sive force and is then independent of the applied

magnetic field, which implies that Fself can only

pin a certain number of flux lines and the remain-

ing flux lines will move to the interior of the super-

conductor as the applied field H increases.

Let us now pick out Fself from the total pinning

force and assume that, though somewhat imper-

fectly, it is approximately independent to the ap-
plied magnetic field H, namely

F selfðhÞ ¼ constant: ð4Þ
This can be rewritten as

F selfðhÞ ¼ a0f 0; ð5Þ
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Fig. 1. Normalized pinning force F 0
pðhÞ=F 0

p;max vs. the magnetic

field H at 77 K with H perpendicular to the Bi-2223/Ag tape

surface. The solid line is a theoretical fit for F 0
pðhÞ=F 0

p;max with

Eq. (7).
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where a0 is a constant, and f0=(1,0,0,0,0,0,0) rep-

resents the pinning force that is independent to

the applied magnetic field H.

Because of the complexity of defects in super-

conductors, several different pinning mechanisms
may act simultaneously in them. Wisniewski

et al. [18] described the flux pinning of YBa2Cu4O8
single crystal by the assumption of two pinning

mechanisms. Pu et al. [19] supposed that the total

pinning forces in Bi-2223/Ag tapes are the average

value of the local pinning forces of each type of the

centers. However, for a linear physical system that

includes series of element states, can a given state
be steadily expressed as the weighted average of

the element states in this system? As is known in

linear algebra and functional analysis, any vectors

in a linear space can be expressed as the weighted

average of the elements of a base of this linear

space uniquely. According to the above discussion,

we now abandon vector f7 and f8, and choose the

remaining seven vectors f0, f1, f2, f3, f4, f5 and f6.
We extend them in the form of h0, h1/2, h1, h3/2,

h2, h5/2 and h3, and calculate the value of the deter-

minant of these seven vectors

1
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Because the value of the determinant is not
zero, vectors f0, f1, f2, f3, f4, f5 and f6 are linearly

independent. They form a base of the linear space

of dimension seven and then they can express any

vectors in this linear space uniquely [15]

F pðhÞ=F p;max ¼
X6

i¼0
aif i

¼ a0 þ a1h1=2ð1� 2hÞ þ a2hð1� hÞ
þ a3h3=2ð1� hÞ þ a4h2ð1� hÞ
þ a5h1=2ð1� hÞ þ a6ð1� hÞ2; ð6Þ

where aiP 0. Each term in the right side of Eq. (6)

reflects one type of flux pinning mechanism, and
parameter ai reflects the weighting of i type of pin-

ning. In real materials, more than one pinning

mechanisms may be cooperative, their effects will

add, and then Eq. (6) will be a better description

of them.
In general, the pinning force is calculated by

equation F 0
p ¼ J c 
 B. However, this equation does

not include the pinning force Fself(h)=a0f0, because

F 0
p ¼ 0 when B=0. Now we define

F 0
pðhÞ=F 0

p;max ¼ F pðhÞ=F p;max � a0: ð7Þ

Applying Eq. (7) to the experimental data of Bi-

2223/Ag tape [20] in Fig. 1, we find that the main

pinning mechanisms are �core, Dj, volume pinning
f2�, �core, Dj, surface pinning f3� and �core, Dj,
point pinning f4�; hence we obtain the exact pin-
ning function

F 0
pðhÞ=F 0

p;max ¼ 0:73h1=2ð1� 2hÞ þ hð1� hÞ
þ 1 
 1h3=2ð1� hÞ þ 1 
 1h2ð1� hÞ
þ 0:72h1=2ð1� hÞ þ 0:24ð1� hÞ2:

ð8Þ

It should be also kept in mind that the coeffi-

cients ai are not constants, but variables that de-

pend on temperature [11]. Moreover, the pinning

analysis is only valid for the true critical current
density Jc that is by definition not affected by the

flux creep [21,22]. However, for high h (i.e., close

to the irreversibility line), the creep effects are most
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important and so the deviations from Jc will be

large [23]. At the same time, matching effects and

dimensional crossover also rise [24–30]. To ac-

count for these, we multiply the right side of Eq.

(6) with a term (1+lCkTh�n/Uc)
�1/l that is based

on collective pinning theory [31–35], and it yields

Fp=Fp;max ¼ ð1þ lCkTh�n=UcÞ�1=l
X6

i¼0
aifi; ð9Þ

where Uc denotes the pinning potential, C is de-

fined by U[js(T),Ha]=kTC, and k is the Boltzmann
constant.
3. Conclusions

In summary, we have investigated the imperfec-

tion of flux pinning classification based on the pin-

ning center size. Because of the proximity effect of
the superconducting state, �core, normal, point
pinning� and �core, normal, surface pinning� is sug-
gested to be negligible in most cases. The eight pin-

ning equations in the Dew-Hughes model are

found to be linearly dependent by using a linear

algebra method. The flux pinning mechanism is re-

viewed and then seven linearly independent func-

tions were chosen to describe the pinning
mechanism in a mathematically self-consistent

way. The application of the theory to the experi-

mental data of Bi-2223/Ag tape shows that the the-

ory contributes to a better general description of

the complex mechanism of the pinning of the

superconductors. Because the calculation and the

discussion of the theory are not confined to any

specified superconductor crystal structure, the
application of the theory to other superconductors

is straightforward. It is believed that linear algebra

methods can be also used elsewhere to detect if a

series of functions form a base of a linear space

and thus can describe a physical system perfectly.
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