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Abstract The influence of a soliton system under an external harmonic excitation is considered. We take the
compound KdV-Burgers equation as an example, and investigate numerically the chaotic behavior of the system with
a periodic forcing. Different routes to chaos such as period doubling, quasi-periodic routes, and the shapes of strange
attractors are observed by using bifurcation diagrams, the largest Lyapunov exponents, phase projections and Poincaré
maps.
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1 Introduction
The soliton systems such as KdV equation, Burg-

ers equation and nonlinear Schrödinger equation have re-
ceived great attention during the last decades.[1−7] These
nonlinear evolution equations arise from many physical
fields, and many of them are completely integrable. How-
ever there often exist various perturbations for a practical
physical process. The nature of this external perturbation
can be different and varies from one physical problem to
another. So the growing interest in the study of soliton
equations under external perturbations has recently more
developed.[8−11]

As is well known, a completely integrable soliton equa-
tion cannot display chaotic behavior. But the addition
of a perturbation to an integrable equation may lead to
chaotic dynamics. For example, chaos has been found
in the perturbed sine-Gordon equation,[12] and in the cu-
bic nonlinear Schrödinger equation.[13] For the perturbed
KdV equation, the conditions of their chaotic behavior are
studied with the help of the Melnikov theory.[14]

In this work we start with an important soliton equa-
tion, say the compound KdV-Burgers equation,

ut + auux + bu2ux + ruxx + suxxx = 0 , (1)

where r is a damping parameter, and a, b, and s are
real parameters. Equation (1) is applied as a model for
long-wave propagation in nonlinear media with disper-
sion and dissipation,[15] and has been studied by many
authors.[15,16] It is also known to possess travelling wave
solutions in the form of solitary or kink wave solutions.

2 Dynamical Model
We consider a parametric excitation for the compound

KdV-Burgers equation, that is,

ut + auux + bu2ux + ruxx + suxxx = fx , (2)

where f is the driving term.
Let u(x, t) = ϕ(ξ) with ξ = x − vt being a travelling

wave solution for Eq. (2). Substituting ϕ(ξ) into Eq. (2)
yields

−vϕξ + aϕϕξ + bϕ2ϕξ + rϕξξ + sϕξξξ = fξ , (3)

where ϕξ = dϕ/dξ. To simplify the analysis, we assume
that f is a periodic function. Taking f = f0 cos(ωξ) and
integrating Eq. (3) once leads to

ϕξξ + µϕξ − αϕ + βϕ2 + δϕ3 = g cos(ωξ) , (4)

where µ = r/s, α = v/s, β = a/(2s), δ = b/(3s), and
g = f0/s.

Equation (4) is the asymmetric double-well Helmholtz-
–Duffing oscillator with quadratic and cubic nonlinear-
ities. It describes the dynamic finite behavior of pre-
stressed elastic structures, (cables, arches) subjected to
deterministic harmonic forcing in the vertical plane. As a
mechanical model with single degree of freedom, equation
(4) with α, β and δ > 0 is applied in practical engineering
extensively. For instance, it may describe the vibration
of plate spring in rare earth giant magnetostriction trans-
ducer.

In addition, equation (4) is also used as the bio-
mathematical model of the aneurysm of circle of Willis
when δ > 0, α and β < 0, and it simulates the blood flow
inside aneurysm.[17,18] Here the variable ϕ in Eq. (4) rep-
resents the velocity of blood flow, and g cos(ωξ) indicates
the rate of change of the central blood pressure, where
g is equivalent to the pulse pressure and ω is inverse of
the cardiac frequency. Contrary to the Duffing equation
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(Eq. (4) with β = 0), which was studied extensively from
a theoretical, numerical, experimental, and control point
of view,[19,20] equation (4) was not deeply investigated in
the past.[21]

The equivalent form of the perturbed system (4) can
be written as (X = ϕ)
Ẋ = Y , Ẏ = g cos(ωξ)− µY + αX − βX2 − δX3 , (5)

where dot denotes the derivative with respect to ξ.
The undamped and unforcing system of Eq. (5) (with

µ = 0, f=0) is an integrable Hamiltonian system with a
Hamiltonian function,

H(X, Y ) =
1
2
Y 2 − α

2
X2 +

β

3
X3 +

δ

4
X4 , (6)

the corresponding potential is a (φ3 +φ4)-model, given by

V (X) = −α

2
X2 +

β

3
X3 +

δ

4
X4 . (7)

3 Chaos in Perturbed System
In order to obtain some information of chaotic be-

havior for the perturbed system (5), several different nu-
merical tools that effectively describe the bifurcation and
chaotic phenomenon are applied, which are (i) bifurcation

diagrams, (ii) the largest Lyapunov exponents, (iii) the
Poincaré map and phase plane plots, and (iv) the frac-
tal dimension. These methods are all very useful tools
for examining chaotic properties of dynamic systems and
exploring chaotic attractors.

System (5) involves six parameters: g, µ, α, β, δ, and
ω. To simplify the analysis, we only choose ω as the con-
trol parameter.

We first fix g = 0.25, µ = 0.2, α = 0.5, β = 0.4 and
δ = 0.5, and let α to change in a wide range. The re-
sult of a numerical investigation of the model is reported.
Figure 1 shows a one-dimensional bifurcation diagram
and the corresponding largest Lyapunov exponent. From
Fig. 1(a), we can see that the nonlinear dynamical system
(5) exhibits periodic and chaotic behaviors when the pa-
rameter ω varies. The largest Lyapunov exponent given
by Fig. 1(b) can be convinced of occurrence of chaotic mo-
tion. Figure 2 shows some local amplification of Fig. 1(a).
It can be also observed, from Figs. 1 and 2, that the sys-
tem enters chaotic states usually through a sequence of
period doubling, while period doubling is at present the
most commonly known route to chaos.

Fig. 1 (a) Bifurcation diagram in (ω–X) plane for Eq. (5) with g = 0.25, µ = 0.2, α = 0.5, β = 0.4 and δ = 0.5; (b)
The largest Lyapnouv exponent corresponding to (a).

Fig. 2 A local amplification of Fig. 1(a).

Figure 3 describes the Phase projection of a chaotic state in Fig. 1(a) with ω = 0.94. The largest Lyapunov
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exponent is found to be positive: λ = 0.101, and to indicate chaotic dynamics. The Lyapunov dimension can be
obtained, according to the definition given by Kaplan and Yorke.[22] The calculated fractal dimension of the above
strange attractor is 2.334.

Next we fix g = 0.8, µ = 0.6, α = 0.3, β = −0.8 and δ = 1.5, and let the perturbed frequency ω to vary in some
range. When ω is changed from 0.8 to 1.6, the dynamical system also exhibits various periodic and chaotic behaviors.
The bifurcation diagram and the corresponding largest Lyapunov exponent are shown in Fig. 4.

Fig. 3 (a) Phase projection of a chaotic state in Fig. 1(a) with ω = 0.94; (b) The Poincaré map corresponding to (a).

Fig. 4 (a) Bifurcation diagram in (ω–X) plane for Eq. (5) with g = 0.8, µ = 0.6, α = 0.3, β = −0.8, and δ = 1.5; (b)
The largest Lyapnouv exponent corresponding to (a).

Fig. 5 Bifurcation diagram in (ω–X) plane for Eq. (5) with (a) g = 0.386, µ = 0.16, α = −0.1, β = −0.66, and δ = 0.5;
(b) g = 0.45, µ = 0.2, α = −0.2, β = −0.8, and δ = 0.6.

When we take g, µ, α, β, δ as 0.386, 0.16, −0.1, −0.66, 0.5 and 0.45, 0.2, −0.2, −0.8, 0.6, respectively, the dynamical
responses of system (5) varying with ω are described in Fig. 5. As shown in Fig. 5, the possible chaotic solutions of
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system (5) versus different bifurcation parameter ω are obtained clearly. To give some better insight of chaos feature,
we will display some strange attractors in the Poincaré maps. Figure 6 depicts the phase trajectory and Poincaré
maps of both chaotic states in Fig. 5(a) with ω = 1.05 and 1.405. The largest Lyapnouv exponents corresponding to
Figs. 6(a) and 6(b) and Figs. 6(c) and 6(d) are 0.104 and 0.080, respectively. And the Lyapnouv dimensions are 2.398
and 2.328, respectively.

Fig. 6 Phase projections and the Poincaré maps of some chaotic states in Fig. 5(a), with (a) (b) ω = 1.05; (c) (d)
ω = 1.405.

4 Conclusion
In this paper the bifurcation and chaotic motion of the compound KdV-Burgers equation under a harmonic exci-

tation are studied numerically. It is shown that the dynamical chaos can occur when appropriately choose the system
parameters and initial conditions. Different routes to chaos such as period doubling, quasi-periodic routes, and the
shapes of strange attractors are observed by applying bifurcation diagrams, phase projections and Poincaré maps.
To characterize chaotic behavior of the perturbed system (5), the spectrum of Lyapunov exponents and Lyapunov
dimensions are also employed.
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