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Abstract— Effective semantic segmentation of lane marking
is crucial for construction of high-precision lane level maps.
In recent years, a number of different methods for semantic
segmentation of images have been proposed. These methods con-
centrate mainly on analysis of camera images, due to limitations
with the sensor itself, and thus far, the accurate three-dimensional
spatial position of the lane marking could not be obtained,
which hinders lane level map construction.This article proposes
a lane marking semantic segmentation method based on LIDAR
and camera image fusion using a deep neural network. In the
approach, the object of the semantic segmentation is a bird’s-eye
view converted from a LIDAR points cloud instead of an image
captured by a camera. First, the DeepLabV3+ network image
segmentation method is used to segment the image captured
by the camera, and the segmentation result is then merged
with the point clouds collected by the LIDAR as the input
of the proposed network. A long short-term memory (LSTM)
structure is added to the neural network to assist the network
in semantic segmentation of lane markings by enabling use
of time series information. Experiments on datasets containing
more than 14,000 images, which were manually labeled and
expanded, showed that the proposed method provides accurate
semantic segmentation of the bird’s-eye view LIDAR points
cloud. Consequently, automation of high-precision map construc-
tion can be significantly improved. Our code is available at
https://github.com/rolandying/FusionLane.
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I. INTRODUCTION

H IGH-PRECISION maps play a central role in
autonomous driving. Such maps not only provide

high-precision positioning based on map matching, but also
disclose complex information about roads and pavements as
a priori knowledge for unmanned vehicles, for example, lane
limits, slope, curvature, heading, etc. High-precision maps can
be seen as a complementary element of the perception module
of unmanned vehicles, and they help unmanned vehicles
focus on other tasks such as detection and tracking of moving
obstacles. To enable autonomous operation, the high-precision
lane level map must therefore contain accurate lane marking
information.

Convolutional neural networks (CNN) have achieved con-
siderable success in the area of image processing, and a
number of different CNN-based image semantic segmentation
methods have been proposed. Compare with the bounding
box, pixel-wise prediction result is more in line with the
requirements of high-precision map construction. However,
limitations with the camera itself mean that these methods are
unable to provide accurate spatial position information about
the lane marking.

Some research has used aerial photography for semantic
segmentation of lane marking [1]. This method utilizes aerial
images from an unmanned aerial vehicle (UAV) for the seman-
tic segmentation of the lane marking. The main advantages
of the approach are low cost and high efficiency, but there
are also clear disadvantages. For example, the classification
accuracy of some structural similar elements is not high and
the segmentation edge of different prediction types is not
sufficiently accurate, because the aerial photographs contain
a lot of irrelevant background information. Moreover, the real
space area corresponding to each pixel in the aerial images
is much larger than in the images collected by the ground
platform.

To address these problems, the method for semantic image
segmentation proposed in this article utilizes a bird’s-eye view
of the road converted from the LIDAR points cloud instead
of a image captured by camera. The overall structure of this
method is shown in Fig. 2. The proposed method achieves

1524-9050 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on October 24,2020 at 03:24:53 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0751-3138


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 1. Comparison of camera and LIDAR data. Two consecutive frames
of data in the KITTI dataset collected by a camera (upper row) and LIDAR
(lower row). The upper row shows bird’s-eye views converted from the front
views of the camera. Even if the images are calibrated with the given internal
and external parameters of the camera, it can clearly be seen that the camera
views are distorted due to the bumpy road surface. The corresponding LIDAR
points cloud bird’s eye views (lower row) are much more stable. At the same
time, the actual physical space corresponding to each pixel becomes larger as
the distance from the image sensor increases. Thus, when using camera data,
the target details at the top of the image become increasingly blurred. LIDAR
points cloud does not have this shortcoming.

Fig. 2. The overall structure of the method in this article. First, we train
the DeepLabV3+ [2] network to achieve semantic segmentation on camera
bird’s eye view (CBEV) data, we called it as the C-Region. Then, we input
the C-Region and LIDAR points cloud bird’s eye view (LBEV) data together
into the Fusionlane network.

accurate semantic segmentation of LBEV by effectively fusing
the data from multiple sensors.

The main contributions of this work can be summarized as
follows:

• First, to the best of our knowledge,the proposed approach
is the first method for lane marking semantic segmenta-
tion that utilizes LBEV. This approach has the advantage
that the three-dimensional spatial position of each pixel
in the LBEV can be accurately obtained, that is to
say, accurate position information of each prediction in
the semantic segmentation result can be easily obtained,
which meets the requirement for high-precision map
construction.

• Second, based on the KITTI [4] datasets, a dataset is
created that contains more than 14,000 LBEV and CBEV
each with manual labeling and extension methods.

• Third, as in practical situations the pixels in the LBEV
and CBEV images cannot be perfectly aligned, even after
calibration, an encoder module is designed with two input
branches instead of a single input with multiple channels.
This encoder design allows the network to be independent
of the assumption of perfect alignment. Consequently,
the result of the CBEV semantic segmentation (here-
inafter referred to as the C-Region) can be fused with
the LBEV, which enables the segmentation result of the
proposed network to have the advantage of both accurate
classification from the camera and precise position infor-
mation from LIDAR. The LSTM [3] structure can help
the network achieve better prediction results through the
provision of timing information.

The remainder of this article is organized as follows.
Section II reviews related works. Section III details the pro-
posed method and network. Section IV compares the proposed
method with other methods and analyzes the results. Section V
concludes the work by summarizing the advantages of the
proposed method and making suggestions for future work.

II. RELATED WORKS

A high-precision map is indispensable to autonomous
driving. However, construction of high-precision maps is dif-
ficult and complicated, and improving the automaticity of
the high-precision map construction process and reducing
the amount of human participation have long been goals
of researchers in the field. In automated map construction,
the algorithm not only has to infer semantic information
from the input image (the need for scene understanding:
process from specific to abstraction) but also be able to make
pixel-wise segmentation for each category of target (the need
for map construction accuracy: process from abstraction to
specific). Semantic image segmentation is able to meet these
requirements.

Before deep learning began to be applied to computer
vision, researchers generally used Texton Forest [5] or
Random Forest [6] method to construct classifiers for seman-
tic segmentation. However, these methods only solved the
problem to some extent. Deep learning has revolutionized the
field and many computer vision problems, including seman-
tic segmentation, have begun to use the methods based on
deep learning frameworks (commonly convolutional neural
networks), and the effect achieved far exceeds the traditional
method. Therefore, the review of semantic segmentation in
this article considers only deep learning frameworks.

A. Semantic Segmentation

At present, all neural networks that have been successfully
used for semantic segmentation are derived from the same
work utilizing a fully-convolutional neural network (FCN) [7].
In the paper, the authors converted well-known network frame-
works such as AlexNet [8], VGG-16 [9], GoogLeNet [10], and
ResNet [11] into a fully-convolutional structure replacing the

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on October 24,2020 at 03:24:53 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YIN et al.: FUSIONLANE: MULTI-SENSOR FUSION FOR LANE MARKING SEMANTIC SEGMENTATION USING DEEP NEURAL NETWORKS 3

original fully connected layer in these network frames with the
small-scale upsampling layers. Semantic segmentation tasks
require the network to have the following two capabilities: the
ability to learn multiple scales of features in the image and
the ability to accurately restore details of the original image,
especially at the edge of the segmentation. To meet these two
requirements, researchers have improved the FCN network in
the following ways:

1) Encoder Variants: To solve the first problem, some
models [12],[13] resize the input for several scales and
fuse the features from all the scales. In another approach,
Farabet et al. [14] transform the input image through a
Laplacian pyramid, feed each scale input to a deep con-
volutional neural network (DCNN) and merge the feature
maps from all the scales. Other work employs spatial pyra-
mid pooling to capture context at several ranges [15], [16].
DeepLabv2 [17] proposes atrous spatial pyramid pooling
(ASPP), where parallel atrous convolution layers with different
rates capture multi-scale information.

2) Decoder Variants: Some researchers adopt an approach
that uses various upsampling methods in the decoder module.
The aim is mainly to improve the ability of the decoder to
restore the details of the original picture. In [7] and [18],
deconvolution [19] is employed to learn the upsampling of low
resolution feature responses. SegNet [20] reuses the pooling
indices from the encoder and learn extra convolutional layers
to densify the feature responses. FCN and DeepLabV3+ use
the bilinear upsampling in the decoder module and connect
the upsampling outputs with the low-level feature from the
encoder module. DeepLabv2 used a Conditional Random
Field (CRF) to improve the segmentation effect.

B. Semantic Segmentation for Lane Marking

Various approaches have been used in semantic image
segmentation for lane marking, for example, Chen et al. [2]
use the aerial photography for lane marking semantic seg-
mentation. This method can efficiently and quickly complete
large-area lane marking semantic segmentation tasks, but there
are two shortcomings: surrounding scenes in the image easily
interfere with the result; and there is less robustness in areas
where the illumination changes significantly. Zou et al. [21]
combine the ConvLSTM with an encoder-decoder structure
DCNN and use the time context information in the lane
marking semantic segmentation task. This approach results in
some improvement in the segmentation effect, but there are
only two classification results, background and lane marking.

III. THE PROPOSED METHOD

As shown in Figure 2, in order to achieve effective seman-
tic segmentation for LBEV, this article first implements the
transfer learning of the DeepLabV3+ network on the CBEV
training set, then inputs the C-region and LBEV data into the
Fusionlane network for learning. So in this section, we will
first describe the preprocessing of the data utilized in our
study and then introduce the proposed multi-sensor fusion
deep neural network.

Fig. 3. The semantic segmentation result of CBEV (C-Region) acquisition
process.

A. Data Preprocessing

The network contains two input branches – data from the
camera and data from LIDAR, and we will refer to input from
the C-Region as Branch C and input from the LBEV as Branch
L. Data from the camera and LIDAR need to be preprocessed
to meet the input requirements of the proposed network.

1) Acquisition of C-Region: First, we transform the front
view of the camera into an bird’s eye view through inverse
perspective mapping. The CBEV is a 400 by 400 pixel image
showing an area of 26 meters to 6 meters in front and
10 meters on each side. That is to say, each pixel represents an
area of 5 cm by 5 cm in real space. The DeepLabV3+ network
trained on our labeled dataset is then used to semantically
segment the CBEV to get the input data for Branch C, as show
in Fig. 3. It should be noted that, C-Region has been colored
into an RGB image for convenience of observation.

2) LBEV Design and Generation: In generation of the
LBEV, we intercept the same region of interest as the CBEV
for the original points cloud acquired by three-dimensional
LIDAR. Based on the height information of the points
cloud, the height threshold of the region of interest is
between −2 meters and −1 meters (the installation height
of the LIDAR device is about 1.73 meters above ground).
Here, we are not simply projecting the points cloud into a
two-dimensional grayscale image but transforming it into a
three-channel bird’s eye view, as shown in the second row of
Fig. 1. As in the CBEV, each pixel of the LBEV corresponds
to a 5cm by 5cm real space.

The value of the first channel of the LBEV corresponds to
the intensity of the points spot falling within the grid. The
value of the first channel is calculated as follows:

F(x, y) =
∑n

1 i

n
× 255 (1)

where F(x, y) is the value of the first channel,
i1, i2, . . . , in, i ∈ [0, 1] is the reflection intensity value
of each point falling within the grid corresponding to the
pixel, and n is the number.

The value of the second channel corresponds to the aver-
age height information of the points, which is calculated as
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Fig. 4. The network structure diagram, this diagram mainly shows the general structure of the proposed network, the details will be described below.

follows:
S(x, y) =

∑n
1(h + 2)

n
× 255 (2)

where S(x, y) is the value of the second channel,
h1, h2, . . . , hn, h ∈ [−2,−1] is the height value of each laser
spot falling within the grid, and n is the number.

The value of the third channel corresponds to the standard
deviation of the height value of the points falling within the
grid and its eight neighborhoods. and is calculated as follows:

T (x, y) = 255 × 2

π
× arctan

√∑n
1(h − ∑n

1
h
n )2

n
(3)

At first, we set the statistical range of the standard deviation
to a single pixel as with the previous two channels. However,
during the experiment, we found that a single pixel in LBEV
often only corresponds to one or two LIDAR points, which
makes the standard deviation meaningless. So we extend the
statistical range to each pixel and its own eight neighborhoods.
In formula (3), we use arctan as the normalization function.

The above steps provide the input data for Branch L.

B. The Proposed Network

In this article, we propose an encoder-decoder network
model which can learn from the visual image and LIDAR
points cloud features, and add the LSTM structure to the
network to assist the semantic segmentation of the lane
marking through timing information. The Fusionlane network
basic structure is shown in Fig. 4. First, the result of semantic
segmentation of CBEV (C-Region) is put into an input branch
of the network. After convolution, the output feature map of
the convolution layer with convolution stride = 2 is fused
with the LBEV. Then, the feature map obtained after multiple
convolutions is input to the LSTM module as timing informa-
tion and transmitted to the next moment. Finally, a decoder

module is used to restore the feature map output from the
LSTM module to the same size as the original image by two
times bilinear upsampling. Low level features from the encoder
are fused during the upsampling process, which enables the
decoder to better recover the details of the image.

Given the excellent performance1 of DeepLabV3+ net-
work on the PASCAL VOC 2012 semantic segmentation
benchmark[24] and the good performance of the Xeception
network, we chose a modified Xeception network as the
backbone network for the proposed network. Here, we denote
outputstride as the ratio of input image spatial resolution to
the final output resolution.

1) Encoder Module: As shown in Fig. 5, two branches are
used in the encoder module to perform convolution opera-
tions on the LBEV and C-Region. In the convolving process
of C-Region, the output feature map is transmitted to the
corresponding position of Branch L when its size has been
compressed to half of the input. At the beginning, it wasn’t
clear to us how large the feature map should be for the fusion
operation. But in the end we decided to give the choice to
the network itself. Consequently, there is a fusion operation
each time the feature map is compressed, and the network can
then learn the best fusion strategy from the data. In this way,
the network can learn the classification information from the
Branch C.

From the Fig. 5, it can be seen that the ratio of the number
of the feature maps channels from two branches is 1: 3 in each
fusion. This is to match the ratio between the original input
C-Region and LBEV. In the Xception network, the ordinary
convolutional layers are replaced by the depthwise separable
convolutional layers, which greatly reduces the computational
complexity of the network and improves performance to some

1http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11
&compid=6
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Fig. 5. The specific structure of the encoder module, the convolutional layers of different colors in the figure correspond to the different structures in Fig. 2.
Limited by the size of the GPU memory, the images will be randomly cut to a size of 321 × 321 during the training.

extent [22]. Having passed through this module, the size of the
output feature map is 21 × 21 × 1024.

In the proposed method, we made two major modifications:
first, replace the maxpooling by a convolutional layer with a
step size equal to two, second, perform batch normalization
operations after each convolutional layer.

2) ASPP Module: The full name of ASPP is Atrous Spatial
Pyramid Pooling[17]. By paralleling multiple atrous convo-
lutional layers with different atrous rates, ASPP module can
help the network effectively captures multi-scale information.
Just the same with DeepLabv3+, ASPP module in our network
consists of one 1 × 1 convolution and three 3 × 3 convolutions
with atrous rates = (6, 12, 18), and the image-level features.
Each of them contains 256 channels, and after the layers
are connected in series, they are compressed to a thickness
of 64 channels using a 1 × 1 convolutional layer, and the
feather map is then entered into the LSTM module.

3) LSTM Module: In a real driving scenario, the acquired
data of the sensor is continuous in time. Consequently, the data
can be input into the recurrent neural network (RNN) to help
the network perform the classification task better. Specifically,
an LSTM module is employed, which generally outperforms
the traditional RNN model as it has the ability to forget
unimportant information and remember essential features. This
module can also reduce the negative impact on the network of
errors in the C-Region. However, traditional full-connection
LSTM is not only time and computationally expensive, but
it also cannot describe local features in the image, so a
three-layer convolutional LSTM (ConvLSTM) [23] is applied
in the proposed network, as shown in Fig. 6.

The calculation process in a ConvLSTM cell can be formu-
lated as:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi )

ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f )

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct−1 + bo)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc)

Ht = ot ◦ Ct (4)

Fig. 6. The LSTM module, we also tuning the number of layers that should
be included in the LSTM module, which was finally determined to be a
one-layer structure.

In ConvLSTM, the full-connection between each gate is
replaced by a convolution operation. In the above formulas, ‘*’
and ‘◦’ denote the convolution operation and the Hadamard
product, respectively. Ct , it , ft and ot represent the cell, input,
forget and output gates. Ct , Ht , Ct−1 and Ht−1 represent the
memory and output activations at time t and t−1, respectively.
Wxi is the weight matrix of the input Xt to the input gate,
bi is the bias of the input gate. The meaning of other W
and b can be inferred from the above rule. σ represents the
sigmoid operation and tanh represents the hyperbolic tangent
non-linearities.

4) Decoder Module: In the decoder module, the feature
image output by the LSTM module is restored to the same
size as the original image after two times of bilinear upsam-
pling. First, we only fuse the low-level feature from the
encoder module during the first upsampling process. However,
the results showed that the network cannot accurately recover
the details of the original image. So we directly merge the
original input image into the second upsampling process after
a 1 × 1 convolution operation, which greatly improved detail
recovery of the image, as shown in Fig. 7. It should be noted
that in our decoder module, all low-level features come from
Branch L.
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Fig. 7. Comparison of different decoder structures. Left: The ground-truth.
Middle: The decoder with two times of low-level feature fusion. Right: The
decoder with only one low-level feature fusion.

5) Training Strategy: In the proposed method, we first
used Momentum[25] optimizer; however, it was found to
be unsuitable because of a lack of reliable initialization
parameters. Moreover, Momentum showed insufficient
convergence performance when used on our dataset during
training. Consequently, it was decided to use the ADAM [26]
optimizer instead. In the tuning process, we mainly consider
the following aspects:

• In the network structure, we tested the encoder module
with different numbers of ResBlocks and the LSTM
module with different numbers of ConvLSTM layers.

• The time step was tuned in the LSTM module and the
batch size of the input data and the learning rate and its
decay during the training.

• To overcome the imbalance among the classes, a weighted
cross-entropy was chosen as the loss function and for
tuning the weights of the different samples.

IV. EXPERIMENT AND RESULTS

First, the datasets utilized in this work are introduced and
the experiments used to verify the validity and accuracy of
the proposed method described. Then the experiments are
conducted to verify the validity and accuracy of the proposed
method. Then, the performance of the proposed method on the
datasets is compared with state-of-the-art methods in semantic
segmentation..

A. Datasets

Datasets were constructed based on the KITTI dataset,
because KITTI contains synchronous and continuous images
and point cloud data of the road. 436 LBEV images and the
corresponding CBEV images were labelled manually.

It should be noted that we take the 81th to 148th
images as the testing set. The images were rotated 20 times
both clockwise and counterclockwise, one degree each time,
to give datasets with 14720 labeled LBEV and CBEV images
each. the rotated images were used as the training set, which
had 362 × 40 = 14480 images, and the original 362 images
were used as the validation set. During training, we will test
the model on the validation set when each epoch is finished.
With Tensorboard-a tool provided by Tensorflow [27]-we can
track the performance of the model on the training and
validation sets in real time, so as to adjust the training strategy
in time.

In our datasets,the CBEV images are divided into six dif-
ferent parts: Background, Solid Line, Dotted Line, Stop Line,

Fig. 8. Example of labeled images. The upper row shows CBEV images and
the lower row LBEV images. The black area is the background, the red area
is the solid line, the green area is the dotted line, the purple area is the stop
line, the steel blue area is the arrows and the blue area is the prohibited area.
The LBEV images include an additional white area representing the category
Other Point.

TABLE I

MIOUS OF OF THE TWO OPTIMIZERS ON THE TESTING SET

Arrow and Prohibited Area. The LBEV images have an
additional category called Other Point, as shown in Fig. 8. The
labeled CBEV images were used to train the DeepLabV3+
based on the cityscapes pretrained model2.

The labeled LBEV images and the C-Region predicted by
DeepLabV3+ were then used to train our own network.

B. Experimental Platform

The experiments were implemented on a computer with an
Intel Core i7-8700@3.2GHz, 32GB RAM and one NVIDIA
TITAN-X (Pscal) GPU.

C. Transfer Learning for DeepLabv3+
As mentioned above, we trained DeepLabV3+ on our

CBEV training set based on a pretrained model. DeepLabV3+
is developed by Google, it is one of the most advanced
model of image semantic segmentation and achieved great
success on many benchmarks. During the training process,it
was found that the Momentum optimizer in DeepLabV3+
could not converge well on the training set, so a decision
was taken to use the ADAM optimizer instead. Fig. 9 and
Table I shows the final losses on our CBEV training set and
the Mean Intersection over Union (MIoU) on the testing set
of these two different models, respectively. It can be seen
that the DeepLabV3+ network with an Adam optimizer can
achieve better semantic segmentation results for the CBEV. So,
the required C-region was taken from the prediction results of
the improved DeepLabV3+ network.

2http://download.tensorflow.org/models/deeplabv3_cityscapes_train_2018_
02_06.tar.gz
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Fig. 9. Losses of the Momentum and ADAM optimizers during training.

D. Semantic Segmentation Performance on LBEV

The method results are compared in two ways. First,
we compare the segmentation results of each model intuitively
and visually, and then we quantitatively analyze and compare
each model in turn. In these experiments, our proposed model
is mainly compared with the DeepLabV3+ model which
achieved excellent results on the PASCAL VOC 2012 semantic
segmentation benchmark.

Specifically, in the experiment we compare the following
methods:

• DeepLabV3+: Developed by Google, DeepLabV3+ is
one of the most advanced model of image semantic
segmentation. LBEV and CBEV semantic segmentation
experiments are performed with DeepLabV3+.

• Modified DeepLabV3+: Two modifications are made to
DeepLabV3+. First, we apply a 1 × 1 convolution on the
original input LBEV, which is then concatenated with the
output of the second upsampling. Second, we replace the
Momentum optimizer with the Adam optimizer.

• FusionLane_Without_LSTM: This model does not con-
tain LSTM module but but is otherwise as the model
described in Section III.

• FusionLane_FcLSTM: This model deploys a traditional
full- connection LSTM after the ASPP module.

• FusionLane: This is the model proposed in this article,
namely, the FusionLane model with a ConvLSTM
structure.

1) Visually Intuitive Evaluation: The segmentation results
on the testing set obtained by the above methods after training
are shown in Fig. 10.

For the visually intuitive comparison, we selected a set of
segmentation results that contain seven consecutive scenes.
The first four rows (from top to bottom in Fig. 10) are
the CBEV, C-Region, LBEV and ground-truth of LBEV,
respectively. The fifth row is the prediction results of the
DeepLabV3+, where it can be seen that the decoder has
difficulties restoring the LBEV perfectly, because the original
input image is not merged during the upsampling process and
many details are lost, resulting in a very low MIoU.

In the sixth line, it can be seen that the Modified
DeepLabV3+ can recover the details of the original image

quite well, although not perfectly. However, due to the lack
of classification information from the C-Region, the network
can only rely on the features in the LBEV and is likely
to produce incorrect classification results. In this row, for
example, the model struggles with predictions of solid and
dotted lines in the left half of the images because there is a
quite large distance between the two laser lines and it is in an
intersection scene where the solid line and the dotted line are
very close. At the same time, the model’s prediction of the
stop line is also poor.

The seventh line is the segmentation result of Fusion-
Lane_Without_LSTM. This method can be considered to com-
bine the classification information of the C-Region on the basis
of the Modified DeepLabV3+. It performs well in most cases,
but mistakes occur when there are serious classification error
or blind spot in the C-Region. There happens to be no serious
errors in C-Region from the enumerated scene in Fig. 10, but
it happens quite often. Some errors in the predictions of the
dotted line and stop line are also found.

It was hoped to overcome the problems faced by FusionLane
without LSTM by using timing information from the previous
and following frames. A traditional full-connection LSTM was
employed in the model to form the FusionLane with FcLSTM
model. However, as can be seen from the segmentation results
in the eighth row, the FcLSTM structure has a negative impact.
The model produces many serious errors, such as confusing
arrows with dotted lines. The errors are mainly because the
feature map is transformed into a one-dimensional tensor when
input to the FcLSTM module, which destroys existing local
features.

Based on the above results, model improvements were made
in three area:

• First, as it is difficult for the network to obtain excellent
semantic segmentation results based on the information
provided by LBEV alone, the C- Region was introduced
into the model.

• Second, error messages and blind spots in the C-Region
can have a negative impact on the semantic segmenta-
tion results. This problem can be addressed through the
inclusion of timing information.

• Third, the FcLSTM module destroys local features in the
feature maps, resulting in new errors. Thus, we replaced
the FCLSTM module with a ConvLSTM module.

The FusionLane model completed the task very well, as can
be seen in the last row of Fig. 10, and it achieved a nearly
perfect semantic segmentation result.

2) Quantitative Evaluation: In the quantitative evaluation,
we compare the Intersection over Union on each category
(IoU), the MIoU and the Pixel Accuracy of different models
on the testing set (see Table II).

Pixel Accuracy and MIOU are common evaluation indica-
tors for semantic segmentation and can be calculated:

Pi xel Accuracy =
∑

i nii∑
i ti

(5)

M I OU = 1

nc

∑
i

nii

(ti + ∑
j n j i − nii )

(6)
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Fig. 10. Raw data and segmentation results of different models in seven consecutive scenarios. First row, the CBEV. Second row, the C-Region obtained
from DeepLabV3+. Third row, the LBEV. Fourth row, the ground-truth. Fifth row, DeepLabV3+. Sixth row, the Modified DeepLabV3+. Seventh row,
the FusionLane_Without_LSTM. Eighth row, the FusionLane_FcLSTM. Ninth row, the FusionLane. (For the last four columns of images, we reduce
the brightness of the correctly classified pixels and highlight the incorrectly classified pixels as the yellow color. The original images are available at
https://drive.google.com/open?id=1iKv0c2A6UXud_HzWUPXIPUsqTQhvdcey here).
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TABLE II

IOU ON EACH CATEGORY, MIOU AND THE PIXEL ACCURACY OF DIFFERENT MODELS

where nc is the number of classes included in ground truth
segmentation, ni j denotes the number of pixels of class i
predicted to belong to class j and ti is the total number of
pixels of class i in ground truth segmentation.

From Table II, it can be seen that DeepLabV3+ is unsuitable
for LBEV semantic segmentation task. The IoU of all classes
except Background are very low. However, this is not because
of inadequate training. when modifications were made to the
structure, the Modified DeepLabV3+ make a breakthrough
under the same training strategy. DeepLabV3+ achieved a
much better result in the CBEV semantic segmentation task
than the LBEV task. The MIoU is 67.43%, which is consid-
erably better than on the LBEV task, but it is still inadequate.
It can be concluded from the data that single-sensor based
approaches do not perform well on the studied task.

As this article focuses on the LBEV semantic segmentation
task, we replaced the original DeepLabV3+ with the Modified
DeepLabV3+ in the comparison.

After merging the classification information of the
C-Region, the performance of FusionLane_Without_LSTM
is much better than the Modified DeepLabV3+ even if the
network is smaller, the MIoU increased almost 12% compared
to Modified DeepLabV3+, and FusionLane_Without_LSTM
achieved the best IoU score for the Arrow class.

Compared to FusionLane_Without_LSTM, the performance
of FusionLane_FcLSTM shows an overall decline, which is a
consequence of destroying local features.

From the last row in the table, it can be seen that the
FusionLane model achieved the best results for all indicators
except the IoU for Arrow, the MIoU is 16.39% higher than that
of the Modified DeepLabV3+ and also increased by 4.56%
compared with FusionLane_Without_LSTM.

The above data shows that relying on a single kind of sensor,
whether camera or LIDAR, cannot give sufficiently accurate
semantic segmentation results. Effective fusion of data from
different sensors can be considered a viable approach to
solving the problem.

An interesting phenomenon can be seen in the data
in Table II. In the first row, the IoUs are very low in almost all
categories except for the Background class, but the Pixel Accu-
racy is relatively high at 91.31%. The high Pixel Accuracy but
low IoUs can be explained by the small nii of all the other
classes, in addition to the Background class. Consequently, for
these classes with a small nii , a few misclassifications will
cause the IoU to drop dramatically. Furthermore, it becomes
difficult to improve the IoU when a certain level has been
reached. A further consequence for the performance of the

TABLE III

MIOU WITH DIFFERENT TIME STEP VALUES

models in this class is that the Background class, which
occupies most of the LBEV, largely determines the value
of Pixel Accuracy, which may explains why DeepLabV3+
(LBEV) has lower MIoU and higher in Pixel Accuracy than
DeepLabV3+ (CBEV).

3) Key Parameter Analysis: The time step, which deter-
mines how many frames of historical data the network can
use to help it predict the current frame, is one of the
hyper-parameters having greatest influence on the performance
of the network.

When the time step is large, the network can review
more historical frames, which means there are more historical
information. However, this does not mean that the larger the
time step, the better the prediction of the network, because
when the time step is excessively large, some data in the
history frame is likely to be significantly different from the
current data, which will have a negative effect on the network
prediction results. To evaluate the effect of time step on per-
formance, we therefore conducted a comparative experiment
on the network performance with different time step values,
shown in Table III.

As can be seen from Table III, the MIoU first increased with
the increase in time step, indicating that historical information
has a positive impact on the final result. However, MIoU
peaked at time step is 4, and further increase in the time
step decreased MIoU consistent with the previous analysis.

V. CONCLUSION

In this article, we propose a semantic segmentation network
for the LIDAR points cloud bird’s eye views (LBEV) for
the first time. The accuracy of LBEV permits the seman-
tic segmentation results to be directly used to construct a
high-precision map. For the task of semantic segmentation
of lane marking, the proposed method does not simply turn
semantic segmentation into a binary classification task but
further subdivides it into a multi- classification task.

As the network structure, we propose a network with a
dual-input branch structure to fuse LEBV and C-Region.
To address possible misclassification in the C-Region and
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its negative impact on network prediction results, an LSTM
structure was added to the network. Experiments showed
that the proposed method can effectively fuse information
from LIDAR and camera images, and the approach achieved
excellent results on the LBEV semantic segmentation task.

Future work should investigate transforming the Branch C
input from the C-Region to the CBEV to build an end-to-end
semantic segmentation network and focus on getting more
training data. Such information will enable the construction
of high-precision maps.
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