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Development of mass customised products demands various activities in the product development process, such as
design, manufacturing process planning, manufacturing resource planning and maintenance process planning, to be con-
sidered and coordinated. In this research, a multi-population co-evolutionary genetic programming (MCGP) approach is
introduced to identify the optimal design and its downstream product life cycle activities for developing mass customised
product considering these different product life cycle activities and their relationships. In this research, two types of rela-
tionships between downstream product life cycle activities are considered: sequential relationships and concurrent rela-
tionships. The product design and its downstream life cycle descriptions are modelled by a multi-level graph data
structure. These product life cycle descriptions are defined at two different levels: generic level for modelling the
descriptions in a product family and specific level for modelling the descriptions of a customised product. The optimal
design and its downstream life cycle activities are identified through the MCGP approach based on evaluations in differ-
ent product life cycle aspects. Various methods have been developed to improve computation efficiency for the MCGP.
Industrial case studies and comparative case studies have been implemented to demonstrate the effectiveness of the
developed approach.

Keywords: mass customisation production; co-evolutionary genetic programming; optimisation; product design; process
planning; resource planning

1. Introduction

Mass customisation production is a new manufacturing paradigm to design and produce customised products based on
requirements from individual customers with the quality and efficiency for mass production (Tseng and Piller 2003). In
the past decade, many methodologies have been developed and applied to solve various mass customisation problems
(Fogliatto, da Silveira, and Borenstein 2012; Ferguson, Olewnik, and Cormier 2014). Since mass customisation produc-
tion demands both the products and the production processes to be customised, these research activities have focused on
the improvement of the flexibilities in both product design and product realisation process.

The flexibilities in product design include both the flexibilities in product configurations and the flexibilities in pro-
duct parameters. Since flexibilities of parameters in a product design can be easily achieved through parametric design
methods using the relations defined in equations, constraints and programmes, researches in mass customised product
design have focused on flexibilities in product configurations. In this research area, a product family is usually used to
model a group of products with similar structure (Jiao, Simpson, and Siddique 2007). The methodologies developed for
modular design (Gershenson, Prasad, and Zhang 2004; Jose and Tollenaere 2005) and platform design (Jiao, Simpson,
and Siddique 2007) are often used for product family design. When a specific requirement is defined by an individual
customer, a specific design configuration of the product is then created from the product family descriptions. Many
methods have been developed to identify specific product configurations from product families to satisfy customer
requirements. We classify these methods into two categories: knowledge-based methods and optimisation-based
methods.

In knowledge-based methods, artificial intelligence techniques such as rule-based methods, model-based methods
and case-based methods were employed to model product families and customised products. McDermott (1982)
employed production rules to model generic products and to obtain the specific products through rule-based reasoning.
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When the rule base is huge, the knowledge base is very difficult to maintain and use. The main assumption behind
model-based methods is the existence of a system’s model, which usually consists of entities and relations among these
entities. Typical model-based approaches include logic-based approach (McGuinness and Wright 1998), resource-based
approach (Juengst and Heinrich 1998), ontology-based approach (Yang, Dong, and Miao 2008) and constraint-based
approach (Schneeweiss and Hofstedt 2011). The model-based approaches have the advantages in robustness, reusability
and compositionality, but the models are difficult to build in general. Tseng, Chang, and Chang (2005) proposed a case-
based reasoning (CBR) approach for product configuration. In this CBR, the earlier configuration knowledge could be
used. Identification of the proper case with similarity and modification to this old case based on new requirements are
difficult. Although the knowledge-based methods sometimes can be used to identify feasible solutions to satisfy individ-
ual customer requirements, the solution is usually not an optimal one.

The optimisation-based methods aim at identifying the optimal customised products to maximise customers’ satisfac-
tion. Zhou, Lin, and Liu (2008) employed genetic algorithm to optimise a customer-driven product configuration for
assemble-to-order manufacturing companies. Hong et al. (2008) developed a genetic programming method to identify
the optimal product configuration and its parameters based on individual customer requirements on performance and
costs in one-of-a-kind production. Liu, Lim, and Lee (2013) proposed a multi-objective evolutionary algorithm with an
embedded feature of configuration incompatibility check to identify the optimal customised product from a product
family. Goswami and Tiwari (2015) used mixed integer quadratic programming to identify the products considering
commercial objectives of the enterprise and engineering-level constraints of the product. Kumar and Chatterjee
(2015) employed mixed integer non-linear programming for the optimisation of production lines under monopolistic
competition.

To produce the customised products, flexibilities in production processes should also be considered. Mass customisa-
tion considering both design and its downstream life cycle aspects is considered as a typical concurrent engineering
design problem. In this area, Jiao et al. (2000) extended the generic bill-of-materials data structure, which was devel-
oped by Hegge and Wortmann (1991), into a generic bill-of-materials-and-operations data structure by considering varia-
tions in both product descriptions and process descriptions in a product family for mass customisation production.
Zhang, Huang, and Rungtusanatham (2008) developed a mixed integer programming model that integrated both plat-
form product design and material purchase decisions based on cost drivers that were sensitive to commonality and mod-
ularity. Pitiot et al. (2013) introduced a two-step approach to conduct concurrent product configuration and process
planning, where the first step was to capture the customer or internal requirements interactively with a constraint-based
approach and the second step was to identify the optimal solution through a multi-criteria constrained evolutional
optimisation algorithm.

In our previous research, a mass customisation production approach considering both design and manufacturing
aspects has been developed (Hong et al. 2008, 2010; Hong, Xue, and Tu 2010). In this research, design variations in a
product family were modelled by an AND–OR tree (Hong et al. 2008). Each design node in the AND–OR tree was
composed of design parameters for modelling a partial design solution. Each design node was also associated with a
manufacturing process AND–OR graph that was composed of process nodes and their parameters for modelling varia-
tions of manufacturing processes to achieve the partial design solution (Hong et al. 2010). A customised product was
created based on the requirements from an individual customer and modelled by its design configuration, design param-
eters, manufacturing process and process parameters. A design configuration for a customised product was modelled by
a tree of design nodes with only AND relations and created from the product family through tree-based search. A manu-
facturing process was modelled by a graph of process nodes with sequential relationships. A multi-level optimisation
method was developed to obtain the optimal solution where GP was used to identify the optimal design configuration
and its manufacturing process, and numerical search was used to identify the optimal design and process parameter
values.

Since various customised designs modelled by design configurations and design parameters can be achieved from
the same requirements, and each of these designs can be produced using different manufacturing processes and process
parameters, identification of the optimal design and its manufacturing process using the traditional evolutionary optimi-
sation approach requires considerable computation effort. To improve optimisation efficiency, a co-evolutionary genetic
programming (CGP) method was developed by (Hong et al. 2010). In this CGP method, two populations of species, i.e.
a design population and a manufacturing population, were used to model design configurations and manufacturing pro-
cesses. The individuals in the design population and the manufacturing population were created separately to improve
the computation efficiency. For each design individual representing a design configuration, first whether this design indi-
vidual can be achieved by one or more manufacturing processes described by manufacturing individuals was checked.
Matching design and manufacturing individuals were grouped into pairs for representing design and manufacturing
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information of feasible customised products. The matched design and manufacturing individuals with better design and
manufacturing evaluation measures were more likely to be duplicated into the next generation.

Despite this progress, the following problems need to be further investigated for mass customisation production.

(1) From the perspective of concurrent engineering design, more downstream product life cycle activities should be
considered to obtain the optimal custom product design. In most of the presently developed concurrent design
methods for mass customisation production, only design and one of the downstream product development life
cycle aspects such as manufacturing process are considered (Hong et al. 2010; Pitiot et al. 2013). Quality of the
mass customised product can be improved by incorporating considerations in more downstream product develop-
ment life cycle activities such as manufacturing resource planning and maintenance process planning.

(2) From the perspective of computation efficiency, a more effective optimisation method to identity the optimal
design and its downstream product life cycle activities is required. Due to the nature of combinatorial explosion
of the problem (also called NP-hard problem), the traditional tree-based search methods are not effective to cre-
ate feasible solutions when many product life cycle aspects are considered. Although (Hong et al. 2010) devel-
oped a CGP method to first create the design solutions and production process solutions separately and
efficiently in two populations, and then to match the design solutions and the production process solutions to
identify the feasible solutions considering both design and production process, this method is not effective when
three or more populations are considered because fewer feasible solutions considering all populations can be
identified through the matching process.

In this research, a multi-population CGP approach is developed to address the above two problems.

2. A multi-population co-evolutionary optimisation model for mass customisation production

2.1 A multi-population co-evolutionary optimisation model

In multi-population co-evolutionary optimisation, one generation of individuals is modelled by multiple populations as
shown in Figure 1. Each population in one generation is composed of n individuals representing n partial solutions
considering a particular aspect. Redundant solutions in one population are allowed. A complete solution considering all
m aspects is achieved by selecting m matching individuals from all these m populations. Each individual is evaluated
based on the evaluation criteria in that particular aspect. Evolution of populations from one generation to the next one is
conducted through three operations: reproduction, crossover and mutation (Koza 1992). Reproduction allows the individ-
uals with better evaluation measures to create more children individuals in the next generation. The individuals with
poor evaluation measures are not used to create children individuals in the next generation. Crossover and mutation
modify the current individuals randomly with small probabilities to seek for the opportunities of dramatic changes in the
solution quality.

Population 1 ... ...

... ...

... ...

... ...

Population 2

Population i

Population m

... ...

... ...

... ...

... ...

Generation 1 Generation 2

... ...

Individual matched solutions evolution

... ...

... ... ... ...

... ... ... ...

... ...

Figure 1. The multi-population co-evolutionary optimisation model.
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Due to the difficulty in identification of a complete solution with matched individuals in all the populations in
multi-population co-evolutionary optimisation, the following two strategies are considered for reproduction operations to
improve the optimisation efficiency.

• The individuals with better evaluation measures in one population are selected to create more children individuals
in the same population in the next generation.

• A few individuals with top evaluation measures in one population are selected to create the corresponding individ-
uals in other populations in the next generation.

2.2 An optimal mass customisation production model based on multi-population co-evolutionary optimisation

Based on the generic multi-population co-evolutionary optimisation model introduced in Section 2.1, an optimal mass
customisation production model is developed in this research to identify the optimal customised product design and its
downstream life cycle activities. In this model, the relationships between the individuals in the downstream product life
cycle populations are classified into two categories: sequential relationships and concurrent relationships. For example,
the relationship between an individual of manufacturing process plan (B) and an individual of manufacturing resource
plan (C) is a sequential relationship since the manufacturing resource plan is created based on the manufacturing process
plan (Figure 2(a)), while the relationship between an individual of manufacturing process plan (B) and an individual of
maintenance process plan (C) is a concurrent relationship since both are created from the individual of design (A)
(Figure 2(b)).

The evolutionary processes of individuals in three populations considering sequential and concurrent relationships
between individuals in downstream life cycle aspects are shown in Figures 3 and 4, respectively. During the evolution-
ary process, an intermediate generation with three populations is created temporarily. Each population in the intermedi-
ate generation is composed of three sections. Individuals in Section I of an intermediate population are created based on
the traditional reproduction operations such that the individuals with better evaluation measures in one population are
selected to create more children individuals in the same population in the intermediate generation. Individuals in
Sections II and III are created from the selected top individuals in other populations.

In Figure 3, the individuals in Populations of A, B and C are associated by sequential relationships. The top individ-
uals in Population A are selected to create corresponding individuals in Population B, and then these created individuals
in Population B are used to create individuals in Population C. In the same way, the top individuals in Population B are
selected to create corresponding individuals in Population A and Population C, and the top individuals in Population C
are selected to create corresponding individuals in Population B and then Population A.

In Figure 4, the individuals in Populations of B and C are associated by concurrent relationships. The top individu-
als in Population A are selected to create corresponding individuals in Population B and Population C. In the same way,
the top individuals in Population B are selected to create corresponding individuals in Population A and then in Popula-
tion C, and the top individuals in Population C are selected to create corresponding individuals in Population A and
then Population B.

3. Modelling of product life cycle descriptions

Since different product life cycle aspects, including design, manufacturing process, manufacturing resource and mainte-
nance process, are considered in this research, modelling of these different product life cycle aspects is discussed first.

A: Design

(a) Sequential relationship between B and C.

B: Manufacturing process plan C: Manufacturing resource plan

A: Design

B: Manufacturing process plan

C: Maintenance process plan

(b) Concurrent relationship between B and C.

Figure 2. Sequential and concurrent relationships between individuals.
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Modelling of product life cycle descriptions is conducted at two different levels: generic descriptions at product family
level and specific descriptions at customised product level.

3.1 Modelling of product design

Variations of product configurations in a product family are modelled by an AND–OR tree as shown in Figure 5(a).
Each design node in this AND–OR tree is composed of a set of design parameters. When all the sub-nodes need to be
selected to support a super-node, all these sub-nodes are associated with an AND relation. For example, a gear-pair
design node is composed of two sub-nodes, representing two gears, with an AND relation. When the super-node is sup-
ported by one of its sub-nodes, all these sub-nodes are associated with an OR relation. For example, the rotation-to-rota-
tion transmission design node is supported by two sub-nodes, a gear pair and a pulley-belt pair, with an OR relation.

A customised product design is achieved from the product family modelled by an AND–OR tree through tree-based
search. Figure 5(b) shows a customised product design created from the design AND–OR tree in a product family

…

Population BPopulation A Population C

…

Generation i 

(N Individuals)

Intermediate

generation 

((N+M1+M2) Individuals)

Individual

Population

Cross-population direct generation based on individuals in A

Cross-population direct generation based on individuals in B

Cross-population direct generation based on individuals in C

…
…

…
…

… ……

… ……

…
…

…
…

…
…

Generation i+1

(N Individuals)

Section I 

(N Individuals)

Section II

(M1 Individuals)

Section III

(M2 Individuals)

a b c

Sequential relationship

between b and c

Figure 3. Evolution considering sequential relationships between individuals in different populations.
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…
…

…
…

…
…

… ……

… ……

…
…

…
…

…
…

Population BPopulation A Population C

Section I

(N Individuals)

Section II

(M1 Individuals)

Section III

(M2 Individuals)

Generation i

(N Individuals)

Intermediate 

generation 

((N+M1+M2) Individuals)

Generation i+1

(N Individuals)

Individual

Population

Cross-population direct generation based on individuals in A

Cross-population direct generation based on individuals in B

Cross-population direct generation based on individuals in C

a

b

c

Concurrent relationship

between b and c

Figure 4. Evolution considering concurrent relationships between individuals in different populations.

D1 D1

AND Relation OR Relation

(a) Modeling of design in a product family. (b) Modeling of a customized product design.

Design Node

D2 D3

D4 D5 D6 D7

D2 D3

D5 D6

{p11,p12}

{p21} {p31,p32,p33}

{p41} {p51} {p61} {p71,p72}

{p11,p12}

{p21} {p31,p32,p33}

{p51} {p61}

Figure 5. Modelling of design at product family level and customised product level.
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shown in Figure 5(a). A customised product is modelled by a tree with only AND relations. Each node in the AND tree
is composed of design parameters. In this work, a customised product design modelled by an AND tree is called a
design configuration. Each design configuration is modelled by a set of design parameters.

A customised product design configuration is created from the design AND–OR tree in a product family based on
the following algorithm.

Algorithm: creation of a product design configuration from a product design family

(1) Create an empty tree for modelling the customised product design. Select the root node from the product family
design AND–OR tree, and use this node as the root node of the customised product design tree.

(2) From the customised product design tree, select a bottom node that has not been checked. If it has sub-nodes
with an AND relation in the product family design tree, add these nodes as the sub-nodes of the selected node
in the customised product design tree. If the selected node has sub-nodes with an OR relation in the product
family tree, select one of these sub-nodes randomly, and add it as the sub-node of the selected node in the cus-
tomised product design tree.

(3) When all the bottom nodes in the customised product design tree have been checked, this customised product
design tree is then identified as a design configuration. Otherwise, go to Step (2).

3.2 Modelling of manufacturing process and maintenance process

Each design node in the product family AND–OR tree can be associated with some downstream product life cycle pro-
cesses such as manufacturing process and maintenance process. An AND–OR graph is used to model the generic pro-
cess in a product family for a design node in the product family as shown Figure 6(a). The process sub-nodes for a
process super-node are also associated with either an AND or an OR relation. For example, when the process of making
a hole is defined by a sequence of operations including drilling, broaching and boring, these operations are associated
with an AND relation. When the process of making a hole is defined by either a drilling operation or a milling opera-
tion, these operations are associated with an OR relation. The process nodes are also linked by sequential relations. An
operation is conducted, only when all its precedent operations have been completed. Each process node is associated
with process parameters.

D1

D2 D3

P1

P2

P3

P4

P5 P6

P8P7

P9

P10 P11

P13P12

P15
P14

(a) Modeling of process in a product family.

D1

P1

P2

P3

D2 D3

P4

P5 P6

P7

P9

P10 P11

P13P12

P14

(b)  Modeling of process in a customized product. 

AND Relation OR Relation

Design Node Process Node

Sequential Relation

Figure 6. Modelling of process descriptions.
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Creation of a feasible process AND graph for a design node in the customised product from the generic AND–OR
graph of a design node in a product family is conducted using a similar method as the algorithm for creating a product
design configuration from a product design family. Figure 6(b) shows three AND graphs created from the three AND–
OR graphs given in Figure 6(a). The process nodes in each graph are linked with sequential relations.

The process graphs in the customised product are further transformed to build a single process graph for a cus-
tomised product design configuration based on the method introduced by (Hong et al. 2010). Creation of a single pro-
cess graph from a customised product design configuration is based on the following considerations.

• The bottom nodes in a process graph, called operation nodes, are used to represent manufacturing primitives that
can be carried out by operators with certain machines and tools. Other process nodes in a process graph are
defined using these operation nodes. Only operation nodes are used in the final process graph for a customised
product design configuration.

• The sequential constraints defined by the sequential relations in the process graph have to be satisfied by the oper-
ations.

• For an operation that is associated with a super-node in a design configuration tree, only when all the operations
in the sub-nodes of this super-node in the design tree are completed, the operation in the super-node can then be
conducted.

From the individual process AND graphs for a customised product design configuration, the single graph of the pro-
cess is created using the following algorithm (Hong et al. 2010). Creation of the manufacturing process graph (Figure 7)
for the customised design configuration given in Figure 6(b) is used as an example to explain this algorithm.

Algorithm: creation of a process graph from a customised product design configuration

(1) For each design node, create a sequential graph of the feasible manufacturing process.
(1.1) Pick up a bottom node from the customised process tree and remove this node from the tree.
(1.2) If this selected node is an operation node at the bottom of the tree, add this node to the sequential graph

(Figure 7(a)).
(1.3) If this selected node is not an operation node, add the sequential relations among the sub-nodes of the

selected node to the sequential graph. Also add a start-node, S, as the ancestor node of all the nodes with-
out ancestor nodes in the graph, and add an end-node, E, as the descendant node of all the nodes without
descendant nodes in the graph. When a sub-node is not an operation node, the ancestor node should be
linked with the S node of the graph created from this sub-node, and the descendant node should be linked
with the E node of the graph created from the sub-node (Figure 7(a)).

(1.4) When all the nodes in the customised process tree have been removed, this sequential graph is then identi-
fied as the final process for the required design node. Otherwise, go to Step (1.1).

(2) Create the process considering all the design nodes in the customised design configuration tree.
(2.1) For each design node, add a start-node, S, as the ancestor node of all the nodes without ancestor nodes in

the process sequential graph, and add an end-node, E, as the descendant node of all the nodes without
descendant nodes in the process sequential graph (Figure 7(a)).

(2.2) For any two design nodes with a super-node/sub-node relation, select the E node of the graph for the sub-
design node as the ancestor node of the S node of the graph for the super design node (Figure 7(b)).

(2.3) Remove unnecessary S nodes and E nodes from the process graph (Figure 7(c)).

3.3 Modelling of manufacturing resource

Each operation node in the process AND–OR graph of a product family is associated with required resource descrip-
tions. These resources include human operators, equipment, materials, etc. The resource requirement for a process node
in a product family is defined by an AND–OR tree as shown in Figure 8(a). For a customised product, the resource
requirement for each operation node is associated with an AND tree as shown in Figure 8(b). Creation of the specific
resource descriptions modelled by an AND tree for a customised product from the generic resource descriptions
modelled by an AND–OR tree for a product family is conducted using a similar method as the algorithm for creating a
product design configuration AND tree from a product design family modelled using an AND–OR tree.

8 B. Yu et al.
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Since a customised process for a customised product design configuration is defined by a process graph (Figure 7(c)),
the customised resource requirements can then be defined using all the created AND trees of requirements for all the
operation nodes in the process graph.

4. Identification of the optimal design and its downstream product life cycle activities by multi-population CGP

Since the same requirement from the individual customer can be achieved by different design configurations, design
parameters, manufacturing processes, manufacturing process parameters, maintenance processes, maintenance process
parameters, manufacturing resources and manufacturing resource parameters, identification of the optimal design and its
downstream product life cycle activities has to be carried out. In this research, two cases with different relations between
downstream product life cycle activities are considered as shown in Table 1. In each case, three different product life
cycle aspects are considered.

Each product life cycle aspect is evaluated by its life cycle evaluation measure. The whole customised product is
evaluated considering all relevant life cycle aspects. Among all feasible customised products, the one with the best over-
all evaluation measure is selected as the optimal customised product.

D1

D2 D3

P2 P3

P6

P7 P13P12

ES

S E

S E

S

E

S S E

P14 SEE

D1

D2 D3

P2 P3

P6

P7 P13P12

P14

ES

S E

S E

S
E

S S E

SEE

P2 P3
P6P7

P13P12 P14

AND Relation OR Relation

Design Node Process Node

Sequence Relation

(a)  Creation of a process graph for each design node. 
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Figure 7. Creation of a customised process from a design configuration.
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4.1 Evaluation of a customised product considering different product life cycle aspects

Suppose the i-th product life cycle aspect is evaluated by mi evaluation measures, Fj
(i) (i = A, B, C; j = 1,2, ..., mi).

Since these evaluation measures are usually in different unites, these measures are first converted into comparable evalu-
ation indices Ij

(i) between 0 and 1 (Yang, Xue, and Tu 2006):

I ðiÞj ¼ I ðiÞj FðiÞ
j ðPÞ

� �
; i ¼ A;B;C; j ¼ 1; 2; . . .;mi (1)

where P is the customised product. The overall evaluation index for the i-th product life cycle aspect is calculated by:

I ðiÞ ¼
Xmi

j¼1

wjI
ðiÞ
j

wj
; i ¼ A;B;C (2)

where wj is a weighting factor between 0 and 1 representing the importance of the j-th evaluation index for the i-th pro-
duct life cycle aspect.

P1

P3

P2

R1

R2

R3 R5

R4

R11

R12

R13 R15

R14

R6

R7

R8 R10

R9

(a) Modeling of resource requirements in a product family for a process graph.

(b)  Modeling of resource requirements in a customized product for a process graph.

OR RelationAND RelationProcess Node Resource Node

P1

P3

P2

R1

R2

R3

R4

R11

R12

R13 R15

R6

R7

R8

R9

Figure 8. Modelling of resource requirements for a process graph.

Table 1. Two cases with different relations between downstream product life cycle activities.

Case Relation type Life cycle aspect A Life cycle aspect B Life cycle aspect C

Case I Sequential relationship Design Manufacturing process Manufacturing resource
Case II Concurrent relationship Design Manufacturing process Maintenance process

10 B. Yu et al.
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The overall evaluation index considering all three life cycle aspects is calculated by:

I ¼ W ðAÞI ðAÞ þW ðBÞI ðBÞ þW ðCÞI ðCÞ

W ðAÞ þW ðBÞ þW ðCÞ (3)

where I is the overall evaluation index, and W(A), W(B) and W(C) are weighting factors for I(A), I(B) and I(C), respectively.

4.2 Identification of the optimal customised product

Identification of the optimal customised product is formulated as:

max
w:r:t:P;X

I (4)

where P and X are the optimal product realisation process configuration and parameters, respectively. For Case I, with
sequential relationships between downstream product life cycle activities, a product realisation process configuration is
described by a design configuration, its manufacturing process and resources for the manufacturing process. For Case II,
with concurrent relationships between downstream product life cycle activities, a product realisation process configura-
tion is described by a design configuration and manufacturing process and maintenance process for this design configu-
ration. The optimisation is conducted at two different levels: configuration level and parameter level. First, the optimal
parameter values for the i-th product realisation process configuration are achieved through constrained numerical opti-
misation:

max
w:r:t:X i

IðX iÞ
s:t:hjðX iÞ ¼ 0; j ¼ 1, 2,. . .
gjðX iÞ� 0; j ¼ 1, 2,. . .

(5)

Among all the product realisation process configurations, the one with the best overall evaluation index is identified in
configuration optimisation. In this work, the parameter optimisation is conducted through numerical search (Arora
1989), while the configuration optimisation is conducted by multi-population CGP.

The overall multi-population co-evolutionary optimisation methods considering downstream product life cycle activi-
ties with sequential relationships and concurrent relationships are illustrated in Figures 3 and 4, respectively. The major
difference between our co-evolutionary optimisation approach with multiple populations and the previous co-evolution-
ary optimisation approach with two populations is that an individual with top evaluation measure in one population can
be used to create the children individuals in other populations in our method to improve the optimisation efficiency by
avoiding creation of mismatched individuals in different populations.

The overall multi-population CGP method is formulated as follows.

Algorithm: multi-population CGP

(1) Generate the initial generation of individuals in populations A, B and C.
Each population is composed of N individuals. Two cases with the sequential and concurrent relationships

between downstream life cycle activities are considered as shown in Table 1. In Case I, the individuals in the
three populations represent design configurations, manufacturing processes and manufacturing resources, respec-
tively. In Case II, the individuals in the three populations represent design configurations, manufacturing pro-
cesses and maintenance processes, respectively. The algorithms introduced in Section 3 can be used to create
these individuals.

(2) Create the intermediate generation.
(2.1) Copy N individuals in each of the three populations in the current generation to the three populations in

the intermediate generation.
(2.2) Identify the matching individuals in populations A, B and C of the current generation as complete configu-

ration solutions of customised products. For each complete configuration solution, conduct the parameter
optimisation and calculate its three evaluation indices in the three aspects using Equation (1) and the over-
all evaluation index using Equation (2).

International Journal of Production Research 11
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(2.3) From populations A, B and C of the current generation, select p, q and r percentages of individuals
according to their fitness measures, respectively, and then use each of these individuals to generate the
other individuals in the other two populations. The total individuals in Sections 2 and 3 (Figures 3 and 4)
are limited to M1 and M2, respectively.

(3) Create the next generation.
Creation of the next generation from the intermediate generation is conducted through three GP operations:

reproduction, crossover and mutation.
(4) Check whether the optimal solution has been achieved.

If the average fitness of the solutions cannot be improved in the last m generations (i.e. the improvement is
less than a predefined small number ε) or the predefined maximum generation, gmax, has been reached, the mul-
ti-population CGP needs to be stopped, and the best solution in the current generation is selected as the optimal
solution. Otherwise, go to Step (2).

In this algorithm, in additional to the forward cross-population direct generation of individuals considering the relation-
ships between the product life cycle activities such as to create a manufacturing process from a design configuration,
backward cross-population direct generation such as to create the design configuration from the manufacturing process
has also been considered. Compared with the forward generation process where one individual can be used to create
multiple individuals, the backward generation process is much simpler where one individual can be used to create only
another individual. In backward generation, when multiple nodes associated with an OR relation are considered, only
the node whose information is used in the subsequent life cycle activities is selected.

In this algorithm, matching individuals from the three populations are identified to form a complete solution. For the
current generation with N individuals in each of the populations A, B and C, a total of N × N × N checks are needed.
Checking whether three individuals from the three populations are matched to form a complete solution is conducted
based on the following algorithm.

Algorithm: checking whether three individuals a, b and c from populations A, B and C are matched

(1) For b and c with a sequential relationship:
(1.1) Use all the process nodes in the manufacturing process individual b to select all their corresponding design

nodes. If all of these design nodes can be found from the design individual a, a and b are matched.
(1.2) Use all the resource nodes in the manufacturing resource individual c to select all their corresponding

manufacturing process nodes. If all of manufacturing process nodes can be found from the manufacturing
process individual b, b and c are matched.

(1.3) When a and b are matched, and b and c are matched, a complete solution with a, b and c is identified.
Otherwise, a complete solution is not identified.

(2) For b and c with a concurrent relationship:
(2.1) Use all the process nodes in the manufacturing process individual b to select all their corresponding design

nodes. If all of these design nodes can be found from the design individual a, a and b are matched.
(2.2) Use all the process nodes in the maintenance process individual c to select all their corresponding design

nodes. If all of these design nodes can be found from the design individual a, a and c are matched.
(2.3) When a and b are matched, and a and c are matched, a complete solution a, b and c is identified. Other-

wise, a complete solution is not identified

Evolution from the intermediate generation to the next generation for each population is conducted using the following
algorithm (Hong et al. 2010).

Algorithm: evolution from the intermediate generation to the next generation

(1) Select two parent individuals through the reproduction operation.
(1.1) Calculate the sum, S, of the weighted fitness measures, fi, for all individuals in the population. fi is

obtained by:

fi ¼ wsfsi þ wpfpi;max

ws þ wp
(6)

12 B. Yu et al.
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where fsi is the fitness of individual i in a single population (A, B or C), fpi,max is the maximum fitness measure of
matching solutions that are related to individual i and ws, and wp are weighting factors for fsi and fpi,max, respectively.

(1.2) Generate a random number, r, from the interval (0, S).
(1.3) Go through the individuals in the population and obtain the accumulate sums of fitness measures from the

first individual to the i-th individual. The i-th individual is selected for reproduction when the sums satisfy
the condition:

Xi�1

j¼1

fj\r\
Xi

j¼1

fj (7)

(2) Apply crossover operation to the two selected parent individuals.
(2.1) Calculate crossover rate based on the equation:

pc ¼ pc1 � pc1�pc2
fmax�fave

ðfbigger � faveÞ; fbigger � fave
pc1; fbigger\fave

�
(8)

where fmax is the maximum fitness measure in the population, fbigger is the one of the two selected parent individuals
with bigger fitness measure, fave is the average fitness measure for all individuals in the population, and pc1 and pc2
(pc1 > pc2) are two given crossover rate boundaries between 0 and 1.

(2.2) Generate a random number r between 0 and 1. If pc> r, crossover is not conducted.
(2.3) When each node in the individual is associated with a positive integer, the position of crossover is

identified by:

Lc ¼ int½ðn� 1ÞPc þ 1� (9)

where n is the number of nodes in the individual, and Pc is a random number between 0 and 1. The crossover position
should satisfy the following conditions:

• The node at the selected location should not be a root node in the AND–OR tree.
• The two nodes at the selected two locations of the parent individuals for crossover should have an OR relation.

The crossover is conducted by swapping the two sub-trees with the selected positions as the root nodes of the
sub-trees.

(3) Apply mutation operation to the selected parent individuals.
(3.1) Calculate mutation rate based on the equation:

pm ¼ pm1 � pm1�pm2
fmax�fave

ðf � faveÞ; f � fave
pm1; f\fave

�
(10)

where fmax is the maximum fitness measure in the population, f is the fitness measure of the selected individual for
mutation, fave is the average fitness measure for all the individuals in the population, and pm1 and pm2 (pm1 > pm2) are
two given mutation rate boundaries between 0 and 1.

(3.2) Generate a random number r between 0 and 1. If pm> r, crossover is not conducted.
(3.3) When each node in the individual is associated with a positive integer, the position of mutation is

identified by:

Lm ¼ int½ðn� 1ÞPm þ 1� (11)
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where n is the number of nodes in the individual, and Pm is a random number between 0 and 1. The mutation position
should satisfy the following conditions:

• The node at the selected location should not be a root node in the AND–OR tree.
• The node at the selected location should have an OR relation with other nodes in the AND–OR tree.

The mutation operation is conducted by (i) removing the sub-tree with the root node at the selected location from
the selected individual; (ii) from the AND–OR tree, selecting a different node that has an OR relation with the node at
the selected location; (iii) generating a sub-tree with the newly selected node as its root node; and (iv) adding this sub-
tree to the selected location in the selected individual.

(4) Repeat Steps (1), (2), (3) and (4) until N individuals are created in each population in the next generation.

5. Case studies

Industrial case studies were conducted for demonstrating the effectiveness of the developed approach in solving real-world
problems. Comparative case studies were carried out for demonstrating the improvement in computation efficiency.

5.1 Industrial case studies

The case studies were to identify the designs of the customised windows and their downstream life cycle activities based
on the requirements from individual customers for a windows manufacturing company (Hong et al. 2010). Figure 9
shows the modelling of life cycle descriptions for design, manufacturing process, manufacturing resource and mainte-
nance process in a product family. Each node was modelled by parameters. In this research, the width and height of the
window were selected as the parameters.

In these case studies, four design evaluation measures, one manufacturing process evaluation measure, one manufac-
turing resource evaluation measure and one maintenance process evaluation measure were selected to evaluate a cus-
tomised window from the perspectives of design, manufacturing process, manufacturing resource and maintenance
process, respectively. These seven evaluation measures are given as follows.

• Ventilation area Avent, (m
2): The ventilation area is the effective area that allows air to the room.

• Viewing area Aview, (m
2): The viewing area is the effective area that allows for viewing the outside through the

window.
• Rain risk area Arain, (m

2): The rain risk area is defined as the area that rain can possibly come into the room when
the window has inadvertently been left open.

• Heat loss Hloss, (watt/
oC): The heat loss of the window is caused by the heat loss of the frame and the glass, and

it is measured in watts per degree of temperature difference between the inside and outside of the window.
• Manufacturing cost Cm, ($): The manufacturing cost of the window is decided by the selection of the manufactur-
ing process.

• Maintenance cost Cmt, ($): The maintenance cost of the window is determined by the selection of the maintenance
process.

• Lead time T, (hours): The lead time is the minimum makespan for producing the custom window. This measure
can be obtained through scheduling to allocate available resources to the required manufacturing process.

Because these seven evaluation measures could not be compared directly, they were converted into seven compara-
ble evaluation indices, as shown in Table 2, based on the method developed by Yang, Xue, and Tu (2006).

The total evaluation index considering design aspect representing customer satisfaction was defined as:

ID ¼ WventIvent þWviewIview þWrainIrain þWlossIloss
Wvent þWview þWrain þWloss

(12)

where Wvent, Wview, Wrain and Wloss are weighting factors.

For Case I, considering design, manufacturing process and manufacturing resource with sequential relationships between
downstream life cycle aspects, the optimisation objective function was defined by:

Max I ¼ WDID þWmIm þWTIT
WD þWm þWT

(13)

14 B. Yu et al.
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(a) An AND-OR tree for modeling of design in a product family.
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Cleaning

Assembly

Sealing

Vacuuming

Manual cutting

CNC cutting

(b) An AND-OR graph for modeling of a manufacturing process in a product family.

Design node: Normal glass

Resource for CNC 

cutting of normal glass

CNC machine 1

CNC machine 2

(c) An AND-OR tree for modeling of manufacturing resource in product family. 

Maintenance process for 

wood frame

Cleaning
Manual cleaning

Machine cleaning

Painting

(d) An AND-OR graph for modeling of maintenance process in product family.

AND relation OR relation

Design node Resource nodeProcess node

Sequence relation

Process node: Cutting

Design node: Wood frame

Figure 9. Modelling of life cycle descriptions for window products in a product family.
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For Case II, considering design, manufacturing process and maintenance process with concurrent relationships between
downstream life cycle aspects, the optimisation objective function was defined by:

Max I ¼ WDID þWmIm þWmtImt
WD þWm þWmt

(14)

where WD, Wm, WT and Wmt are weighting factors.

When the weighting factors, Wvent, Wview, Wrain, Wloss, WD, Wm and WT (or Wvent, Wview, Wrain, Wloss, WD, Wm and Wmt),
and the two design parameters, width and height of the window, are given, the optimal customised product design and
its life cycle activities can be obtained using the multi-population CGP method developed in this research. To demon-
strate the effectiveness of the developed method, two case studies were conducted. In the two case studies, the popula-
tion size was selected as N = 20, p, q and r were selected as 0.1, 0.1 and 0.1, respectively, M1 and M2 were selected as
3, and pc1, pc2, pm1 and pm2 were selected as 0.9, 0.6, 0.5 and 0.1, respectively. The weighting factors Wvent, Wview,
Wrain, Wloss, WD, Wm and WT were selected as 0.3, 0.8, 0.9, 0.8, 0.4, 0.3 and 0.6, respectively, for case study I, and the
weighting factors Wvent, Wview, Wrain, Wloss, WD, Wm and Wmt were selected as 0.3, 0.8, 0.9, 0.8, 0.7, 0.5 and 0.5, respec-
tively, for case study II. For the two case studies, both the width and height of the window were given as 1.5 m. For
case study I, the optimal solution was obtained after 20 generations were created, and the best overall evaluation index
was identified as I* = 0.9183. Table 3 shows the optimisation result described by the customised product design configu-
ration, manufacturing process and manufacturing resource. The average fitness measures (i.e. the overall evaluation
indices) over the 20 generations for case study I are shown in Figure 10.

For case study II, the optimal solution was identified after 20 generations were created, and the best overall evalua-
tion index was achieved as 0.9062. The detail descriptions of the optimal solution are given in Table 4. Figure 11 shows
the average fitness measures (i.e. the overall evaluation indices) over the 20 generations for case study II.

Figures 10 and 11 show changes of the average fitness measures in the optimisation processes over 20 iterations for
the two case studies. Both the overall fitness measures considering all the three populations and the individual fitness

Table 2. Calculation of evaluation indices from evaluation measures.

Aspect Index calculation

Design Ivent ¼ 6:00� 10�2A3
vent � 3:99� 10�1A2

vent þ 1:06Avent � 2:42� 10�1

Iview ¼ 8:49� 10�3A3
view � 1:36� 10�1A2

view þ 6:97� 10�1Aview � 1:54� 10�1

Irain ¼ �2:43� 10�4A3
rain � 2:75� 10�1A2

rain þ 1:00� 10�1Arain þ 9:46� 10�1

Iloss ¼ 4:72� 10�6H3
loss � 7:29� 10�4H2

loss þ 7:15� 10�3Hloss þ 9:51� 10�1

Manufacturing process Im ¼ 1:31� 10�12C3
m � 9:04� 10�8C2

m þ 4:22� 10�5Cm þ 9:55� 10�1

Maintenance process Imt ¼ �2:55� 10�9C3
mt þ 2:89� 10�6C2

mt � 1:17� 10�3Cmt þ 1:04

Manufacturing resource IT ¼ 3:84� 10�5T3 � 2:57� 10�3T2 þ 2:06� 10�2T þ 9:41� 10�1

Table 3. Optimisation result for case study I.

Product life cycle
activity Optimal solution

Evaluation
index

Product configuration Window, Style, Awning, Frame, Vinyl frame, Glass, Sol-R glass, Gain glass, Feature,
Glazing, Double glazing, Screen, Without screen, Grills, Without grills

0.8935

Manufacturing process
planning

Instal glass, Instal beads/*for Window*/, Manual cutting, Assembly/*for Vinyl frame*/,
Manual cutting, Cleaning, Sealing, Vacuuming/*for Sol-R gain glass*/, ... ...

0.9452

Manufacturing
resource planning

Instal tool 1/*for Instal glass*/, Instal tool 3/*for Instal beads*/, Manual cutter 5/*for Manual
cutting of Vinyl frame*/, Assembly tool 2/*for Assembly of Vinyl frame*/, Manual cutter 10/
*for Manual cutting of Sol-R gain glass*/, …

0.9212

Overall product 0.9183

16 B. Yu et al.
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Figure 10. Average fitness measures over 20 generations for case study I.

Table 4. Optimal solution for case study II.

Product life cycle
activity Optimal solution

Evaluation
index

Product configuration Window, Style, Awning, Frame, Vinyl frame, Glass, Safety glass, Feature, Glazing, Double
glazing, Screen, Without screen, Grills, Without grills

0.8936

Manufacturing process
planning

Instal glass, Instal beads/*for Window*/, Manual cutting, Assembly/*for Vinyl frame*/,
Manual cutting, Cleaning, Sealing, Vacuuming/*for Safety glass*/, ... ...

0.9480

Maintenance process
planning

Inspection, Disassembly/assembly/*for Window*/, Cleaning, Repair/*for Vinyl frame*/, … ... 0.8820

Overall product 0.9062

Figure 11. Average fitness measures over 20 generations for case study II.
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measures considering each of the three individual populations are included in these curves. For case study I, shown in
Figure 10, the four fitness measures are the design performance index, the manufacturing process plan index, the manu-
facturing resource plan index and the overall index. For case study II, shown in Figure 11, the four fitness measures are
the design performance index, the manufacturing process plan index, the maintenance process plan index and the overall
index. Apparently, the optimal product was obtained through a trade-off between product design and its downstream
product life cycle activities based on the principle of concurrent engineering design.

5.2. Comparative case studies

Two comparative case studies have been conducted to demonstrate the effectiveness of the developed approach to
improve the computational efficiency. Same as the industrial case studies, the problem with the sequential relationship
between downstream life cycle activities is considered as case study I, and the problem with the concurrent relationship
between downstream life cycle activities is considered as case study II.

Table 5 provides the main parameters selected for comparative case studies. In the two comparative case studies, the
computation quality and efficiency among the traditional GP, the CGP developed by Hong et al. (2010), and our newly
developed multi-population co-evolutionary genetic programming (MCGP) method developed in this research were com-
pared. The crossover rates and mutation rates were tuned such that the optimal solutions could be achieved with reason-
able efficiency. To demonstrate the advantages of the developed MCGP, smaller population size and smaller maximum
generation were selected.

In the traditional genetic programming (GP), an individual in the population was modelled by a hybrid tree with
three different types of product life cycle activity descriptions. In the comparative case study I, a hybrid tree was used
to describe the design, its manufacturing process and its manufacturing resource plan. In the comparative case study II,
a hybrid tree was used to describe the design, its manufacturing process plan and its maintenance process plan. The
crossover operation and mutation operation in the traditional genetic programming were conducted by randomly select-
ing a node that had an OR relation with other nodes in the hybrid tree based on the predefined crossover rate and muta-
tion rate.

In the CGP developed by Hong et al. (2010), only two different populations were created to describe two different
types of product life-cycle activities (i.e. design and manufacturing). To demonstrate the importance of the cross-popula-
tion direct generation mechanism for MCGP, the original CGP method was modified in these case studies to model
three different types of product life cycle activities with three populations without the cross-population direct generation
mechanism.

In the MCGP, three populations were created to describe three different types of product life cycle activities. For
comparative case study I, the three populations were used to model designs, manufacturing process plans and manufac-
turing resource plans. For comparative case study II, the three populations were used to model designs, manufacturing
process plans and maintenance process plans.

Due to the stochastic nature of genetic programming, different results were achieved with the same input conditions.
To solve this problem, each algorithm was run 10 times, and the average measures were used as the results for the com-
parative studies. Tables 6 and 7 show the results for the two comparative case studies.

From Tables 6 and 7, we can see that the MCGP method developed in this research provides the best computation
quality and efficiency among the selected three methods. In the 10 runs using the three algorithms, the MCGP achieved
100% success to obtain the optimal fitness in 20 generations. In addition, the MCGP also took the shortest time among
all the three algorithms. For the other two algorithms, they failed sometimes to achieve the optimal result in 200
generations. These two algorithms also took longer time to get the solutions. Especially the CGP was the worst for

Table 5. Main parameters for the two comparative case studies.

Parameter GP CGP MCGP

Population size 40 40 20
Maximum generation 200 200 20
Crossover rate 0.9 pc1 = 0.9, pc2 = 0.6 pc1 = 0.9, pc2 = 0.6
Mutation rate 0.5 Pm1 = 0.5, pm2 = 0.1 Pm1 = 0.5, pm2 = 0.1

18 B. Yu et al.
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vvcomparative case study I, since only a few complete solutions could be matched considering three populations with
sequential relationships without using the cross-population direct generation mechanism.

From the case study results, we can find that although smaller population size and smaller generation size were used
in the MCGP (i.e. 20 in MCGP vs. 40 in GP and CGP for population size, and 20 in MCGP vs. 200 in GP and CGP
for generation size), the MCGP could still obtain the best performance among all the three algorithms. We can conclude
that the developed MCGP is effective to identify the optimal product design configuration and its downstream product
life cycle activities based on requirements from individual customers.

6. Conclusions and future work

In this research, a MCGP approach has been introduced to identify the optimal customised product design and its down-
stream life cycle activities for mass customisation production. Advantages of the developed new method are summarised
as follows.

(1) The developed modelling scheme is effective to model various product life cycle descriptions at both product
family level and customised product level using AND–OR trees and AND–OR graphs.

(2) The MCGP method is effective to identify the optimal customised product design and its downstream product

Table 6. Results for comparative case study I.

Run time

GP CGP MCGP

Fitness Time (s) Fitness Time (s) Fitness Time (s)

1 0.9494 731.4 0.9441 1472.3 0.9494 304.0
2 0.8911 732.1 0.8632 1199.2 0.9494 387.2
3 0.9348 747.7 0.8844 1227.7 0.9494 379.2
4 0.9494 728.1 0.8618 1214.4 0.9494 323.1
5 0.9494 733.8 0.9494 1336.2 0.9494 315.9
6 0.9015 732.3 0.9494 1517.2 0.9494 282.1
7 0.9441 725.1 0.8827 1213.5 0.9494 355.3
8 0.8911 721.7 0.9437 1969.5 0.9494 303.4
9 0.8765 752.5 0.8911 1417.3 0.9494 274.3
10 0.9494 741.8 0.9348 1379.7 0.9494 299.5
Average 0.9237 734.7 0.9105 1394.7 0.9494 322.4
Best 0.9494 721.7 0.9494 1199.2 0.9494 274.3
Worst 0.8765 752.5 0.8618 1969.5 0.9494 387.2

Table 7. Results for comparative case study II.

Run time

GP CGP MCGP

Fitness Time (s) Fitness Time (s) Fitness Time (s)

1 0.9221 417.0 0.9242 923.7 0.9319 107.1
2 0.9242 421.3 0.9221 825.4 0.9319 146.8
3 0.9242 426.6 0.9319 1081.6 0.9319 118.8
4 0.9242 455.5 0.9242 957.6 0.9319 122.5
5 0.9319 484.7 0.9221 956.0 0.9319 123.3
6 0.9221 536.6 0.9242 1050.6 0.9319 126.7
7 0.9221 443.3 0.9242 800.3 0.9319 130.6
8 0.9242 441.0 0.9220 982.2 0.9319 134.5
9 0.9221 441.2 0.9319 1120.3 0.9319 110.1
10 0.922 437.3 0.9242 1178.8 0.9319 124.0
Average 0.9239 450.5 0.9251 987.65 0.9319 124.4
Best 0.9319 417.0 0.9319 800.3 0.9319 107.1
Worst 0.9220 536.6 0.9220 1178.8 0.9319 146.8
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life cycle activities with both sequential and concurrent relationships.
(3) The cross-population direct generation mechanism for the MCGP method is effective to increase the number of

feasible solutions considering all three product life cycle activities based on the evaluation measures in the indi-
vidual populations, thus further improving the computation efficiency

The following issues need to be addressed in our future work.

(1) The developed approach is only effective to model product family with simple data structure. Knowledge-based
methods such as ontology will be investigated to model the complex relationships among various product life
cycle activities.

(2) In this work, only sequential and concurrent relationships among several product life cycle activities are consid-
ered. Design of a customised product whose activities are modelled by a network of sequential and concurrent
relations will be considered in our future work.
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