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Abstract 14 

An accurate prediction of future trajectories of surrounding vehicles can ensure safe and 15 

reasonable interaction between intelligent vehicles and other types of vehicles. Vehicle 16 

trajectories are not only constrained by a priori knowledge about road structure, traffic signs, 17 

and traffic rules but also affected by posterior knowledge about different driving styles of 18 

drivers. The existing prediction models cannot fully combine the prior and posterior knowledge 19 

in the driving scene and perform well only in a specific traffic scenario. This paper presents a 20 

long short-term memory (LSTM) neural network driven by knowledge. First, a driving 21 

knowledge base is constructed to describe the prior knowledge about a driving scenario. Then, 22 

the prediction reference baseline (PRB) based on driving knowledge base is determined by 23 

using the rule-based online reasoning system. Finally, the future trajectory of the target vehicle 24 

is predicted by an LSTM neural network based on the prediction reference baseline, while the 25 

predicted trajectory considers both posterior and prior knowledge without increasing the 26 

computation complexity. The experimental results show that the proposed trajectory prediction 27 

model can adapt to different driving scenarios and predict trajectories with high accuracy due 28 

to the unique combination of the prior and posterior knowledge in the driving scene. 29 

1. Introduction 30 

Since the 1980s, autonomous vehicles have been regarded as effective solutions to the 31 

problems of road safety, traffic congestion, and energy crisis. However, autonomous vehicles 32 

still face many driving difficulties in the real urban traffic environment. A major problem is 33 

how to interact safely and reasonably with other types of vehicles in a driving scene. 34 

Experienced human drivers can predict the future trajectory of other vehicles in a driving scene, 35 

thereby making safe, reasonable, and efficient decisions. Accurately predicting the future 36 

trajectory of a vehicle not only can reduce or eliminate the collision risk when autonomous 37 

vehicles perform complex driving maneuvers, such as merge, lane change, and overtaking, but 38 
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also can improve the driving efficiency and comfort of autonomous vehicles [1]. In a real urban 39 

traffic scenario, the vehicle's driving trajectory is not only constrained by prior knowledge, 40 

such as that about the road structure, traffic signs, and traffic rules, but also by uncertain 41 

posterior knowledge, including subjective driving intentions of the driver. The influence of 42 

driving knowledge on vehicle trajectory is shown in Figure 1, where it can be seen that when 43 

the road structure constraints are not considered, the predicted future trajectory, denoted as the 44 

red curve, is incorrect. As shown in Figure 1(b), there is a large slow-moving truck in front of 45 

the target vehicle. In such a case, based on human driving experience, the target vehicle is 46 

likely to adopt a lane change strategy. Therefore, how to fully combine the prior and posterior 47 

knowledge in a driving scene in the prediction process is crucial for accuracy improvement of 48 

the long-term trajectory prediction and safe interaction with other vehicles. 49 

 
(a) 

 
(b) 

Figure 1. Influence of driving knowledge on trajectory prediction: (a) Influence of road structure on trajectory 50 
prediction; (b) Influence of driving experience on trajectory prediction. 51 

According to the specific prediction process, the existing prediction models can be roughly 52 

divided into three categories: physics-based models, maneuver-based models, and learning-53 

based models [2]. The physics-based models use vehicle kinematics and dynamics model to 54 

predict the future position of a target vehicle, and they include the Constant Turn Rate and 55 

Acceleration model [3], Switching Kalman Filters [4], Monte Carlo simulation [5]. However, 56 

these models ignore the prior and posterior knowledge about a driving scenario, such as road 57 

structure, traffic rules, and driver's subjective intentions, which limits these models to short-58 

term prediction (less than 1 s) [6]. 59 

Maneuver-based models divide the prediction process into two parts. First, driving intention is 60 

estimated according to the physical state of a vehicle, information about the road network, and 61 

driver behavior, and then the predicted trajectory is fitted based on the driving intention. For 62 

maneuvers classification in more complex scenarios, discriminative learning algorithms, 63 

including the Multi-Layer Perceptions (MLP) [7], Logistic regression [8], Relevance Vector 64 

Machines (RVM) [9], and Support Vector Machines (SVM) [10], have been very popular. 65 

Complex vehicle motion is decomposed into predefined driving action sequences, which makes 66 

driving intention easier to identify and classify, and the prediction result is more stable and 67 

accurate than that of the physics-based models, and the prediction horizon is longer. However, 68 

in complex traffic scenarios, the traditional algorithms, such as finite vector machines and 69 

conditional random fields, have the problem of low scene adaptability, while Bayesian network 70 

and Markov model can solve the problem of driving maneuver classification in uncertain 71 

environments. In addition, the state space of the above models is extremely large, and these 72 

models are prone to "curse of dimensionality", and unable to real-time prediction. Recently, 73 

artificial neural networks have been used to classify vehicle driving actions, but the existing 74 

high-quality calibrated datasets are limited and cannot cover all possible driving scenarios (data 75 
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sparsity) [11], which makes the network training difficult and challenging, and scene 76 

adaptability is low. 77 

Learning-based models skip the step of maneuver recognition and perform trajectory prediction 78 

directly based on the historical observation of a target vehicle, so the posterior knowledge in 79 

driving scenarios can be effectively learned, and incorrect driving motion recognition can be 80 

avoided. Recently, artificial neural networks have been used to predict future trajectories of 81 

vehicles, bicycles, and pedestrians [12–14]. As a type of recurrent neural network (RNN), the 82 

long short-term memory (LSTM) neural network has been proven to be very effective in 83 

solving the time series problems, and thus have been widely used in pedestrian trajectory 84 

prediction, intersection vehicle destination prediction, and highway vehicle trajectory 85 

prediction. However, in previous works, specific-scenario models, such as lane change models 86 

for non-intersection sections and left/right turn models for intersection areas, have been 87 

proposed [15–17], and the training data needed manual annotation, which increased the training 88 

difficulty of the model. In [18], an encoder-decoder LSTM model is proposed for predicting 89 

vehicle trajectory by using an occupancy grid map, the maximum prediction horizon of this 90 

model is two seconds, which is not sufficient for applications.  91 

When an intelligent vehicle is driving in a real urban environment, the driving scene changes 92 

dynamically over time, which means that the prediction model should automatically adapt to a 93 

driving scene. In order to solve the problem of vehicle adaptability to the driving scene, many 94 

studies incorporated the Maneuver-based and Learning-based models. In [19], two LSTMs 95 

were used to identify high-level driver intentions and analyze low-level complex vehicle 96 

motion dynamics. This method is better geography-adaptive than the traditional LSTM 97 

networks. An LSTM model for interaction aware motion prediction of surrounding vehicles on 98 

freeways was presented in [20]. This model assigns confidence values to maneuvers being 99 

performed by vehicles and outputs a multi-modal distribution over future motion based on 100 

these values. The mentioned methods predict the multi-modal trajectory based on maneuver 101 

classes, which improves the road adaptability, but the prior knowledge in driving scenarios is 102 

not used. In [21], a long short-term memory (LSTM) network was employed to anticipate the 103 

driving policy of a vehicle (such as forward, yield, turn left, and turn right) using its sequential 104 

history observations. The policy was then used to guide a low-level optimization-based context 105 

reasoning process. This method combines the prior knowledge in the driving scene and 106 

constructs the cost map to perform the second optimization of the previously obtained driving 107 

intention to generate the final predicted trajectory, but the driving intention estimation of the 108 

upper-level does not utilize the prior knowledge of the driving scene, and the weight of the 109 

function cannot be adjusted adaptively to a driving scenario. Deo and Trivedi [22] adopt a 110 

convolutional social pooling LSTM based model. This approach predicts a distribution of 111 

future vehicle trajectory dependent on maneuver, but this approach ignores the impact of the 112 

interaction of the road users. Dai et al. [23] proposed a Spatio-Temporal LSTM based model, 113 

which considers the spatial interactions of the surrounding vehicles, but the constraints of other 114 

prior knowledge like road structure, traffic rules and driving experience are not considered. 115 

The Dual Learning Model (DLM) which takes information from two different inputs to predict 116 

vehicle trajectory was presented in [24]. This model embeds the Occupancy Map and Risk Map 117 

into the trajectory model to consider a comprehensive definition of risk in the traffic scene, but 118 

the computational complexity usually grows exponentially if the dimensionality of the feature 119 

space increases. Thus, it becomes difficult to meet the on-line requirement. 120 
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In this article, an integrated trajectory prediction model, which combines knowledge reasoning 121 

and LSTM neural networks, is proposed. The contribution of this study can be summarized as 122 

follows: 123 

1. In order to consider the constraints of the prior knowledge. The Prediction Reference 124 

Baseline obtained by knowledge reasoning is introduced into the LSTM network, where 125 

the proposed model can effectively combine the prior knowledge without increasing the 126 

computation complexity. 127 

2. In order to learn the spatial interactions of the surrounding vehicles and solve 128 

combinatorial explosion problem caused by a large number of condition attributes. A 129 

method of deterministic scene evaluation is employed to classify and analyze the main 130 

conditions that affect the future trajectory of a vehicle from the perspectives of safety, 131 

legitimacy, and reasonableness, which simplifies modeling of the spatial interactions. 132 

3. In order to improve the adaptability of the proposed model. The Frenet coordinates based 133 

on the PRB are used to train the LSTM network, and it is not necessary to annotate the 134 

training data set manually according to the specific driving scenario. The results of the 135 

field test prove the adaptive performance of the proposed model. 136 

4. The performance of the proposed model is evaluated with state-of-the-art methods on a 137 

naturalistic highway driving dataset (NGSIM), the results show that our proposed model 138 

outperforms the state-of-the-art methods. 139 

The rest of the paper is organized as follows. The Prediction Reference Baseline determination 140 

method and the proposed LSTM network is presented in Section 2. The proposed prediction 141 

model is evaluated by both simulations and real-traffic urban roadways experiments, and the 142 

obtained results are presented and discussed in Section 3. Finally, the main conclusions, 143 

limitations, and future work are presented in Section 4. 144 

2. Materials and Methods 145 

2.1. Problem Formulation and Method Overview 146 

2.1.1. Problem Formulation 147 

The proposed trajectory prediction model is divided into two layers. The first layer determines 148 

the PRB of a target vehicle and the second layer predicts the future trajectory based on the PRB. 149 

PRB is a trajectory that indicates the driving intention of the target vehicle based on prior 150 

driving knowledge, which connect the on-line reasoning system and the LSTM network. 151 

The process of driving intention prediction, for a target vehicle 𝑉𝑖  at time 𝑡 is presented in 152 

Figure 2, where it can be seen that it is necessary to understand and evaluate driving scene 𝑆𝑣𝑖

𝑡 , 153 

and generate the scene evaluation parameters 𝐸𝑣𝑖

𝑡  of the target vehicle, including the safety 154 

assessment 𝑆𝐴𝐹𝐸𝑣𝑖

𝑡 , legitimacy assessment 𝐿𝐸𝐺𝐴𝐿𝑣𝑖

𝑡 , and reasonable assessment 155 

𝑅𝐸𝐴𝑆𝑂𝑁𝐴𝐵𝐿𝐸𝑣𝑖

𝑡 , which is expressed as: 156 

                 𝐸𝑣𝑖

𝑡 = {𝑆𝐴𝐹𝐸𝑣𝑖

𝑡 , 𝐿𝐸𝐺𝐴𝐿𝑣𝑖

𝑡 , 𝑅𝐸𝐴𝑆𝑂𝑁𝐴𝐵𝐿𝐸𝑣𝑖

𝑡 }.                                    (1) 157 
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 158 

Figure 2. Driving intention prediction process. 159 

According to the prior knowledge of driving scenarios, such as traffic rules and driving 160 

experience, the driving intention 𝑏𝑣𝑖

𝑡  of the target vehicle is inferred based on the prolog online 161 

reasoning system. A maneuver 𝑏𝑣𝑖

𝑡  is classified by the lateral movement of the vehicle, which 162 

is expressed by a finite set ℬ: 163 

                    𝑏𝑣𝑖

𝑡 ∈ ℬ ∶= {𝐿𝐾, 𝐿𝐶𝐿, 𝐿𝐶𝑅, 𝑇𝑅, 𝑇𝐿, 𝐺𝑆, 𝑆𝑆, … }.                               (2) 164 

Finite set ℬ includes the following maneuvers: lane keeping (LK), lane change to left (LCL), 165 

lane change to right (LCR), turn right (TR), turn left (TL), go straight at intersection (GS), stop 166 

before the stop line (SS). 167 

Finally, driving intention 𝑏𝑣𝑖

𝑡  is fitted to the PRB 𝑃𝑅𝐵𝑣𝑖

𝑡  by the cubic Bezier curves. 168 

The second layer predicts the future vehicle trajectory. First, the coordinate transformation is 169 

performed on the historical trajectory of the target vehicle based on the PRB 𝑃𝑅𝐵𝑣𝑖

𝑡 , as shown 170 

in Figure 3. In Figure 3, 𝑠𝑣𝑖

𝑡  denotes the distance the target vehicle has traveled along the PRB, 171 

and 𝑙𝑣𝑖

𝑡  is the transverse distance between the target vehicle and the 𝑃𝑅𝐵𝑣𝑖

𝑡 . The absolute 172 

position denoted as (𝑙𝑎𝑡𝑣𝑖

𝑡 , 𝑙𝑛𝑔𝑣𝑖

𝑡 ) is transformed to the Frenet coordinates that is denoted as 173 

(𝑠𝑣𝑖

𝑡 , 𝑙𝑣𝑖

𝑡 ). The set of observations vectors denoted as 𝑂𝑣𝑖

𝑡(𝑛)
 is used for trajectory prediction of 174 

the target vehicle, and it is given by: 175 

             𝑂𝑣𝑖

𝑡(𝑛)
= {𝑠𝑣𝑖

𝑡 , 𝑙𝑣𝑖

𝑡 , 𝜅𝑣𝑖

𝑡 ,𝜃𝑣𝑖

𝑡 , 𝑣𝑣𝑖

𝑡 , 𝑎𝑣𝑖

𝑡 }, 𝑓𝑜𝑟 𝑛 = 𝑡 − 𝑀 + 1, ⋯ , 𝑡,                           (3) 176 

where a set (𝑠𝑣𝑖

𝑡 , 𝑙𝑣𝑖

𝑡 ) denotes the Frenet coordinates, 𝜅𝑣𝑖

𝑡  denotes the curvature, 𝜃𝑣𝑖

𝑡  represents 177 

vehicle heading, 𝑣𝑣𝑖

𝑡  denotes the vehicle speed, 𝑎𝑣𝑖

𝑡  denotes the vehicle acceleration, and M is 178 

the input step of the network. 179 

The network output 𝑃𝑣𝑖

𝑡(𝑛)
 is expressed as: 180 

               𝑃𝑣𝑖

𝑡(𝑛)
= {𝑠𝑣𝑖

𝑡 , 𝑙𝑣𝑖

𝑡 ,𝑣𝑣𝑖

𝑡 },   𝑓𝑜𝑟 𝑛 = 𝑡 + 1, 𝑡 + 2, ⋯ , 𝑡 + 𝐾,                                    (4) 181 

where K denotes the output step of the network. 182 
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Finally, the predicted trajectory denoted as 𝑇𝑟𝑎𝑣𝑖

𝑡(𝑛)
 is obtained by transforming the reference 183 

coordinates to the absolute coordinates represented by the latitude and longitude, which is 184 

expressed as: 185 

            𝑇𝑟𝑎𝑣𝑖

𝑡(𝑛)
= {𝑙𝑎𝑡𝑣𝑖

𝑡
, 𝑙𝑛𝑔𝑣𝑖

𝑡
, 𝑣𝑣𝑖

𝑡 },   𝑓𝑜𝑟 𝑛 = 𝑡 + 1, 𝑡 + 2, ⋯ , 𝑡 + 𝐾,                                 (5) 186 

 
(a) 

Projection Point 

(xp , yp)

S

Reference Path

Start Point 

(xs , ys)

Vehicle Point 

(xv , yv)

 
(b) 

Figure 3. Frenet coordinate of a vehicle: (a) Driving scenario; (b) Description of Frenet coordinate.  187 

 188 

Figure 4. Overview of the proposed trajectory prediction model. 189 

2.1.2. Overview of the Proposed Approach 190 

This paper proposes a trajectory prediction model based on knowledge reasoning and LSTM 191 

neural network. The architecture of the proposed model is shown in Figure 4, where it can be 192 

seen that the proposed model consists of two phases: PRB determination phase and trajectory 193 

prediction phase. During the PRB determination phase, by analyzing the relationship between 194 

"human-vehicle-road" in the driving scene and extracting the knowledge of road network, 195 

traffic participants, and road traffic facilities, the conceptual ontology model of the driving 196 

scene is established. The main conditional attributes that affect the behavior decision-making 197 

process are classified and analyzed from the perspectives of safety, legitimacy, and 198 
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reasonableness using the proposed deterministic situation assessment method, and situation 199 

parameters in the horizontal and vertical directions are obtained. The behavior prediction rule 200 

base is constructed using the situation parameters, traffic rules, and driving experience. Based 201 

on the prolog online reasoning system, the behavioral prediction rules are matched with the 202 

factual knowledge obtained by the conceptual ontology model, and the driving intentions are 203 

inferred. Finally, a third-order Bezier curve is used to fit the driving intention to a PRB. The 204 

trajectory prediction phase uses the LSTM network to learn the continuous features of the 205 

historical trajectory of a target vehicle on the basis of the PRB and generates the final predicted 206 

trajectory. 207 

2.2. Prediction Reference Baseline Determination 208 

The architecture of the proposed PRB Determination method is presented in Figure 5, where it 209 

can be seen that this method consists of online and offline phases. The offline phase establishes 210 

the conceptual ontology model (TBOX) of a driving scene and extracts the behavioral 211 

prediction rules based on traffic rules and driving experience. According to the conceptual 212 

ontology model, the road network and real-time environment perception information are used 213 

to instantiate the entities and related relationships in the driving scene (ABOX). The entities 214 

and entity relationships in the driving scene are classified by the deterministic scene assessment 215 

method and analyzed from the perspectives of safety, legitimacy, and reasonableness. The 216 

scene evaluation parameters in both horizontal and vertical directions are generated, and the 217 

behavioral prediction rules are matched with the scene evaluation parameters by using the 218 

prolog online reasoning system. The driving intentions are inferred, and finally, the third-order 219 

Bézier curve is used to fit the driving intention to the PRB. 220 

 221 
Figure 5. The architecture of the proposed Prediction Reference Baseline Determination method. 222 

2.2.1. Semantic Modeling of Driving Scene 223 

In a driving scenario, there are various road element entities, such as traffic participants, road 224 

networks, and road traffic facilities in urban driving scenarios. The environment perception 225 

system can provide only the spatial location of each entity, but it cannot describe the correlation 226 

between entities, and make full use of prior information, such as traffic rules and driving 227 

experience, which is crucial for improving the prediction model adaptability to the driving 228 

scene. Ontology, as a form of knowledge expression, is used to model the concepts of specific 229 

domains and relationships between concepts, which can be used to model driving scenarios 230 

effectively [25–27]. 231 
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Figure 6. Scene modeling: (a) Real traffic scenario; (b) Concrete driving scene; (c) Semantic description of the 232 
concrete scene. 233 

The conceptual ontology model is divided into two module types: entities and attributes. This 234 

study takes the target vehicle as a perspective and summarizes five entity types on the basis of 235 

[28]: 236 

1) Target Vehicle 237 

The target vehicle entity describes the vehicle to be predicted. 238 

2) Behavior  239 

The behavior entity is a collection of driving maneuvers of a vehicle. Three behavior types are 240 

designed: LongtiBehavior, LatiBehavior, and AdvancedBehavior. The LongtiBehavior 241 

represents basic vertical driving behavior and includes four behaviors: accelerate, decelerate, 242 

keep, and stop. The LatiBehavior represents basic horizontal driving behavior and includes 243 

three behaviors: ChangeToLeft, ChangeToRight, and KeepLane. The AdvancedBehavior 244 

represents advanced driving behavior and includes two behaviors: Overtake and Merge. 245 

3) Obstacle 246 
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The obstacle entity represents a collection of obstacle entities encountered by a vehicle during 247 

driving. This work divides obstacles according to the behavior characteristics of obstacle 248 

entities in driving scenarios into two categories: StaticObstacle and DynamicObstacle.  249 

4) Road network 250 

The road network entity represents the topological connection of roads by intersecting points 251 

and lines. RoadType includes different road types. RoadPart describes the components of the 252 

road network and is divided into AreaEntities and PointEntities. AreaEntities refer to road 253 

entities that can be abstracted into lines and areas, such as lane, side walk, junction, and 254 

segment, while PointEntities refers to road entities that can be abstracted into points, such as 255 

road signs, traffic signs, and traffic lights. 256 

5) Driving Scenario 257 

The driving scene entity refers to a collection of road entity elements encountered when a 258 

vehicle travels in different road areas. In this work, driving scenarios are divided into three 259 

categories: InSpecialAreascenario (special area driving scenario), OnRoadscenario (road 260 

driving scenario), and NearSpecialAreascenario (near special region driving scenario). 261 

InSpecialAreascenario category can be further divided into IntersectionScenario (intersection 262 

scene), TunnelScenario (tunnel scene), BridgeScenario (elevated scene), and UturnScenario 263 

(UTurn scene). 264 

The object attribute is used to describe the relationship between concept classes. This attribute 265 

restricts the described relationship regarding the domain and range. The data attribute restricts 266 

the described relationship through the definition and value domains. The definition domain is 267 

a class type.  268 

The described ontology modeling process of driving scenario is equivalent to filling the 269 

background knowledge of the TBox that constitutes the ontology knowledge base, but the 270 

situational knowledge in the ABox is still lacking. According to the road elements of a real 271 

driving scenario, the driving scenario needs to be re-expressed using the conceptual model of 272 

the TBox, which is an instantiation of the ontology model. A real traffic scenario is displayed 273 

in Figure 6(a); a concrete driving scene that includes instances of defined classes is presented 274 

in Figure 6(b), and its semantic description is presented in Figure 6(c). The instances of 275 

RoadNetwork are added to the ABox as prior knowledge, and instances of the obstacle are 276 

asserted in real time. 277 

2.2.2. Situation Assessment 278 

After obtaining a semantic description of a driving scene, it is necessary to determine and 279 

evaluate condition attributes that affect the driving intention in the driving scene, so as to 280 

estimate the driving intention of a target vehicle. In order to solve the problem of combinatorial 281 

explosion due to numerous condition attributes [29], a deterministic scenario assessment 282 

method is adopted to classify and analyze the key attributes that affect driving intentions from 283 

the perspectives of safety, legitimacy, and reasonableness. 284 

Deterministic scenario assessment methods use the threat assessment indicators: TTC (time to 285 

collision), THW (time headway), TTB (time to brake), DST (deceleration to safety time), and 286 

MSM (minimal safety margin) in rule-based systems, and the probability of collision is 287 
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estimated as a binary value. For instance, Glaser et al. [30] used the TTC and TIV (time 288 

intervehicles) indicators to evaluate the possibility of collision. Samyeul et al. [31] proposed a 289 

distributed reasoning method by dividing the current and adjacent lanes into the front and rear 290 

areas, and the TTB and MSM indicators were used to evaluate the possibility of collision in 291 

the front area, while the TTC and MSM indicators were used to evaluate the collision of rear 292 

area collision possibility. 293 

The proposed deterministic scenario assessment method consists of two parts. First, the driving 294 

scenario is determined by querying the knowledge base with the current vehicle position. Then, 295 

a reasoning structure of an obstacle is constructed in eight regions of interest to make safety 296 

assessment, and a binary result (safe or dangerous) is calculated for each region using critical 297 

indicators TTC and TIV. Finally, legitimacy and reasonableness assessments are made to 298 

predict the maneuver of the target vehicle. 299 

1) Safety assessment 300 

Safety primarily refers to whether the surrounding obstacles pose a threat to a vehicle, 301 

especially in the area ahead, but it also refers to whether the left or right lane can provide a safe 302 

lane change. This paper constructs the eight-direction obstacle inference model. For each area, 303 

the TTC and TIV indicators are used for safety assessment. The TTC indicator is defined as a 304 

time when two vehicles continue to collide on the same trajectory at the current speed, and it 305 

is defined by: 306 

                          𝑇𝑇𝐶 =
𝐷𝑖

𝑉−𝑉𝑖
 ,                                                                           (6) 307 

where 𝐷𝑖 denotes the relative distance between the following vehicle and followed vehicle, V 308 

denotes the speed of the following vehicle, and 𝑉𝑖 is the speed of followed vehicle. 309 

The threshold value 𝑇𝑇𝐶𝑡ℎ  is used to judge whether a vehicle is dangerous in high-speed 310 

scenarios. The risk assessment formula is as follows: 311 

                        𝑅𝑇𝑇𝐶(𝑡) = {
0, 𝑡 ≥ 𝑇𝑇𝐶𝑡ℎ

1, 𝑡 < 𝑇𝑇𝐶𝑡ℎ
.                                                               (7) 312 

when the calculated collision time t between the following vehicle and followed vehicle is 313 

greater than 𝑇𝑇𝐶𝑡ℎ, the current scene is considered to be safe; otherwise, it is considered to be 314 

dangerous. 315 

The TIV indicator is used to detect low-speed difference scenarios. When the speeds of two 316 

vehicles are similar in value, the TIV indicator is used to judge the degree of danger, and it is 317 

calculated by: 318 

                              𝑇𝐼𝑉 =  
𝐷𝑖

𝑉
.                                                                              (8) 319 

threshold 𝑇𝐼𝑉𝑡ℎ is used to distinguish between safe and dangerous scenes in low workshop 320 

distance scenes. The TIV risk assessment formula is as follows: 321 

                         𝑅𝑇𝐼𝑉(𝑡) = {
0, 𝑡 ≥ 𝑇𝐼𝑉𝑡ℎ

1, 𝑡 < 𝑇𝐼𝑉𝑡ℎ
.                                                             (9) 322 



Hindawi Template version: Apr19 

 

 11 

when the calculated vehicle interval time t between the following vehicle and followed vehicle 323 

is greater than 𝑇𝐼𝑉𝑡ℎ, the current scene is considered to be safe; otherwise, it is considered to 324 

be dangerous, and in that case, the following car needs to perform a certain action to avoid a 325 

possible collision. 326 

In each region, only when  𝑅𝑇𝑇𝐶(𝑡)  and R𝑇𝐼𝑉(𝑡)  are calculated safety synchronously, the 327 

region is considered to be safe. The risk assessment of an region is determined as: 328 

                  𝑟𝑅𝑒𝑔𝑖𝑜𝑛(𝑡) = {
1, R𝑇𝑇𝐶

𝑅𝑒𝑔𝑖𝑜𝑛(𝑡) + R𝑇𝐼𝑉
𝑅𝑒𝑔𝑖𝑜𝑛(𝑡) ≥ 1

0,                                   otherwise
,                                      (10) 329 

where 𝑅𝑒𝑔𝑖𝑜𝑛 represents one of the eight regions, as shown in Figure 7; when 𝑟𝑅𝑒𝑔𝑖𝑜𝑛(𝑡) has 330 

a value of zero, the area is considered to be safe; and, when 𝑟𝑅𝑒𝑔𝑖𝑜𝑛(𝑡) has a value of one, the 331 

area is considered to be dangerous. 332 

 333 

Figure 7. Example individuals in traffic scenario. 334 

The degree of danger in the area ahead is calculated by: 335 

                       𝑟𝐹(𝑡) = {
1,         R𝑇𝑇𝐶

𝐹 (𝑡) + R𝑇𝐼𝑉
𝐹 (𝑡) ≥ 1

0,                                otherwise
,                                           (11) 336 

when the calculated values of the TTC and TIV indicators in the current area are greater than 337 

the predefined threshold, the following result message is obtained: safeToGo (targetVehicle, 338 

keep); when the calculated values of TTC and TIV indicators in the current area are both less 339 

than the predefined deceleration threshold, but greater than the corresponding parking 340 

threshold, the result message is: safeToGo (targetVehicle, dec), and in this case, a lane change 341 

can be performed to improve driving efficiency; otherwise, the result message is: safeToGo 342 

(targetVehicle, stop). 343 

The safety assessment of adjacent lanes is conducted using the same assessment formula as 344 

that of the area ahead. If the left lane is taken as an example, then the degree of danger is 345 

expressed as: 346 

        𝑟𝐿(𝑡) = {
1,         has left vehicle at time 𝑡
0,                                    otherwise

,                                        (12) 347 

when there are vehicles in the left area, the left lane can be considered to be dangerous; 348 

otherwise, the safety of the left front and left rear areas are respectively evaluated by: 349 
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                      𝑟𝐹𝐿(𝑡) = {
1,         R𝑇𝑇𝐶

𝐹𝐿 (𝑡) +  R𝑇𝐼𝑉
𝐹𝐿 (𝑡) ≥ 1

0,                                 otherwise
,                                          (13) 350 

                     𝑟𝐵𝐿(𝑡) = {
1,          𝑅𝑇𝑇𝐶

𝐵𝐿 (𝑡) +  𝑅𝑇𝐼𝑉
𝐵𝐿 (𝑡) ≥ 1

0,                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,                                        (14) 351 

Therefore, the safety assessment of the left lane is as follows: 352 

           𝑅𝑖𝑠𝑘𝐿(𝑡) = {
1,         𝑟𝐿(𝑡) = 1  𝑜𝑟  𝑟𝐹𝐿(𝑡) + 𝑟𝐵𝐿(𝑡)  ≥ 1 
0,                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,                                (15) 353 

If the left lane is safe, safeToLeft (targetVehicle, true) will be generated; otherwise, the 354 

scene evaluation parameters will be instantiated as safeToLeft (targetVehicle, false). 355 

2) Legitimacy assessment 356 

The legality assessment includes three assumptions. First, when a vehicle is driving on the road, 357 

it cannot exceed the maximum speed limit of the road; second, when the vehicle is driving to 358 

the pre-intersection, it is necessary to pay attention to the change in traffic lights and obey the 359 

traffic rules; third, when a vehicle is about to change the lane, the adjacent lane should allow 360 

lane changes. 361 

3) Reasonableness assessment 362 

Reasonableness assessment generally refers to whether lane changing and other driving 363 

behaviors affect the current goal of a target vehicle. Based on the current lane of the target 364 

vehicle, the specific road section or lane to be driven can be known. For instance, on the one 365 

hand, if the next area to be driven by the target vehicle is an intersection, and the distance 366 

between the target vehicle and the stop line is less than δ, then lane change is not recommended. 367 

On the other hand, if the distance between the target vehicle and the stop line is greater than δ, 368 

lane change can be performed. Reasonableness assessment introduces a situation parameter set 369 

(𝑟𝑒𝑎𝑠𝑜𝑛𝑎𝑏𝑙𝑒𝑇𝑜𝐿𝑒𝑓𝑡, 𝑟𝑒𝑎𝑠𝑜𝑛𝑎𝑏𝑙𝑒𝑇𝑜𝑅𝑖𝑔ℎ𝑡) , which is defined as data properties in the 370 

ontology model. 371 

2.2.3. Rule-Based Reasoning 372 

The driving intention is determined based on traffic rules and driving experience, where the 373 

traffic rules are mainly used to limit the driving behavior while the driving experience is 374 

utilized to summarize the understanding and cognition of human drivers in different scenes and 375 

obtain some rules that are not specific traffic rules but are conducive to the reasonable driving. 376 

According to the different driving scenarios defined in the driving knowledge base, the rules 377 

stored in the driving knowledge base are divided into several categories. Different scenarios 378 

have different key road entities. For instance, unlike OnRoadScenario ,in 379 

NearIntersectionScenario, traffic lights are considered. Also, the classification of traffic rules 380 

can reduce the rule search space and reasoning time. 381 

In order to save computing resources and reduce reasoning time, SWI-Prolog language is used 382 

to write rule knowledge, which is represented as a set of driving scene-driving behavior 383 

mapping pairs, where driving behavior is described as a rule head, and the driving scene is 384 

described as a rule body. On the basis of [28], this paper adds the scene assessment as an 385 
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intermediate link of mapping driving scene to the driving behavior and reorganizes 57 rules. 386 

Some of the prediction rules are presented in Table 1. 387 

The online reasoning process can be described as follows. First, the real-time facts related to 388 

the scene are used as input, and each rule statement is matched. If all the facts of the 389 

corresponding rule are matched, the matched prediction result will be obtained, and the next 390 

rule statement will be matched until each rule is matched. When all matched results are 391 

obtained, the final result denotes the predicted driving intention. 392 

Table 1. Prediction rules used in this study. 393 

ID SWRL Rules 

Rule #1 

TargetVehicle(target), currentRoadState(target,"ApprJunction"), 

isOnSegment(target,Seg), connectToJunction(Seg,Junc), intersection(Junc), 

hasTrafficLight(Junc,TL), (hasLightColor(TL,"red"); 

hasLightColor(TL,"yellow")), connectToStopLine(Seg,SL), 

distToStopLine(SL,DL), DL < 10. 

 legalToGo(target,SS) 

Rule #2 

TargetVehicle(target), currentRoadState(target,"ApprJunction"), 

isOnSegment(target,Seg), connectToJunction(Seg,Junc), intersection(Junc), 

hasTrafficLight(Junc,TL), hasLightColor(TL,"green"), 

connectToStopLine(Seg,SL), distToStopLine(SL,DL), DL =< 20. 

 LegalToGo(target,acc) 

Rule #3 
TargetVehicle(target), currentVelocity(target,V), hasFrontObstacle(target,FO), 

distToObstacle(FO,DF), (DF/V) < 3, (DF/V) >= 2. 

 SafeToGo(target,dec) 

2.2.3. Prediction Reference Baseline Fitting 394 

After obtaining the driving intention of the target vehicle, the driving intention is converted 395 

into the Prediction Reference Baseline using the cubic Bezier curves. As shown in Figure 8, 396 

first, a target lane is selected based on the driving intention and road network, where  p0 397 

represents the current position of the target vehicle, and 𝑝3 is selected from the centerline of 398 

the target lane with distance 𝐿𝑑 from 𝑝0, and 𝐿𝑑 is obtained based on the driving experience. 399 

The Prediction Reference Baseline is divided into three parts by 𝑝0  and 𝑝3 : the predicted 400 

extension, the historical extension, and the intention segment. In addition, 𝐿𝑝  and 𝐿ℎ are 401 

determined by the input and output steps of the LSTM neural network. 402 

As shown in Figure 8(c), the cubic Bezier curve constructed by four control points is used to 403 

generate the intention segment, which is expressed as: 404 

          C(𝑡) = 𝐵0,3(𝑡)𝑃0 + 𝐵1,3(𝑡)𝑃1 + 𝐵2,3(𝑡)𝑃2 + 𝐵3,3(𝑡)𝑃3,                       (16) 405 

where 𝐵𝑖,3 is the Bernstein polynomial and it is given by: 406 

               𝐵𝑖,3(𝑡) =  (3
𝑖
) (

𝑡1−𝑡

𝑡1−𝑡0
)

3−𝑖

(
𝑡−𝑡0

𝑡1−𝑡0
)

𝑖

, t ∈ 〈0,1,2,3〉.                                   (17) 407 

The coordinate system (𝑋′′, 𝑌′′) is built with the origin 𝑃0 at the vehicle center. The x-axis 408 

direction is the vehicle’s initial heading, the terminal state will be the end point 𝑃3, and 𝑃1 and 409 
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𝑃2 are obtained by moving forward for distance d along the vehicle’s initial heading direction 410 

from the start point and backward for distance d along the terminal heading from the end 411 

point 𝑃3, respectively. The position of the control points in the above coordinate system is 412 

expressed as: 413 

              P0 = [
0
0

] , P1 = [
𝑑
0

] , P2 = [
𝐿𝑥 − 𝑑 cos 𝜔
𝐿𝑦 − 𝑑 sin 𝜔

] , 𝑃3 = [
𝐿𝑥

𝐿𝑦
],                               (18) 414 

where 𝐿𝑥 and 𝐿𝑦 are lateral and longitudinal offsets of the terminal state 𝑃3 to 𝑃0, respectively; 415 

𝜔 is the angle between the terminal heading and the direction of the x-axis. The terminal 416 

heading is defined as the tangential direction of the closest point on the reference path to 𝑃3. 417 

Equation (16) and (17) can be rewritten by applying (18), so the Bezier curve can be 418 

represented as: 419 

          x(𝑡) = (3𝑑 + 3𝑑 cos 𝜔 − 2𝐿𝑥)𝑡3 − 3(2𝑑 + 𝑑 cos 𝜔 − 𝐿𝑥)𝑡2 + 3𝑑𝑡,              (19) 420 

                𝑦(𝑡) = (3𝑑 𝑠𝑖𝑛 𝜔 − 2𝐿𝑦)𝑡3 − 3(𝑑 𝑠𝑖𝑛 𝜔 − 𝐿𝑦)𝑡2.                              (20) 421 

Besides, the curvature of the generated path can be derived by applying (20) and (21), which 422 

leads to: 423 

                        κ(𝑡) =
𝑥′(𝑡)𝑦′′(𝑡)−𝑦′(𝑡)𝑥′′(𝑡)

(𝑥′(𝑡)2+𝑦′(𝑡)2)
3

2⁄
,                                                           (21) 424 

The maximum of the curvature should satisfy the condition given by equation (22) to meet the 425 

vehicle’s nonholonomic constraint. 426 

                            𝜅(𝑡𝑚) ≤
tan(𝜑𝑚𝑎𝑥)

𝐿
                                                                 (22) 427 

In equation (22), L denotes the vehicle wheelbase, and 𝜑𝑚𝑎𝑥 denotes the maximum steering 428 

angle of the vehicle. 429 

 
(a) 

 
(b) 
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(c) 

Figure 8. Schematic diagram of Prediction Reference Baseline fitting: (a) Lane-changing scene; (b) Intersection 430 
turning scene; (c) The cubic Bezier curves. 431 

The maximum of the curvature 𝜅(𝑡𝑚) is a function of d. The suitable value of d that satisfies 432 

the vehicle’s nonholonomic constraint can be found by brutal searching from 
𝑑′

6
 to 

𝑑′

2
 , where 433 

𝑑′ denotes the distance between 𝑃0 and  𝑃3. The processing time can be reduced by building a 434 

look-up table that matches a given set with the corresponding maximum curvature of the Bezier 435 

curve. 436 

2.3. LSTM Network Driven by Knowledge 437 

Since different drivers have different driving styles, in order to accurately predict the future 438 

trajectory of a vehicle, in this work, an LSTM neural network is employed to learn the 439 

continuous features of the historical trajectory. The LSTM is an RNN type that can effectively 440 

overcome the problem of gradient disappearance [32]. The LSTM is composed of a unit 441 

memory that stores the previous input sequence information and a gating mechanism that 442 

controls the information flow between input, output, and unit memory. There are three gates in 443 

the core design of the LSTM network, namely the input gate, the forget gate, and the output 444 

gate. The specific network structure is shown in Figure 9. The forget gate is used to control 445 

how much information in 𝑐𝑡−1  is retained in 𝑐𝑡 . The input gate determines how much 446 

information of  𝑥𝑡 remains in 𝑐𝑡, and finally, the output gate determines how much information 447 

in the output 𝑜𝑡 is output to ℎ𝑡 by the control unit 𝑐𝑡. The work of the LSTM is described by 448 

the following recursive equations: 449 

                             𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓),                     (23) 450 

                          𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) ,                        (24) 451 

                         𝑐�̃� = tan ℎ (𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐),                                       (25) 452 

                          𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐�̃�,                           (26) 453 

                         𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜),                    (27) 454 

                           ℎ𝑡 = 𝑜𝑡 ⊙ tan ℎ(𝑐𝑡) ,                        (28) 455 

where  𝑥𝑡 denotes the input vector,  𝜎(𝑥) denotes the activation function, 𝑊 denotes the linear 456 

transformation matrix, 𝑏  denotes the offset vector; 𝑖𝑡，𝑓𝑡，and  𝑐�̃�  are gate vectors, 𝑐𝑡 457 

represents the amount of cell memory, and lastly, ℎ𝑡 denotes the output. 458 
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Figure 9. The internal structure of an LSTM cell. 459 

 

Figure 10. Network structure used as a reference design. 460 

In this work, the network presented in Figure 10 is used as a reference structure. This network 461 

has two layers consisting of 256 LSTM cells, followed by one time-distributed layer consisting 462 

of 128 neurons, and the final dense output layer containing as many cells as the number of 463 

outputs. The network input is a tensor of track histories of a vehicle. The network output 464 

consists of the future coordinates and velocity of the vehicle. Since the prior knowledge about 465 

the driving scene is expressed by a priori reference trajectory, the network can learn the 466 

posterior knowledge about the driving scene only from the relative relationship between the 467 

historical trajectory and the prior reference trajectory. Compared with the existing prediction 468 

models based on the LSTM network, the proposed prediction model reduces the network 469 

training difficulty and decreases demand for the computing performance of the vehicle 470 

platform. 471 

3. Results and Discussion 472 

3.1. Data Preparation and Model Training 473 

3.1.1. The training dataset 474 

 The Next Generation Simulation (NGSIM) dataset in I-80 and US101 sections are used for 475 

model training and testing [33], this dataset is derived from the US Federal Highway 476 

Administration, which is currently the largest public natural driving public data source, and 477 

thus has been widely used in the literature [34,35]. The layouts and top-down views of the 478 

US101 AND I-80 sections are shown in Figure 11. Each data frame includes many vehicle’s 479 

parameters, including the position, velocity, yaw rate, size, and others. The sampling frequency 480 

of the dataset is 10 Hz; therefore, in this work, ∆𝒕 is set to 0.1 s.  481 
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(a) 

 
(b) 

Figure 11. Layouts and top-down views of the sites used for the collection of the NGSIM: (a) US101; (b) I80. 482 

3.1.2. Data Preparation 483 

The vehicle positioning data in the NGSIM dataset are obtained by video analysis, so the 484 

recorded trajectory contains a lot of noise [27]. Therefore, the vehicle kinematics model and 485 

the road geometric are used to filter the original data, which is expresses as: 486 

                           0 < 𝜅𝑖 <  𝜅𝑚𝑎𝑥,                                                                       (29) 487 

                      𝜃𝑚𝑖𝑛 < 𝜃 < 𝜃𝑚𝑎𝑥 ,                                                                    (30) 488 

𝜃𝑟𝑖
> 𝜃𝑟𝑎𝑡𝑒 ,                                                                            (31) 489 

 𝜃𝑟𝑖
=

(𝜃𝑖+1−𝜃𝑖)

𝑡2−𝑡1
.                                                                        (32) 490 

 
(a) 

 
 (b) 

Figure 12. Extraction of the lane’s centerline: (a) Extraction results obtained by Google Earth; (b) Shapefile of 491 
the US101 highways. 492 

The vehicle position is transformed to the Frenet coordinates based on the centerline. As shown 493 

in Figure 12(b), the centerline of each lane is extracted and fitted using the shapefile, and the 494 

centerline that the target vehicle was initially driven is selected as a reference baseline. For 495 

each original coordinate point (𝑥𝑣, 𝑦𝑣) , the corresponding mapping point (𝑥𝑝, 𝑦𝑝)  on the 496 

reference baseline is determined, and the Frenet coordinates (𝑠𝑣, 𝑙𝑣) are obtained by: 497 
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l𝑣 =  √(𝑥𝑝 − 𝑥𝑣)2 + (𝑦𝑝 − 𝑦𝑣)2,                                                          (33) 498 

s𝑣 =  S(𝑥𝑝, 𝑦𝑝),                                                                          (34) 499 

where 𝑙𝑣 denotes the Euclidean distance between (𝑥𝑣, 𝑦𝑣) and (𝑥𝑝, 𝑦𝑝), S(𝑥𝑝, 𝑦𝑝) denotes the 500 

length from the mapping point (𝑥𝑝, 𝑦𝑝) to the starting point of the reference trajectory. 501 

In addition, four other features: curvature 𝜿, velocity 𝑽, acceleration 𝒂, and heading 𝜽, are also 502 

selected so as to compose the observation vector 𝒐 with the Frenet coordinates (𝒔, 𝒍). 503 

3.1.3. Training Details 504 

There were 8311 filtered trajectories; 80% of the trajectories were selected as the training set, 505 

10% as the test set, and the remaining 10% was used as the verification set to observe if the 506 

model is over-fitted.  507 

The network was trained using mini-batches with a size of 64. Due to the limitation on a sensor 508 

measurement range and noise in practical application scenarios, it was difficult to track 509 

dynamic vehicles stably for a long time, so the network was trained using windows that 510 

consisted of 30 inputs, representing a total of 3s past observations. The ADAM optimizer was 511 

used; the learning rate was 0.0005 and ReLU activation with α = 0.1. The loss function adopted 512 

the MSE (mean square error) between the predicted sequence and the ground truth sequence; 513 

the code used to generate the model was written in Keras, and the training was performed on 514 

GPU using the TensorFlow backend with a batch size of 32; the model training contained 16 515 

epochs. 516 

3.2. Testing Results and Discussion 517 

3.2.1. The Impact of the Prediction Reference Baseline 518 

To investigate the impact of considering Prediction Reference Baseline on the accuracy of the 519 

proposed method. The RMSE performance of the proposed model is present with three 520 

modifications. 521 

 
(a) 

 
(b) 

Figure 13. Effectiveness of considering Prediction Reference Baseline in the vehicle trajectory prediction: (a) 522 
Lateral position error; (b) Longitudinal position error. 523 
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In one experiment, the system is trained and tested with the absolute coordinate, in the second, 524 

the centerline that the target vehicle was initially driven is selected as a PRB, and finally in the 525 

third experiment, the PRB of the target vehicle is determined by the method in Section 2, while 526 

the other attributes of the three model are unchanged. Figure 13 shows the accuracy of the 527 

trajectory prediction for different time horizons, the RMSE value of the model is decreased by 528 

adding the PRB for both lateral and longitudinal trajectory. 529 

3.2.2. Comparative study 530 

To evaluate the proposed approach, we purse a direct comparison with state-of-the-art vehicle 531 

trajectory prediction using the same dataset (i.e., NGSIM). The results show that the proposed 532 

method outperforms the state-of-the-art model and decreases the overall RMSE value of the 533 

system by 10 percent on average. Table 2, summarizes the RMSE values comparing the 534 

proposed methods with the baseline trajectory prediction models in the literature [20], [22], 535 

[23], [24], [36].  536 

The comparison results show that the proposed Knowledge-driven LSTM Network has better 537 

performance in RMSE for NGSIM. Note that as compared to the baseline [24], the prediction 538 

accuracy gets a slight improvement, but the proposed method enhances the real-time 539 

performance and much reduces the computational complexity due to the reduction of the 540 

feature space dimension. 541 

Table 2. RMSE comparison of the proposed method with the baseline models and state-of-the-art. 542 

Prediction 

Horizon 

(s) 

M-LSTM 

[20] 

CS-

LSTM 

[22] 

NLS-

LSTM 

[36] 

ST-

LSTM 

[23] 

DLM 

[24] 

Proposed 

method 

1 0.58 0.61 0.56 0.58 0.41 0.41 

2 1.26 1.27 1.22 1.21 0.95 0.89 

3 2.12 2.09 2.02 1.97 1.72 1.64 

4 3.24 3.10 3.03 2.85 2.64 2.47 

5 4.66 4.37 4.30 3.89 3.87 3.68 

3.3. Simulation Results and Discussion 543 

3.3.1. Simulation Experimental Platform 544 

The simulation experiments were based on the JAC's automatic driving hardware-in-the-loop 545 

test platform. The experimental simulation platform is presented in Figure 13, where it can be 546 

seen that the experimental platform included the real vehicle braking system, steering system, 547 

sensor system, and network communication system, which had dSPACE (Matlab/Simulink) as 548 

a core. The controller rapid prototyping platform was built, virtual reality interfaces and 549 

environment-aware sensor modules were provided using the PreScan software, and the CarSim 550 

software was used to run the vehicle dynamic model and provide a platform that could be 551 

quickly verified for automatic driving algorithm testing. 552 
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(a) 

 
(b) 

Figure 14. Experimental simulation platform: (a) Design of the simulation platform; (b) Photo of the simulation 553 
platform. 554 

 555 

 

Figure 15. Simulation scenario layout. 556 

 557 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 16. Simulation results: (a) On the road scenario; (b) Intersection scenario. (c) Simulation results of the on 558 
the road scenario; (d) Simulation results of the intersection scenario. 559 

3.3.2. Simulation Results 560 

The simulation scenario shown in Figure 15 was established according to the real urban traffic 561 

scenario. Two typical traffic scenarios were selected to verify the adjustment effect of the priori 562 

reference trajectory on the predicted trajectory. Figure 16(a) shows the driving scene on the 563 

road, and Figure 16(b) shows the driving scene at the intersection. In the first scene, three 564 

reference trajectory intent segments were fitted to lane keeping (LK), lane change left (LCL), 565 

and lane change right (LCR), as shown by the blue curve in Figure 16(a). The historical 566 

observation vector of the target vehicle denoted the network input, and it was unchanged; the 567 

output network vector was converted according to three Prediction Reference Baseline to 568 

obtain three predicted trajectories, as shown by the green curve in Figure 16(c). In Figure 16(b), 569 

the intersection driving scenario is presented, where two Prediction Reference Baseline intent 570 

segments of go straight (GS) and turn right (TR) are fitted respectively; the converted network 571 

output results are shown by the green curve in Figure 16(d). Since the network learns the 572 

relative relationship between the historical and Prediction Reference Baseline, even at the same 573 

network input, the predicted trajectory will be affected by the Prediction Reference Baseline. 574 

The experimental results prove that the priori knowledge about the driving scene can be used 575 

to adjust the predicted trajectory effectively based on the Prediction Reference Baseline. 576 

3.4. Real-World Urban Traffic Scenarios 577 

3.4.1. Experimental Platform Construction 578 

In order to verify if the simulation results obtained in coincide well with the real-world scenario 579 

results, an instrumented vehicle was used to collect data, as shown in Figure 17(a). The vehicle 580 

loading sensors included an IBEO four-layer laser scan instrument, a Velodyne HDL-64E lidar, 581 

two high-resolution cameras, and a differential GPS/INS (SPAN-CPT) system. The sensor 582 

configuration of the vehicle and its sensing range are shown in Figure 17(b). The differential 583 

GPS module provided the information on the position, speed, and heading of the ego vehicle. 584 

Based on our previous work [37], moving obstacles were detected and tracked by a four-layer 585 

laser scanner, which was located at the front of the vehicle. According to the space-time 586 

relationship between the moving obstacles, such as pedestrians and vehicles, and experimental 587 

vehicles, the position, speed, size, and type of the sports vehicles can be measured. We 588 
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conducted a real vehicle experiment in Hefei, Anhui Province, China. The test road is shown 589 

in Figure 18(a). The prediction model was exemplarily implemented on NVIDIA Xavier 590 

platform using the C++ programming language. 591 

 
(a) 

 
(b) 

Figure 17. Experimental platform: (a) The Pioneer IV autonomous vehicle; (b) Perception range of the 592 
autonomous vehicle. 593 

Before conducting the actual vehicle experiment, the high-resolution maps were collected to 594 

establish based on our experimental vehicle. There were more than 1,140 road entities on the 595 

map, including the stop signs, lane markings, and lane lines, covering approximately 8 km of 596 

the roadways (as Figure 18 shows). 597 

 
(a) 

 
(b) 

Figure 18. Testing roadway layout: (a) The high-resolution map of the experimental roadway; (b) An enlarged 598 
view of the map data. 599 

3.4.2. Field Test and Discussion 600 

The experimental driving route was located on a typical urban roadway, with a total length of 601 

about 4.7 km. It includes multiple intersections, Y-shaped intersections, T-shaped intersections, 602 

and other common urban road scenarios. Due to the long experimental route and a large number 603 
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of scenes encountered, it was inconvenient to conduct the prediction process for each scene. 604 

Therefore, two typical scenes were selected for detailed trajectory prediction process analysis. 605 

 
(a) 

 
(b) 

 
(c) 

Figure 19. The results of Scenario 1: (a) Trajectory prediction interface; (b) Scenario reasoning; 606 
(c) Experimental scenarios. 607 

In Scenario 1, vehicle054 was on the road. The input conditions of the scene evaluation module 608 

are shown in Figure 17(b). In front of the target vehicle, there was a large truck denoted as 609 

vehicle055 that was moving with a speed of 5 km/h. At that time, the speed of vehicle054 was 610 

24 km/h. The calculated value of the TIV was less than the deceleration threshold. Therefore, 611 

it was judged that the target vehicle would have an intension to change lane. Vehiche054 was 612 

driving on lane00055, which was a straight lane. Through an associated search in the 613 

conceptual ontology model of the driving scene, it was learned that the right lane was also a 614 

straight lane, and the lane line was a white dotted line; the prolog rule of legality is expressed 615 

as follows: 616 

legalToRight(target,true): targetVehicle(target), isOnLane(target,Lane), hasRightLine(Lane,Line), 617 
hasLineType(Line,”dotted_white”). 618 

The next section of the target vehicle to travel was the intersection, and the distance to the 619 

intersection was greater than 30 m, so the effectiveness of changing lanes was satisfied; thus, 620 
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the lane change did not affect the current target of the target vehicle; the prolog rule of 621 

reasonableness is as follows: 622 

reasonableToRight(target,true): targetVehicle(target), currentRoadState(target,"ApprJunction"), 623 
isOnSegment(target,Seg), connectToJunction(Seg,Junc), intersection(Junc), connectToStopLine(Seg,SL), 624 
distToStopLine(SL,DL), DL >= 30. 625 

The autonomous vehicle was driving in the right back region of the target vehicle, and the TTC 626 

and TIV values were both less than the corresponding acceleration threshold but greater than 627 

the corresponding parking threshold; the prolog rule of safety is as follows: 628 

safeToRight(target,true): targetVehicle(target), hasRightObstacle(target,null), 629 
hasRightFrontObstacle(target,null), hasRightBackObstacle(target,egovehicle). 630 

The final prolog rule is as follows: 631 

canChangeToRight(target,true): safeToRight(target,true), reasonableToRight(target,true), legalToRight 632 
(target,true). 633 

After obtaining the driving intention of the target vehicle, the prior reference trajectory (the 634 

blue curve in Figure 17(a)) was fitted, and the historical trajectory was transformed into Frenet 635 

coordinates based on the prior reference trajectory and then fed to the LSTM network input; 636 

the predicted trajectory is shown by the green dotted line in Figure 20(a). The trajectory 637 

prediction results of vehicle054 could effectively reduce the reaction time of autonomous 638 

vehicle while avoiding collisions caused by vehicle054 cutting in. 639 

In Scenario 2, vehicle121 was in the pre-intersection scenario. The input conditions of the 640 

scenario evaluation module are shown in Figure 20(b). The current speed of vehicle121 was 641 

24 km/h, and the lane it traveled was lane000103, which was a right-turn lane. In this scenario, 642 

the main factor affecting the target vehicle's driving intention was the traffic light. The prolog 643 

rule of legality is as follows: 644 

legalToTurnRight(ego,acc): targetVehicle(target), currentRoadState(target,"ApprJunction"), 645 
isOnSegment(target,Seg), connectToJunction(Seg,Junc), intersection(Junc), hasTrafficLight(Junc,TR), 646 
hasLightColor(TR,"green"), connectToStopLine(Seg,SL), distToStopLine(SL,DL), DL =< 0 647 

The target vehicle was on the right turn, and the prolog rule of reasonableness is as follows: 648 

reasonableToLeft(ego,true): egoVehicle(ego), currentRoadState(ego,"ApprJunction"), 649 
isOnSegment(ego,Seg), connectToJunction(Seg,Junc), intersection(Junc), connectToStopLine(Seg,SL), 650 
distToStopLine(SL,DL), DL >= 30. 651 

The final rule of safety is as follows: 652 

safeToTurnRight(target,true):-653 
targetVehicle(target),hasFrontObstacle(target,null),hasRightFrontObstacle(target,null),hasRightBackObstac654 
le(target,null). 655 

The final rule is expressed as: 656 
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canTurnRight(target,true): safeToTurnRight(target,true), reasonableToTurnRight(target,true), 657 
legalToTurnRight (target,true). 658 

The blue curve in Figure 20(a) represents the prior reference trajectory fitted based on the turn 659 

right driving intention. The predicted trajectory is shown by the green dotted line in Figure 660 

20(a). 661 

 
(a) 

 
(b) 

 
(c) 

Figure 20. The results for Scenario 2: (a) Trajectory prediction interface; (b) Scenario reasoning; 662 
(c) Experimental scenarios. 663 

The experimental results of Scenarios 1 and 2 verify that the proposed LSTM network can 664 

effectively combine the prior and posterior knowledge in the driving scene, and the lane change 665 

behavior can be predicted before the variation of vehicle kinemics. The proposed LSTM 666 

network can be iteratively adapted to a driving scenario without manual annotation during the 667 

network training, which significantly reduces the training complexity and solves the sparse 668 

data problem. Due to the unique combination of knowledge reasoning, the proposed prediction 669 

model can make a more accurate and reasonable estimation of future trajectories of surrounding 670 

vehicles than the existing models in different environments. 671 
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4. Conclusions 672 

This paper combines a maneuver-based and learning-based trajectory prediction models and 673 

proposes an improved trajectory prediction model based on the LSTM neural network driven 674 

by driving knowledge. In order to achieve better use of a prior driving knowledge in driving 675 

scenarios and solve the problem of the combinatorial explosion caused by a large number of 676 

conditional attributes, the multi-source and heterogeneous information of the driving scenario 677 

is modeled based on ontology, and a driving knowledge base, including the driving experience 678 

and traffic rules, is constructed. Then, the conditional attributes that affect driving intentions 679 

are classified and analyzed from the perspectives of safety, legitimacy, and reasonableness, and 680 

situation parameters in the horizontal and vertical directions are generated by the deterministic 681 

scene evaluation method. Finally, using the obtained situation parameters and the driving 682 

knowledge base, the driving intention is inferred based on the prolog online reasoning system. 683 

In order to make the prediction results effectively combine the posterior knowledge and solve 684 

the problem of insufficient adaptability of the existing learning-based prediction models, this 685 

paper converts the driving intention of the target vehicle into a prior reference trajectory, and 686 

the Frenet coordinates based on prior reference trajectory are used as a coordinate frame for 687 

the LSTM neural network. The prior driving knowledge existing in the driving scene can be 688 

used to adjust the predicted trajectory in the form of the prior reference trajectory without 689 

increasing the network complexity but ensuring efficient operation of the proposed model on 690 

an embedded platform. 691 

The proposed prediction model was verified by simulations and experiments. The simulation 692 

results showed that the prior reference trajectory could effectively adjust the output of the 693 

LSTM neural network, making the predicted trajectory meet the constraints of the prior 694 

knowledge in a driving scenario. The real-world-experiment results show that the proposed 695 

prediction model can significantly reduce the computing performance requirements while 696 

ensuring real-time performance on the embedded platform. Also due to the full combination of 697 

prior and posterior knowledge in the driving scene, the target vehicle’s lane-changing 698 

behaviour can be predicted on average 2.05 s (for LCL) or 2.71 s (for LCR) in advance, and 699 

the precision can be improved by 12.5% for long-term predictions and is more robust, flexible, 700 

and adaptive in complex traffic scenarios. 701 

Even though the proposed model has advantages in trajectory prediction, there are still some 702 

limitations, such as that indexes of scenario assessment are not comprehensive enough. In order 703 

to overcome this limitation, in future work, the evaluation index will be considered from the 704 

perspective of human-vehicle interaction and multi-vehicle interaction. Furthermore, data from 705 

a more complex scenario will be collected and used to verify the proposed prediction model. 706 
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