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ABSTRACT: Efforts of using data assimilation to improve PM2.5
forecasts have been hindered by the limited number of species and
incomplete vertical coverage in the observations. The common
practice of initializing a chemical transport model (CTM) with
assimilated initial conditions (ICs) may lead to model imbalances,
which could confine the impacts of assimilated ICs within a day. To
address this challenge, we introduce an initial error transport model
(IETM) approach to improving PM2.5 forecasts. The model
describes the transport of initial errors by advection, diffusion,
and decay processes and calculates the impacts of assimilated ICs
separately from the CTM. The CTM forecasts with unassimilated
ICs are then corrected by the IETM output. We implement our
method to improve PM2.5 forecasts over central and eastern China.
The reduced root-mean-square errors for 1-, 2-, 3-, and 4-day
forecasts during January 2018 were 51.2, 27.0, 16.4, and 9.4 μg m−3, respectively, which are 3.2, 6.9, 8.6, and 10.4 times those by the
CTM forecasts with assimilated ICs. More pronounced improvements are found for highly reactive PM2.5 components. These and
similar results for July 2017 suggest that our method can enhance and extend the impacts of the assimilated data without being
affected by the imbalance issue.

■ INTRODUCTION

Air-quality forecasting is essential for developing short-term air
pollution control strategies and mitigating health risks from air
pollution.1 Substantial forecast errors, however, may be
induced by uncertainties in the initial concentrations,
emissions, and physical and chemical processes, possibly
leading to false alarms or missed episodes of pollution events.2

Owing to the fast economic growth and implementation of
increasingly stringent emission control policies in China, the
rapid changes in emissions are usually not captured by the
slowly updated emission inventories, posing further challenges
to air-quality forecasting in China.3

Various data assimilation techniques, including optimal
interpolation (OI),4 four-dimensional variational assimilation
(4D-Var),5 and ensemble Kalman filter (EnKF),6 have been
adopted to improve air-quality forecasts. It is standard practice
to supply initial conditions (ICs) directly to a chemical
transport model (CTM) with the assimilated data.7 This
assimilated model initialization approach has proved effective
in improving air-quality forecasts by assimilating diverse types
of observations such as in situ, remote sensing, and satellite
data.8−10 Despite these considerable successes, the benefits of
data assimilation may not be fully exploited. Ma et al.11

assimilated surface in situ PM2.5 observations to improve 3-day

PM2.5 forecasts and found that most improvements by the
assimilated ICs were limited to within the first day of the
forecast; similar conclusions were drawn from other studies
when only surface PM2.5 observations are assimilated.12,13 By
contrast, it is estimated that the global average residence time
of accumulation-mode aerosols (0.1−2 μm diameter) emitted
near the surface falls in the range of 3−7 days.14,15 This
discrepancy between the residence time of aerosols and the
duration of the impacts of assimilated ICs suggests that PM2.5
forecasts can be further improved.
There are two types of imbalances that have hindered the

improvement using assimilated ICs for model initialization.
First, the number of assimilated species is often limited,
resulting in the imbalance between the assimilated and the
unassimilated variables.16 Also, the incomplete vertical cover-
age of the assimilated data (e.g., by assimilating only surface
observations) may lead to the imbalance in space.17 By model
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initialization, these imbalances will be brought into the CTM
and generate spurious species interactions and vertical
transport, which in turn degrade the forecasting performance.18

Although this model imbalance issue is rarely discussed in the
air-quality forecasting literature, some previous studies have
indicated that PM2.5 forecasts can be improved by extracting
more observational information across space and chemical
species. For example, Schwartz19 showed that better forecasts
were achieved by simultaneously assimilating surface PM2.5
observations and satellite aerosol optical depth (AOD)
retrievals. Moreover, it has been found that 2−3-day forecasts
of PM2.5 can be significantly improved by assimilating
multispecies surface chemical observations (e.g., PM2.5, SO2,
and NO2).

8,20

Model imbalances due to initialization, or initialization
shocks, have been well recognized and explored in numerical
weather prediction and ocean modeling.21,22 Several proce-
dures to mitigate the initialization shock and increase the
dynamical balance have been developed. These include, among
others, pre- and postprocessing methods such as nonlinear
normal mode initialization23,24 and digital filtering25 as well as
incremental analysis update schemes that gradually introduce
the analysis increments over a time window.26 Although these
initialization techniques are effective in reducing spurious high-
frequency oscillations, they do not completely eliminate the
imbalances and can partially undo the efforts of data
assimilation.27,28

In this study, we suggest a new way to extract information
from the assimilated ICs without bringing the imbalances into
the CTM and introduce an initial error transport model
(IETM) approach to improving PM2.5 forecasts. The model
describes the transport of errors from the ICs by advection,
diffusion, and decay processes and calculates the impacts of
assimilated ICs separately from the CTM. The CTM forecasts
with unassimilated ICs are then corrected by the IETM output.
We implement and test our method on PM2.5 forecasts over
central and eastern China during January 2018 and July 2017.
The reductions in root-mean-square error (RMSE) for 4-day
forecasts were still apparent, substantially improving results
from direct initialization of the CTM. Reasons that explain the
improvements are also discussed.

■ METHODS AND DATA
IETM Methodology. Our model for describing the

transport of initial errors is motived by the fundamental
principles and major components of the governing equations
for CTMs. A generic form of the governing equation for a
pollutant of interest is given by

∂
∂

= ∇· ∇ − ∇· + + +c
t

K c c E R c D cv( ) ( ) ( ) ( )
f

f f f f f f f f f

(1)

where cf is the pollutant concentration, Kf is the eddy
diffusivity, vf is the wind vector, and Ef, Rf, and Df are the
changes of concentrations resulting from the emission,
reaction, and deposition processes, respectively. Here, the
superscript “f” stands for “forecast”. Equation 1 explicitly
models the diffusion and advection processes while leaving the
other components nominally defined. Air-quality forecasts are
then obtained by solving the equation numerically with
appropriate ICs. Conventionally, assimilated ICs with less
bias and higher accuracy are supplied directly to the CTM.
This approach, however, also brings imbalances in the

assimilated ICs into the CTM, resulting in model imbalances
and limiting the benefits of assimilated ICs.
We next derive a governing equation for the forecast errors.

Suppose that the true concentrations follow the same form of
the governing equation as in eq 1

∂ *
∂

= ∇· *∇ * − ∇· * * + * + * *

+ * *

c
t

K c c E R c

D c

v( ) ( ) ( )

( ) (2)

We define the forecast error by e = ef − c*. To obtain an
equation in terms of e only, we assume for simplicity that the
eddy diffusivity and the wind vector are without error, that is,
Kf = K* and vf = v*. In the presence of errors in Kf and vf, the
resulting equation will still be a good approximation, provided
that these errors are relatively small. This assumption is
reasonable, since diffusion is negligibly slow compared to
advection29 and wind forecasts are sufficiently accurate for up
to 4 days.30 Now, subtracting eq 2 from eq 1 gives the equation
for the forecast error e

∂
∂

= ∇· ∇ − ∇· + Ψ *e
t

K e e c cv( ) ( ) ( , )f f f
(3)

where

Ψ * = + + − * − * *

− * *

c c E R c D c E R c

D c

( , ) ( ) ( ) ( )

( )

f f f f f f

The first and second terms on the right-hand side of eq 3 are
the diffusion and advection operators, respectively, which
reflect the transport of forecast errors. Here, the transported
error refers to the error transported from the previous time
step, which involves errors arising from all sources including
emission, reaction, and deposition. Meanwhile, the last term Ψ
in eq 3 represents the error arising from all uncertainties at the
current time step. This part of the error is generally difficult to
estimate because it depends on the unknown true emission,
reaction, and deposition processes. Fortunately, for PM2.5 as a
pollutant with a typical lifetime of 4 days in the lower
troposphere,31 the error generated at a single time step is
relatively small compared to the transported error, as we will
show in SI Figure S1 and the Results and Discussion. A related
work by Skachko et al.32 found that transport plays a major
role in describing the evolution of the model error for data
assimilation.
Although an explicit expression of Ψ in eq 3 is not available,

the physical and chemical removal processes of the pollutant
are expected to follow an exponential decay.33 We thus
approximate Ψ by a decay term and arrive at the governing
equation for our initial error transport model (IETM)

α∂
∂

= ∇· ∇ − ∇· −e
t

K e e ev( ) ( )f f
(4)

where α is a decay rate parameter that controls the lifetime of
the forecast errors. This simplified equation can then be solved
numerically. Although eq 4 depends on e only, solving the
equation requires knowing the initial error e0 = c0

f − c0*. Since
c0* is unknown, we estimate it by the assimilated initial
concentration. Finally, consider a baseline forecast cf that is
obtained by solving eq 1 with unassimilated ICs. In view of the
relation e = cf − c* mentioned above, we correct the baseline
forecast by subtracting the solution ei to eq 4 and obtain our
final forecast
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= −c c ei f i

where the superscript “i” stands for the IETM approach.
To recap, the proposed IETM approach describes the

transport of initial errors through a simplified governing
equation consisting of diffusion, advection, and decay terms.
The solution to this equation is then used to correct the
baseline forecast from the full CTM with unassimilated ICs.
Overall, the IETM methodology avoids breaking the model
balances in the CTM by calculating the impacts of assimilated
ICs separately from the CTM, thereby improving the final
forecasts.
Numerical Implementation. We adopted the Nested Air

Quality Prediction Modeling System (NAQPMS)34 developed
by the Institute of Atmospheric Physics, Chinese Academy of
Sciences, as the CTM in this study. NAQPMS runs in three
dimensions with 20 vertical layers; more details about
NAQPMS are provided in Supporting Information (SI)
Section S1. We used the method of optimal interpolation
(OI) for data assimilation, which is described in SI Section S2.
Differences between the unassimilated and the assimilated ICs
are treated as the ICs for the IETM. Numerical schemes and
parameter settings for implementing the advection, diffusion,
and decay processes in eq 4 are described as follows.
The advection process is calculated through a mass-

conservative, peak-preserving, mixing ratio-bounded advection
algorithm developed by Walcek and Aleksic.35 The algorithm
employs dual-linear segment approximations and a special
treatment near the local maxima and minima to preserve
extremes and reduce numerical diffusion. It has been widely
used in CTMs to advect chemical species with nonnegative
concentrations;34,36,37 however, it does not require positive-
definite initial fields, and negative quantities can be advected. A
two-dimensional implementation of the scheme is described in
SI Section S3 and applied for the horizontal advection of
forecast errors. Vertical advection is not considered here for
three reasons. First, only surface in situ observations are
assimilated in this study, so that the assimilated concentrations
in the surface layer are more accurate than those in higher
layers. Second, vertical wind speeds are significantly smaller
than horizontal wind speeds. Finally, omitting the vertical
advection would introduce a relatively small error but can save
almost 90% of the computational cost.

The implementation of the diffusion process is straightfor-
ward except for determining the value of eddy diffusivity Kf.
Sometimes, Kf is set to zero or an empirical constant because
diffusion is negligibly slow compared to advection.29 Here, it is
calculated by a scheme based on model resolution and wind
speed derivatives.38

The decay rate parameter α in eq 4 determines the lifetime
of forecast errors. It has been shown that the lifetimes of
components in PM2.5 range from less than 1 day to a few
weeks.14 Here, we regard the lifetime of the impacts of initial
errors as the same as the lifetime of PM2.5, which is about 4
days in the lower troposphere.31 Accordingly, α is set to the
reciprocal of the lifetime, that is, 1/96 h−1. As a result, the
impacts of initial errors will last at least 4 days if not
transported outside the simulation domain.
During forecasting, we run the full CTM once to obtain the

baseline forecast and run the IETM once to yield the
correction. Compared with the conventional method that
runs the CTM once with assimilated ICs, our method requires
extra computation to run the IETM. However, the IETM is a
two-dimensional, simplified model, which is easy and cheap to
implement. Moreover, since the background forecast has
already been obtained in the OI assimilation scheme, it can be
used directly as the baseline forecast, thereby saving even more
computation.

Observational Data. The surface PM2.5 observations used
in this study were obtained from the China National
Environmental Monitoring Center. These observations were
first examined by a probabilistic automatic outlier detection
method39 to remove data with abnormally large representation
or observational errors. After excluding sites with excessive
missing or removed data, there were 1326 monitoring sites
located in the research area as shown in Figure 1. Most of these
sites were in urban areas, and there was more than one
monitoring site for most cities. To ensure that there was at
least one assimilation site for each city, one validation site was
randomly selected for cities with more than two available sites.
A total of 1003 sites were selected for assimilation, among
which 57 were located in the Beijing−Tianjin−Hebei (BTH)
region, 120 in the Yangtze River Delta (YRD) region, and 59
in the Pearl River Delta (PRD) region. The other 323 sites
were used for validation, including 13, 37, and 15 sites in the
BTH, YRD, and PRD regions, respectively.

Figure 1. (a) Domain configurations and (b) distribution of monitoring sites. Outer domain (D1) covers East Asia at a 45 km horizontal
resolution, and inner domain (D2) covers central and eastern China at a 15 km horizontal resolution. Colored regions in b indicate the Beijing−
Tianjin−Hebei, Yangtze River Delta, and Pearl River Delta regions from north to south.
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Configurations of Forecasting Experiments. Three
forecasting experiments were carried out to produce 96 h
forecasts of PM2.5 during January 2018 and July 2017. These
experiments share the same domain configurations, emission
inventories, meteorological initial and boundary conditions,
and parameter settings for the CTM, with the only difference
being the treatments of ICs as described below.
The first experiment supplies the unassimilated ICs, which

are extracted from the forecasts started 24 h ago, directly to the
CTM. The second experiment uses the assimilated ICs instead
for the CTM. The third experiment implements the proposed
method, which corrects the forecasts produced in the first
experiment with the output from the IETM. The ICs for the
IETM are obtained by subtracting the assimilated ICs from the
unassimilated ICs. While the CTM includes 20 vertical layers,
only surface PM2.5 observations were obtained and assimilated
in this study. The restart interval is set to 24 h, and the
assimilation frequency is hourly. Components of PM2.5 in the
assimilated ICs (e.g., nitrate, sulfate, organic aerosols, and
black carbon) are adjusted proportionally to the change of
total PM2.5 before and after data assimilation.

■ RESULTS AND DISCUSSION

Transport of Forecast Errors. It is well documented that
transport plays a major role in the evolution of PM2.5.

40−42 The
PM2.5 driven by cold surges can travel up to 2000 km from
northern to southern China within 2 days.43 Moreover,
components with longer lifetimes (e.g., dust and black carbon)
can travel across oceans,44 and intercontinental transport of
aerosols is estimated to account for 36−97% of the background
surface concentrations.40

Equation 3 suggests that the forecast errors of PM2.5 can be
similarly transported. Numerical evidence for such error
transport from the forecasting experiments is shown in Figure
2 and SI Video S1. At the beginning of the forecast period,
PM2.5 concentrations above 300 μg m−3 are found in Henan,
Hebei, Hunan, and Hubei. During the forecast, most PM2.5 is
transported to the Pacific Ocean by a strong northwest wind.
At a lead time of 32 h, PM2.5 concentrations for most of the
Chinese mainland fall below 150 μg m−3, as shown in the top
panel of Figure 2. For comparison, we estimated the forecast
errors by the difference between the forecast and the
assimilated concentrations, as shown in the middle panel of
Figure 2. Accuracy of the assimilated data is verified in SI
Section S4 and Figure S2. As is clear from Figure 2, forecast
errors are transported along with concentrations, and large

Figure 2. Illustrations of the transport of PM2.5 forecast errors. Forecast starts at 20:00 on January 6, 2018. Forecast errors (middle) are estimated
by the difference between the forecast (top) and the assimilated concentrations. Transported errors (bottom) are calculated using the IETM
approach. Animated version of this figure is provided in SI Video S1.
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forecast errors occur mostly in heavily polluted areas. The
transported initial errors, calculated using the IETM approach,
are shown in the bottom panel of Figure 2. The estimated
forecast errors and the transported initial errors are identical by
definition at the start of the forecast. During the forecast, the
differences increase but the transported errors consistently
account for most of the estimated errors. The differences are

likely attributable to uncertainties in the emissions, reactions,
deposition, and wind fields. In summary, these results confirm
that forecast errors of PM2.5 can be transported along with
concentrations from the CTM and the transported errors have
a strong impact on forecasts with a lead time up to 32 h.
To further demonstrate the importance of transport in the

evolution of forecast errors, we decompose the forecast errors

Table 1. Performance Statistics for 1−4-Day PM2.5 Forecasts During January 2018 Using Three Methodsa

1-day forecast 2-day forecast 3-day forecast 4-day forecast

region method MB RMSE r MB RMSE r MB RMSE r MB RMSE r

all CTMf 64.0 98.9 0.43 59.8 97.5 0.39 59.3 98.3 0.36 57.0 98.3 0.31
CTMa 51.3 82.6 0.47 57.0 93.6 0.40 58.0 96.4 0.36 56.4 97.4 0.31
IETM 15.8 47.7 0.58 31.1 70.5 0.39 41.9 81.9 0.34 47.2 88.9 0.29

BTH CTMf 66.7 111.5 0.54 64.1 109.2 0.49 70.1 115.4 0.41 66.6 119.9 0.33
CTMa 48.9 86.7 0.59 62.1 105.7 0.49 69.4 114.1 0.41 66.3 119.4 0.33
IETM 22.6 60.5 0.61 51.2 94.3 0.46 64.9 108.4 0.41 64.4 117.1 0.33

YRD CTMf 78.1 112.4 0.68 70.1 113.8 0.61 67.0 122.2 0.50 66.3 121.2 0.47
CTMa 62.8 92.8 0.71 67.3 109.6 0.62 65.7 120.2 0.50 65.7 120.2 0.47
IETM 21.5 53.1 0.73 38.6 81.2 0.60 51.9 103.6 0.48 58.6 110.0 0.46

PRD CTMf 49.1 76.4 0.20 47.7 75.1 0.20 48.2 78.5 0.21 49.3 81.1 0.18
CTMa 41.3 66.7 0.27 44.2 70.9 0.22 46.4 76.0 0.21 48.3 79.6 0.17
IETM 1.6 34.8 0.60 −5.3 47.4 0.18 4.7 55.4 0.04 20.5 63.6 0.07

aBTH, Beijing−Tianjin−Hebei region; YRD, Yangtze River Delta region; PRD, Pearl River Delta region. MB, mean bias (μg m−3); RMSE, root-
mean-square error (μg m−3); r, correlation coefficient. The CTMf and CTMa methods refer to CTM forecasting with unassimilated and assimilated
ICs, respectively, and IETM refers to CTMf corrected by the IETM output.

Figure 3.Maps of RMSE at validation sites for 1-day forecasts during January 2018. RMSEs of the CTMf, CTMa, and IETM methods are shown in
a, b, and c, respectively, and differences between the RMSEs of IETM and CTMa are shown in d.
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into two parts: the error transported from an hour ago and the
other error that is generated during the last hour. Both parts of
error involve uncertainties stemming from the CTM modules
and the input data, thus forming a different decomposition
from those usually discussed in the literature. As shown in SI
Figure S1, the transported error outweighs the other error by a
factor of 6.6. This result is consistent with the work of Skachko
et al.,32 which found that transport plays a major role in
describing the evolution of model error for data assimilation.
Comparisons of Forecasting Methods.We compare the

proposed IETM method with two commonly used forecasting
schemes mentioned above, which we refer to as CTM
forecasting with unassimilated ICs (CTMf) and that with
assimilated ICs (CTMa). Three statistical measures are used to
evaluate the accuracy of the forecasts: mean bias (MB), root-
mean-square error (RMSE), and correlation coefficient (r).
Results for 1−4-day PM2.5 forecasts during January 2018 using
three methods over the study period are summarized in Table
1. Examples of the forecast PM2.5 concentrations at three
validation sites in the BTH, YRD, and PRD regions are shown
in SI Figure S3.
As noted from Table 1, the CTMf method exhibits a large

upward bias of 57.0−64.0 μg m−3 for 1−4-day forecasts over
all validation sites. This overestimation could be largely
explained by stringent emission controls that are not captured
by the currently used emission inventory, such as strengthen-
ing industrial emissions standards, upgrading industrial boilers,
phasing out outdated industrial capacities, and promoting
clean fuels in the residential sector.
The CTMa method yields improved forecasting perform-

ance over CTMf by initializing the CTM with the assimilated
data. As shown in Figure 3, the RMSE of 1-day forecasts using
the CTMf method exceeds 150 μg m−3 at most validation sites
in the Sichuan Basin, the North China Plain, and the Hubei−
Hunan Plain, while RMSEs under 50 μg m−3 are found mainly
in Northeast China, Northwest China, and Yunnan. A
reduction of RMSE is clearly observed in areas with high
RMSEs, especially the North China Plain. The RMSE of 1-day
forecasts over all validation sites is lowered by 16.2 μg m−3,
amounting to a reduction of 16.4% (Table 1).
Although PM2.5 forecasts are generally improved by the

CTMa method, the benefits are largely limited to 1-day
forecasts. At the beginning of the forecast, the RMSE for the
CTMa method is substantially lower than that for CTMf, as
evident from Figure 4. However, the RMSE for CTMa
increases dramatically, and its advantage over CTMf is quickly
lost, especially during the first hour. A similar phenomenon in
the first hour of the forecast was also noted by previous work,19

where only observations of PM2.5, but not its precursors, were
assimilated. Compared with the relatively large improvement
for 1-day forecasts, only reductions of 3.9, 1.9, and 0.9 μg m−3,
or 4.0%, 1.9%, and 0.9%, respectively, are obtained from the
CTMa method for 2-, 3-, and 4-day forecasts (Table 1). These
results are consistent with previous studies, suggesting that
most improvements by assimilating surface PM2.5 observations
are limited to 1-day forecasts.11−13

By contrast, improvements from the IETM method tend to
be more substantial and last longer. Starting with the same
reduction in RMSE as that by CTMa, the IETM forecasts only
see a gradual increase in RMSE during the first 2 days, and the
impacts of assimilated ICs are still visible on the fourth day in
Figure 4. A periodic diurnal variation in the RMSEs of all
forecasts is noted in Figure 4, which is likely caused by

uncertainties in the diurnal variation of emissions and
meteorological conditions such as the solar intensity, temper-
ature, wind speed, and height of the planetary boundary layer.
As shown spatially in Figure 3, improvements in RMSE for 1-
day forecasts by IETM over CTMa are apparent at most
validation sites and more pronounced in areas with high
RMSEs. Remarkably, while the RMSEs for validation sites in
Guangdong, Fujian, and Zhejiang are scarcely reduced by
CTMa, they are cut down to under 50 μg m−3 by the IETM
method. Compared with the results for CTMf, the reductions
in RMSE for 1-, 2-, 3-, and 4-day forecasts by the IETM
method are 51.2, 27.0, 16.4, and 9.4 μg m−3, or 51.8%, 27.7%,
16.7%, and 9.5%, respectively, which are 3.2, 6.9, 8.6, and 10.4
times those by the CTMa method (Table 1). Table 1 also
suggests that improvements by the IETM method are mainly
in the MB and RMSE but less in the correlation coefficient,
especially for 2−4-day forecasts. This inconsistency is due to
the fact that r is a standardized measure that magnifies the
contributions of locations with low concentrations and hence
small forecast errors. The IETM approach, however, tends to
transport large forecast errors to locations with small errors,
which may decrease r for those locations and offset the
improvement in r elsewhere. Nevertheless, since PM2.5
concentrations and forecast errors show marked spatiotempo-
ral variability, the MB and RMSE measures seem more
appropriate for assessing predictive accuracy in this case.
To further test the robustness of our method for different

periods and seasons, we applied it to the month of July 2017.
Although the RMSE is much lower in the summer, the results
show similar trends of improvement to those for January 2018.
Notably, as shown in SI Figure S4, the RMSEs for 1-day
forecasts in the Sichuan Basin are only slightly reduced by the
CTMa method but are cut by about one-half with the IETM
method. The reduced RMSEs for 1−4-day forecasts during
July 2017 and January 2018 are compared in SI Figure S5,
which demonstrate similar patterns and last up to 4 days.
These results together suggest that the IETM method can yield
amplified and prolonged improvement over commonly used
forecasting schemes.

Model Balances in the Forecasts. It is useful to
investigate the ways in which the proposed IETM method
helps to mitigate the imbalance issue. Two types of imbalances
can generally occur in the CTM due to data assimilation. The
first type is the imbalance between the assimilated and the

Figure 4. Curves of RMSE over all validation sites as functions of lead
time for PM2.5 forecasts during January 2018. Shaded areas around the
curves for CTMa and IETM represent 95% confidence intervals,
which are calculated using the bootstrap method. Red line represents
the RMSE of assimilated PM2.5 from the CTM.
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unassimilated model variables.16 Ideally, calculation of the
chemical reactions should be more accurate with the
assimilated ICs. In reality, however, only a few of the species
involved in the CTM can be assimilated owing to the lack of
observations. This inconsistency can thus disturb the balance
of chemical reactions. As a result, improvements for the
assimilated species may diminish quickly as the CTM tries to
reach a new reaction balance. The second type is the imbalance
in space.17 For instance, in this study, the accuracy of ICs in
the surface layer was improved by assimilating surface PM2.5
observations, whereas PM2.5 in the higher layers was not
affected since no lidar or satellite data were assimilated. Such
an imbalance may lead to spurious differences between the
concentrations of PM2.5 in the surface layer and in the adjacent
layer. During the forecast, these spurious differences tend to be
lessened by vertical transport in the CTM; however, the effects
of data assimilation on surface PM2.5 are also counteracted.
Collectively, these two types of imbalances may cause spurious
species interactions and vertical transport in the CTM, thereby
diminishing the benefits from data assimilation.
The IETM method takes a fundamentally different way to

extract information from the assimilated ICs. It calculates the
transport of initial errors and corrects the baseline forecast
accordingly. Neither of the two imbalance problems
mentioned above will be encountered. First, the IETM does
not explicitly involve any reaction process, thereby avoiding
interactions between the assimilated and the unassimilated
species. Moreover, only the surface layer is considered in the
IETM, so that no vertical imbalance will arise.
To verify the above arguments, we estimated the

concentrations of PM2.5 components using the IETM by
assuming that the chemical composition of PM2.5 is the same
as that in the baseline CTM forecast. Results averaged over the
YRD region for a 4-day period are shown in Figure 5. Since no
precursors of PM2.5 were assimilated in this study, chemical
reactions between PM2.5 components and their precursors
were significantly disturbed in the CTMa method. As expected,
the concentrations of highly reactive PM2.5 components,
including nitrate, ammonium, and sulfate, change abruptly in
the first hour and become indistinguishable from the CTMf
forecasts (Figure 5b−d). By contrast, improvements for these
components by the IETM method are consistently large and
can last up to 4 days. Similar trends are found for those less

reactive components, including organic aerosols, black carbon,
and other PM2.5 components (Figure 5e−g). In this case, it is
interesting to note that although the CTMa forecasts converge
to those by CTMf and the effects of data assimilation almost
disappear within a day, the changes are not as abrupt as those
for highly reactive components. This difference suggests that
vertical transport may play a major role for these components,
which takes a longer time to reach a dynamic balance. The
relatively longer duration of the assimilation effect may also be
attributed to the start time of 20:00 and weaker vertical
transport in the nighttime. In summary, improvements by the
IETM method are substantial and consistent across all
components of PM2.5 and are not affected by either spurious
species interactions or vertical transport.

Limitations and Possible Extensions. Fully exploiting
the benefits of data assimilation is crucial for improving air-
quality forecasting. Our proposed method provides a reliable,
flexible way to enhance and extend the impacts of the
assimilated data without being affected by the imbalance issue.
The methodology is easy to implement and highly efficient as
it does not require expensive CTM computations or complex
initialization strategies. Nevertheless, the IETM assumes that
the lifetime of PM2.5 forecast errors is prespecified and vertical
transport is negligible. Although these assumptions affect only
the calculated impacts of assimilated ICs and seem plausible in
most cases, there are exceptions. For instance, scavenging of
PM2.5 by precipitation would result in a shorter lifetime of
PM2.5. Besides, when air masses collide or wildfires occur,
vertical transport may play a more important role and should
not be ignored. Moreover, since the IETM trades model
complexity for model balance, its advantages over direct
initialization techniques would diminish as the number of
species and vertical coverage in the assimilated data increase.
The IETM method could be extended in many ways to deal

with these limitations. For example, a more sophisticated decay
scheme, incorporating the reaction and deposition processes,
could be developed, which would provide better predictions
over areas and periods with unusual PM2.5 lifetimes. Moreover,
the forecast errors that are not explained by the transport or
decay of initial errors could be modeled using statistical or
machine-learning methods, which is likely to yield further
improvement for longer range forecasts.

Figure 5. Time series of the CTMf, CTMa, and IETM forecasts of total PM2.5 (a) and its components (b−g) over the Yangtze River Delta region.
Forecast starts at 20:00 on January 17, 2018.
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