
A new constant-pressure molecular dynamics method for finite systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys.: Condens. Matter 14 L487

(http://iopscience.iop.org/0953-8984/14/26/101)

Download details:

IP Address: 61.190.88.140

The article was downloaded on 11/01/2013 at 03:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/14/26
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 14 (2002) L487–L493 PII: S0953-8984(02)37359-4

LETTER TO THE EDITOR

A new constant-pressure molecular dynamics method
for finite systems

D Y Sun1 and X G Gong1,2

1 Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031,
People’s Republic of China
2 Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China

Received 23 May 2002
Published 21 June 2002
Online at stacks.iop.org/JPhysCM/14/L487

Abstract
We present a new method for constant-pressure molecular dynamics simulation
which is parameter free. This method is especially appropriate for finite systems
in which a periodic boundary condition does not apply. Simulations on carbon
nanotubes and Ni nanoparticles clearly demonstrate the validity of the method,
from which we can also easily obtain the equations of states for a finite system
under external pressure.

The molecular dynamics (MD) simulation method is a powerful tool, widely used in chemistry,
physics, and materials science [1]. A very important achievement, the constant-pressure MD
proposed by Andersen [2], and subsequently extended by Parrinello and Rahman [3], is now
a standard tool for studying the physical properties of periodic systems under an external
pressure. It has also played a central role in studying structural phase transitions in geophysical
and astrophysical applications.

Recently, the study of low-dimensional and biological systems under external pressure has
attracted considerable attention [4, 5]. In particular, studies on carbon nanotubes [6], clusters,
and nanocrystals, such as CdSe, CdS, and Si nanocrystals [7], have revealed a wealth of
interesting new phenomena. Usually, computer simulation can substantially complement the
experimental information. However, the traditional constant-pressure MD method is designed
for an infinite system with a periodic boundary condition and cannot be directly applied to a
finite system in which there is no periodic boundary condition. For this reason it is necessary to
develop a new computational scheme to study the finite system. Very recently, Martonak et al
[8] successfully studied the pressure-induced amorphization of Si35H36 clusters by introducing
a pressure-transmitting liquid. In order to have a well-defined isotropic constant pressure on
the cluster, the number of particles and the volume of the pressure-transmitting liquid should
be much larger than those for the cluster; thus has significant computational cost. Additionally,
one must also determine how the liquid atoms interact among themselves as well as with cluster
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atoms so that the liquid does not crystallize, or, in the timescale of the simulation, does not
undergo a glass transition.

In this letter, writing the volume as a function of coordinates of atoms, we propose a new
constant-pressure MD which is appropriate for a finite system. This new constant-pressure MD
is parameter free, and can be used for any system of arbitrary shape, especially nanocrystals.
We will demonstrate its validity by classical simulations of a carbon nanotube and small Ni
particles. Its extension to ab initio MD methods is straightforward.

We write the Lagrangian L of an N-atom system as

L =
N∑
i

p2
i

2mi
− (φ({ri}) + Pext V ) (1)

where ri , mi , and pi are the coordinate, mass, and momentum of the i th atom, respectively,
φ is the potential of the system, V the volume of the system, and Pext the external pressure.
If the system obeys Newtonian mechanics, the equations of motion for ri derived from the
Lagrangian L read

d

dt

(
∂L

∂ ṙi

)
= ∂L

∂ri
. (2)

Obviously the enthalpy will be conserved. The equations of motion derived from
equation (2) produce the constant-pressure ensemble for the system, as we show below. For
an equilibrium system under external pressure we have〈

1

3V

( N∑
i

miv
2
i −

N∑
i

ri · ∇φ −
N∑
i

ri · Pext ∇V

)〉
= 0 (3)

where vi is the velocity of i th atom and 〈 〉 indicates the time average. Consequently,〈 N∑
i

miv
2
i −

N∑
i

ri · ∇φ

〉
=

〈 N∑
i

ri · Pext ∇V

〉
. (4)

It is well known that, in statistical physics [9], the volume is an additive quantity which
can be written as a summation of the volumes of individual atoms,

V =
N∑
i

Vi , (5)

where Vi is the volume of the i th atom and can generally be written as a cubic homogeneous
function of its nearest-neighbour distance ri j , i.e.

Vi =
∑
j �=i

f (r3
i j ). (6)

According to Euler’s theorem,
N∑
i

ri · ∇i V = 3V , (7)

so from equation (4) we have

Pext = Pint =
〈

1

3V

( N∑
i

miv
2
i −

N∑
i

ri · ∇φ

)〉
(8)

where Pint refers to the internal pressure. Since the external pressure Pext is a constant, Pint

is also a constant. Thus, by writing the volume as a function of atomic coordinates, a new
constant-pressure MD is presented in which no extra parameter is introduced.
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Figure 1. Evolution of the instantaneous pressure and volume through MD runs for the carbon
nanotube (lower two) and Ni nanocrystal (upper two). The pressure and volume of the system
fluctuate around the average value. The new constant-pressure MD does reveal a constant pressure.

The present constant-pressure MD method has several advantages. First, it can make the
calculation more realistic, without the need to choose the mass for the volume as in traditional
constant-pressure MD [2], which directly affects the timescale of the relaxation. Secondly, the
response of the system to the external pressure is more physical. This is especially important
for an inhomogeneous system. By contrast, in traditional constant-pressure MD, the response
of the system to external pressure is essentially linear, i.e., the volume of the system is linearly
scaled according to the difference of the internal and external pressures.

The key to the success of the present method is in defining the volume as a function
of atomic coordinates. In the traditional constant-pressure MD method, the volume is in
generalized coordinates which have equal importance as atomic coordinates, and the constant
pressure is dynamically achieved by directly changing the volume of the system. However, in
the present scheme, the constant pressure is obtained by dynamically changing the motion of
each atom.
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Figure 2. Calculated properties of the carbon nanotube. Lowest panel: the energy as a function
of volume from the steepest-descent (SD) calculation (filled circles), the new constant-pressure
MD at 300 K (open squares), and the static calculation (open circles). Middle panel: the enthalpy
as a function of the reduced volume from the static (open circles) and present MD (filled circles)
calculations. Top panel: the pressure–volume relationship of the carbon nanotube at 0 K (filled
circles) and 300 K (open squares). Our SD results at zero temperature are in good agreement with
the static results except for large volume change, where the structural relaxation is included in our
MD runs.

To show how well this new constant-pressure MD works in real applications, we have
simulated carbon nanotubes and Ni nanocrystals under an external pressure. In the simulation
it is difficult to obtain an exact formalism for the real physical atomic volume. However,
there are a variety of efficient approximations, and one of the simplest and most direct ways is
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Figure 3. The EOS for Ni nanocrystals (filled circles) and the bulk phase (open circles), where the
data for Ni3151 nanocrystals and the bulk phase are calculated from the new and traditional MD
simulations, respectively.

based on the Wigner–Seitz primitive cell. We use the scaled volume of the atomic sphere to
approximate the Wigner–Seitz primitive cell in the following form:

Vi = γi
4π

3

∑
j �=i

(
ri j

2

)3

(9)

where the summation runs over all the first-nearest neighbours of the i th atom, and γi is a scale
factor closely related to the number of the nearest neighbours of the i th atom. In the study
of carbon nanotubes, we fix the periodic length in the axial direction. The slightly different
definition of the volume for nanotubes will be presented elsewhere [10]. In fact, it is not
necessary to include the coordinates of all atoms in the calculation of the volume, since the
volume of the finite system is just determined by the surface atoms.

The interaction between carbon atoms is described by the parametrized potential developed
by Brenner [11] according to the Tersoff bonding formalism [12], which is widely used to
study the mechanical properties of carbon nanotubes [13]. The Sutton–Chen potential is used
to describe the interaction between Ni atoms [14]; this is also widely used in the literature [15].



L492 Letter to the Editor

We find that our results for the carbon nanotube and Ni nanocrystal are in good agreement
with those obtained by other methods.

The evolutions of the instantaneous pressure in the simulation of a (10 × 10) carbon
nanotube and a nickel nanocrystal (figure 1) show that the present method does recover a
constant-pressure simulation. Although the instantaneous pressure of the system fluctuates,
the average value is equal to the set external pressure, i.e. 0.7 GPa for the carbon nanotube and
7.0 GPa for the Ni nanocrystal. The correlation between the volume and pressure can also be
clearly observed.

Figure 2 shows the calculated energy versus volume (pressure) for a carbon nanotube.
The close agreement between the static calculation and our constant-pressure MD simulation
clearly demonstrates the validity of the latter. In the static calculation, energies are calculated
at the linearly scaled radius of the carbon nanotube without relaxing the atomic positions. All
the energies shown in the lower panel of figure 2 are relative to the minimum energy, and the
volume is renormalized by the equilibrium volume without the external pressure. We perform
the constant-pressure MD simulation at 300 K for various external pressures from 0 to 2 GPa.
By performing a SD calculation, we also obtain the energy and pressure as a function of the
volume at 0 K. The static calculation and the SD calculation give very similar results, the slight
difference being due to the relaxation of the atomic coordinates.

We show the enthalpy as a function of the reduced volume for static and present MD results
in the middle panel of figure 2. It can be seen that, at each volume, the enthalpy of the present
MD, in which the structures under the external pressure are relaxed, is always smaller than that
from the static calculation, as it should be. The fact that the difference between the enthalpies
calculated by the static and SD methods at 0 K increases with decreasing volume suggests that
the atomic relaxation becomes more and more important. The new constant-pressure MD also
correctly describes the finite-temperature properties.

The equation of states (EOS) at finite temperature for an Ni nanocrystal can also be
obtained through the simulation. Figure 3 shows the EOS for an Ni nanocrystal and the bulk
phase calculated from the new constant-pressure MD and traditional MD, respectively. All the
energies shown in figure 3 are relative to the minimum energy, and the volume is renormalized
by the equilibrium volume without external pressure at 300 K. The nanocrystal and bulk phase
show similar behaviour. However, from the figure we can see that the nanocrystal is not
as hard as the bulk phase. If we assume that the first-order Birch–Murnaghan EOS [16] is
also applicable for finite systems, we derive the bulk modulus as 136 and 166 GPa for the
nanocrystal and bulk phase, respectively, in agreement with our previous results [17].

In summary, writing the volume as a function of atom coordinates we have proposed
a new constant-pressure MD method for finite systems which is parameter free and where
the external pressure can be exactly implemented. Simulations on carbon nanotubes and Ni
nanoparticles clearly demonstrate the validity of the method, in which the constant pressure is
revealed. We have also shown that with our newly proposed scheme the EOS for finite systems
can be calculated through a molecular dynamics simulation.

We thank Dr D J Shu and Dr G Chen for technical assistance. This work was supported by
the National Natural Science Foundation of China, the Special National Fund for Major Basic
Research, and Chinese Academy of Sciences programmes.

References

[1] Allen M P and Tildesley D J 1997 Computer Simulation of Liquid (Oxford: Clarendon)
[2] Andersen H C 1980 J. Chem. Phys. 72 2384



Letter to the Editor L493

[3] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182
Parrinello M and Rahman A 1980 Phys. Rev. Lett. 45 1196

[4] Angilella G G N, Pucci R, Piccitto G and Siringo F (ed) 1998 Proc. 36th European High-Pressure Research Group
Meeting on Molecular and Low Dimensional System Under Pressure (Catania, Italy) (book of abstracts)

[5] Gradrat F et al 1999 Eur. J. Biochem. 262 900
[6] See for example

Shen Weidian, Jiang Bin, Han Bao-Shan and Xie Si-Shen 2000 Phys. Rev. Lett. 84 3634
Reich S, Jantoljak H and Thomsen C 2000 Phys. Rev. B 61 R13 389
Venkateswaran U D et al 1999 Phys. Rev. B 59 10 928
Peters M J, McNeil L E, Lu J P and Kahn D 2000 Phys. Rev. B 61 5939

[7] Tolbert S H and Alivisatos A P 1993 Z. Phys. D 26 56
Tolbert S H and Alivisatos A P 1995 J. Chem. Phys. 102 4642
Tolbert S H and Alivisatos A P 1994 Science 265 373
Tolbert S H and Alivisatos A P 1995 Annu. Rev. Phys. Chem. 46 595
Tolbert S H et al 1996 Phys. Rev. Lett. 76 4384

[8] Martonak R, Molteni C and Parrinello M 2000 Phys. Rev. Lett. 84 682
[9] Landau L D and Lifshitz E M (ed) 1976 Statistical Physics Part I, 3rd edn (New York: Pergamon)

[10] Sun D Y and Gong X G 2002 at press
[11] Brenner D W 1990 Phys. Rev. B 42 9458
[12] Tersoff J 1988 Phys. Rev. Lett. 61 2879
[13] See for example

Nardelli M B, Yakobson B I and Bernholc J 1998 Phys. Rev. Lett. 81 4656
Yakobson B I, Brabec C J and Bernholc J 1996 Phys. Rev. Lett. 76 2511
Xia Y, Ma Y, Xiang Y, Mu Y, Tan C and Mei L 2000 Phys. Rev. B 61 11 088

[14] Sutton A P and Chen J 1990 Phil. Mag. Lett. 61 139
[15] See for example

Xiang Y, Sun D Y and Gong X G 2000 J. Phys. Chem. A 104 2746
Uppenbrink J and Wales D J 1992 J. Chem. Phys. 96 8520
Kara A and Rahman T S 1998 Phys. Rev. Lett. 81 1453

[16] Birch F 1952 J. Geophys. Res. 57 227
[17] Sun D Y, Gong X G and Wang X Q 2001 Phys. Rev. B 63 193412


