HFCAS OpenIR
Strong lattice anharmonicity securing intrinsically low lattice thermal conductivity and high performance thermoelectric SnSb2Te4 via Se alloying
Wu, Hong1,2; Lu, Xu1; Wang, Guoyu2; Peng, Kunling3; Zhang, Bin3; Chen, Yongjin3; Gong, Xiangnan3; Tang, Xiaodan1; Zhang, Xuemei4; Feng, Zhenzhen4; Han, Guang5; Zhang, Yongsheng4; Zhou, Xiaoyuan1
2020-10-01
发表期刊NANO ENERGY
ISSN2211-2855
通讯作者Zhou, Xiaoyuan(xiaoyuan2013@cqu.edu.cn)
摘要Seeking a material with intrinsically low lattice thermal conductivity is crucial for screening high-performance thermoelectric (TE) materials. Here, the TE properties of SnSb2(Te1-xSex)4 (0 <= x <= 0.25) samples are systematically investigated for the first time. An intrinsically ultralow lattice thermal conductivity (similar to 0.56 W m(-1) K-1 at 320 K and similar to 0.46 W m(-1) K-1 at 720 K) has been observed in SnSb2Te4, which can be ascribed to the weak chemical bonding as well as the bond anharmonicity verified by first-principles calculations. Furthermore, alloying with Se enables the remarkable increase in the Seebeck coefficients, resulting from the optimized carrier concentrations due to the enlarged formation energy of intrinsic SnSb-type antisite defects along with the simultaneous enhancement of density-of-states effective mass from the convergence of multiple carrier pockets. As a result, a peak zT value of 0.5 at 720 K and a significant improvement in average zT (similar to 200%) in SnSb2(Te0.75Se0.25)(4) are achieved. This work not only demonstrates the potential of SnSb2Te4-based compounds for practical TE applications, but also provides an insightful guidance to improve TE performance by defect and electronic band engineering.
关键词Thermoelectric SnSb2Te4 Band convergence Lattice anharmonicity Defects
DOI10.1016/j.nanoen.2020.105084
关键词[WOS]ZT ; LEAD ; SNS
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[11674040] ; National Natural Science Foundation of China[11904348 11604032] ; National Natural Science Foundation of China[51472036] ; National Natural Science Foundation of China[51672270] ; Fundamental Research Funds for the Central Universities[106112016CDJZR308808] ; Key Research Program of Frontier Sciences, CAS[QYZDB-SSW-SLH016]
项目资助者National Natural Science Foundation of China ; Fundamental Research Funds for the Central Universities ; Key Research Program of Frontier Sciences, CAS
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
WOS类目Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied
WOS记录号WOS:000573074100003
出版者ELSEVIER
引用统计
被引频次:43[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.hfcas.ac.cn:8080/handle/334002/104194
专题中国科学院合肥物质科学研究院
通讯作者Zhou, Xiaoyuan
作者单位1.Chongqing Univ, Coll Phys, Chongqing 401331, Peoples R China
2.Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
3.Chongqing Univ, Analyt & Testing Ctr, Chongqing 401331, Peoples R China
4.Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China
5.Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China
推荐引用方式
GB/T 7714
Wu, Hong,Lu, Xu,Wang, Guoyu,et al. Strong lattice anharmonicity securing intrinsically low lattice thermal conductivity and high performance thermoelectric SnSb2Te4 via Se alloying[J]. NANO ENERGY,2020,76.
APA Wu, Hong.,Lu, Xu.,Wang, Guoyu.,Peng, Kunling.,Zhang, Bin.,...&Zhou, Xiaoyuan.(2020).Strong lattice anharmonicity securing intrinsically low lattice thermal conductivity and high performance thermoelectric SnSb2Te4 via Se alloying.NANO ENERGY,76.
MLA Wu, Hong,et al."Strong lattice anharmonicity securing intrinsically low lattice thermal conductivity and high performance thermoelectric SnSb2Te4 via Se alloying".NANO ENERGY 76(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Hong]的文章
[Lu, Xu]的文章
[Wang, Guoyu]的文章
百度学术
百度学术中相似的文章
[Wu, Hong]的文章
[Lu, Xu]的文章
[Wang, Guoyu]的文章
必应学术
必应学术中相似的文章
[Wu, Hong]的文章
[Lu, Xu]的文章
[Wang, Guoyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。