HFCAS OpenIR
Disruption prediction on EAST tokamak using a deep learning algorithm
Guo,B H1,2; Chen,D L1; Shen,B1; Rea,C3; Granetz,R S3; Zeng,L1; Hu,W H1; Qian,J P1; Sun,Y W1; Xiao,B J1,2
2021-09-24
发表期刊Plasma Physics and Controlled Fusion
ISSN0741-3335
通讯作者Chen,D L()
摘要Abstract In this study, a long short-term memory (LSTM) model is trained on a large disruption warning database to predict the disruption on EAST tokomak. To compare the performance of the proposed model with the previously reported full convolutional neural network (CNN) (Guo et al 2020 Plasma Phys. Control. Fusion 63 025008), the same data set and diagnostic signals are used. Based on the test set, the area under the receiver operating characteristic curve, i.e. the AUC value of the LSTM model is obtained as 0.87, and the true positive rate (TPR) is sim87.5%, while the false positive rate (FPR) is sim15.1%. Since the LSTM model is more sensitive to radiation fluctuations than CNN, the prediction performance of LSTM model is inferior to that of CNN model (for CNN, AUC sim 0.92, TPR sim 87.5%, FPR sim 6.1%). However, the advance warning time of LSTM model is 14 ms earlier than that of CNN. To reduce the FPR and improve the performance of the model, more fast bolometer channels are added as the input signals of the LSTM model, including the radiation from the upper and lower edges and the plasma core. Consequently, for the same test set, the AUC value increases to 0.89, and the FPR decreases to sim9.4%, but the TPR also decreases to sim83.9%. In addition, the sensitivity of the model to radiation fluctuations caused by impurity behavior decreases significantly, and the warning time becomes 8.7 ms earlier as compared to that of the original model. Overall, it is proved that deep learning algorithms exhibit immense application potential in the disruption prediction of long-pulse fusion devices.
关键词disruptions predictions EAST tokamak deep learning
DOI10.1088/1361-6587/ac228b
语种英语
WOS记录号IOP:0741-3335-63-11-ac228b
出版者IOP Publishing
引用统计
文献类型期刊论文
条目标识符http://ir.hfcas.ac.cn:8080/handle/334002/125382
专题中国科学院合肥物质科学研究院
通讯作者Chen,D L
作者单位1.Institute of Plasma Physics, CAS, PO Box 1126, Hefei 230031, People’s Republic of China
2.University of Science and Technology of China, Hefei 230031, People’s Republic of China
3.MIT Plasma Science and Fusion Center, Cambridge, MA 02139, United States of America
推荐引用方式
GB/T 7714
Guo,B H,Chen,D L,Shen,B,et al. Disruption prediction on EAST tokamak using a deep learning algorithm[J]. Plasma Physics and Controlled Fusion,2021,63.
APA Guo,B H.,Chen,D L.,Shen,B.,Rea,C.,Granetz,R S.,...&Xiao,B J.(2021).Disruption prediction on EAST tokamak using a deep learning algorithm.Plasma Physics and Controlled Fusion,63.
MLA Guo,B H,et al."Disruption prediction on EAST tokamak using a deep learning algorithm".Plasma Physics and Controlled Fusion 63(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guo,B H]的文章
[Chen,D L]的文章
[Shen,B]的文章
百度学术
百度学术中相似的文章
[Guo,B H]的文章
[Chen,D L]的文章
[Shen,B]的文章
必应学术
必应学术中相似的文章
[Guo,B H]的文章
[Chen,D L]的文章
[Shen,B]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。