HFCAS OpenIR  > 技术生物与农业工程研究所
Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions; Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions; Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions; Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions; Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions; Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions; Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions; Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions; Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions; Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions; Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions; Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions; Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions; Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions; Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions; Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions
Fang, Lingling1; Wang, Yueliang1; Liu, Miao1; Gong, Ming2; Xu, An3; Deng, Zhaoxiang1
2016-11-07 ; 2016-11-07 ; 2016-11-07 ; 2016-11-07 ; 2016-11-07 ; 2016-11-07 ; 2016-11-07 ; 2016-11-07 ; 2016-11-07 ; 2016-11-07 ; 2016-11-07 ; 2016-11-07 ; 2016-11-07 ; 2016-11-07 ; 2016-11-07 ; 2016-11-07
发表期刊ANGEWANDTE CHEMIE-INTERNATIONAL EDITION ; ANGEWANDTE CHEMIE-INTERNATIONAL EDITION ; ANGEWANDTE CHEMIE-INTERNATIONAL EDITION ; ANGEWANDTE CHEMIE-INTERNATIONAL EDITION ; ANGEWANDTE CHEMIE-INTERNATIONAL EDITION ; ANGEWANDTE CHEMIE-INTERNATIONAL EDITION ; ANGEWANDTE CHEMIE-INTERNATIONAL EDITION ; ANGEWANDTE CHEMIE-INTERNATIONAL EDITION ; ANGEWANDTE CHEMIE-INTERNATIONAL EDITION ; ANGEWANDTE CHEMIE-INTERNATIONAL EDITION ; ANGEWANDTE CHEMIE-INTERNATIONAL EDITION ; ANGEWANDTE CHEMIE-INTERNATIONAL EDITION ; ANGEWANDTE CHEMIE-INTERNATIONAL EDITION ; ANGEWANDTE CHEMIE-INTERNATIONAL EDITION ; ANGEWANDTE CHEMIE-INTERNATIONAL EDITION ; ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
摘要Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self-assembly process capable of producing highly uniform and solution-processable nanomaterials with tailor-made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag+ soldering and dry thermal sintering to produce nanodimer-derived structures with precisely engineered charge-transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II). Upon silica removal, the products are grafted by DNA to offer surface functionality. This process is also adaptable to DNA-linked AuNP dimers toward plasmonic meta-materials via DNA-guided soldering and sintering.; Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self-assembly process capable of producing highly uniform and solution-processable nanomaterials with tailor-made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag+ soldering and dry thermal sintering to produce nanodimer-derived structures with precisely engineered charge-transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II). Upon silica removal, the products are grafted by DNA to offer surface functionality. This process is also adaptable to DNA-linked AuNP dimers toward plasmonic meta-materials via DNA-guided soldering and sintering.; Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self-assembly process capable of producing highly uniform and solution-processable nanomaterials with tailor-made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag+ soldering and dry thermal sintering to produce nanodimer-derived structures with precisely engineered charge-transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II). Upon silica removal, the products are grafted by DNA to offer surface functionality. This process is also adaptable to DNA-linked AuNP dimers toward plasmonic meta-materials via DNA-guided soldering and sintering.; Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self-assembly process capable of producing highly uniform and solution-processable nanomaterials with tailor-made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag+ soldering and dry thermal sintering to produce nanodimer-derived structures with precisely engineered charge-transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II). Upon silica removal, the products are grafted by DNA to offer surface functionality. This process is also adaptable to DNA-linked AuNP dimers toward plasmonic meta-materials via DNA-guided soldering and sintering.; Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self-assembly process capable of producing highly uniform and solution-processable nanomaterials with tailor-made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag+ soldering and dry thermal sintering to produce nanodimer-derived structures with precisely engineered charge-transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II). Upon silica removal, the products are grafted by DNA to offer surface functionality. This process is also adaptable to DNA-linked AuNP dimers toward plasmonic meta-materials via DNA-guided soldering and sintering.; Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self-assembly process capable of producing highly uniform and solution-processable nanomaterials with tailor-made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag+ soldering and dry thermal sintering to produce nanodimer-derived structures with precisely engineered charge-transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II). Upon silica removal, the products are grafted by DNA to offer surface functionality. This process is also adaptable to DNA-linked AuNP dimers toward plasmonic meta-materials via DNA-guided soldering and sintering.; Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self-assembly process capable of producing highly uniform and solution-processable nanomaterials with tailor-made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag+ soldering and dry thermal sintering to produce nanodimer-derived structures with precisely engineered charge-transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II). Upon silica removal, the products are grafted by DNA to offer surface functionality. This process is also adaptable to DNA-linked AuNP dimers toward plasmonic meta-materials via DNA-guided soldering and sintering.; Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self-assembly process capable of producing highly uniform and solution-processable nanomaterials with tailor-made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag+ soldering and dry thermal sintering to produce nanodimer-derived structures with precisely engineered charge-transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II). Upon silica removal, the products are grafted by DNA to offer surface functionality. This process is also adaptable to DNA-linked AuNP dimers toward plasmonic meta-materials via DNA-guided soldering and sintering.; Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self-assembly process capable of producing highly uniform and solution-processable nanomaterials with tailor-made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag+ soldering and dry thermal sintering to produce nanodimer-derived structures with precisely engineered charge-transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II). Upon silica removal, the products are grafted by DNA to offer surface functionality. This process is also adaptable to DNA-linked AuNP dimers toward plasmonic meta-materials via DNA-guided soldering and sintering.; Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self-assembly process capable of producing highly uniform and solution-processable nanomaterials with tailor-made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag+ soldering and dry thermal sintering to produce nanodimer-derived structures with precisely engineered charge-transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II). Upon silica removal, the products are grafted by DNA to offer surface functionality. This process is also adaptable to DNA-linked AuNP dimers toward plasmonic meta-materials via DNA-guided soldering and sintering.; Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self-assembly process capable of producing highly uniform and solution-processable nanomaterials with tailor-made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag+ soldering and dry thermal sintering to produce nanodimer-derived structures with precisely engineered charge-transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II). Upon silica removal, the products are grafted by DNA to offer surface functionality. This process is also adaptable to DNA-linked AuNP dimers toward plasmonic meta-materials via DNA-guided soldering and sintering.; Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self-assembly process capable of producing highly uniform and solution-processable nanomaterials with tailor-made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag+ soldering and dry thermal sintering to produce nanodimer-derived structures with precisely engineered charge-transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II). Upon silica removal, the products are grafted by DNA to offer surface functionality. This process is also adaptable to DNA-linked AuNP dimers toward plasmonic meta-materials via DNA-guided soldering and sintering.; Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self-assembly process capable of producing highly uniform and solution-processable nanomaterials with tailor-made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag+ soldering and dry thermal sintering to produce nanodimer-derived structures with precisely engineered charge-transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II). Upon silica removal, the products are grafted by DNA to offer surface functionality. This process is also adaptable to DNA-linked AuNP dimers toward plasmonic meta-materials via DNA-guided soldering and sintering.; Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self-assembly process capable of producing highly uniform and solution-processable nanomaterials with tailor-made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag+ soldering and dry thermal sintering to produce nanodimer-derived structures with precisely engineered charge-transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II). Upon silica removal, the products are grafted by DNA to offer surface functionality. This process is also adaptable to DNA-linked AuNP dimers toward plasmonic meta-materials via DNA-guided soldering and sintering.; Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self-assembly process capable of producing highly uniform and solution-processable nanomaterials with tailor-made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag+ soldering and dry thermal sintering to produce nanodimer-derived structures with precisely engineered charge-transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II). Upon silica removal, the products are grafted by DNA to offer surface functionality. This process is also adaptable to DNA-linked AuNP dimers toward plasmonic meta-materials via DNA-guided soldering and sintering.; Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self-assembly process capable of producing highly uniform and solution-processable nanomaterials with tailor-made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag+ soldering and dry thermal sintering to produce nanodimer-derived structures with precisely engineered charge-transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II). Upon silica removal, the products are grafted by DNA to offer surface functionality. This process is also adaptable to DNA-linked AuNP dimers toward plasmonic meta-materials via DNA-guided soldering and sintering.
文章类型Article ; Article ; Article ; Article ; Article ; Article ; Article ; Article ; Article ; Article ; Article ; Article ; Article ; Article ; Article ; Article
关键词Dna Self-assembly Dna Self-assembly Dna Self-assembly Dna Self-assembly Dna Self-assembly Dna Self-assembly Dna Self-assembly Dna Self-assembly Dna Self-assembly Dna Self-assembly Dna Self-assembly Dna Self-assembly Dna Self-assembly Dna Self-assembly Dna Self-assembly Dna Self-assembly Nanodimers Nanodimers Nanodimers Nanodimers Nanodimers Nanodimers Nanodimers Nanodimers Nanodimers Nanodimers Nanodimers Nanodimers Nanodimers Nanodimers Nanodimers Nanodimers Nanoparticles Nanoparticles Nanoparticles Nanoparticles Nanoparticles Nanoparticles Nanoparticles Nanoparticles Nanoparticles Nanoparticles Nanoparticles Nanoparticles Nanoparticles Nanoparticles Nanoparticles Nanoparticles Plasmonics Plasmonics Plasmonics Plasmonics Plasmonics Plasmonics Plasmonics Plasmonics Plasmonics Plasmonics Plasmonics Plasmonics Plasmonics Plasmonics Plasmonics Plasmonics Sintering Sintering Sintering Sintering Sintering Sintering Sintering Sintering Sintering Sintering Sintering Sintering Sintering Sintering Sintering Sintering
WOS标题词Science & Technology ; Science & Technology ; Science & Technology ; Science & Technology ; Science & Technology ; Science & Technology ; Science & Technology ; Science & Technology ; Science & Technology ; Science & Technology ; Science & Technology ; Science & Technology ; Science & Technology ; Science & Technology ; Science & Technology ; Science & Technology ; Physical Sciences ; Physical Sciences ; Physical Sciences ; Physical Sciences ; Physical Sciences ; Physical Sciences ; Physical Sciences ; Physical Sciences ; Physical Sciences ; Physical Sciences ; Physical Sciences ; Physical Sciences ; Physical Sciences ; Physical Sciences ; Physical Sciences ; Physical Sciences
DOI10.1002/anie.201608271 ; 10.1002/anie.201608271 ; 10.1002/anie.201608271 ; 10.1002/anie.201608271 ; 10.1002/anie.201608271 ; 10.1002/anie.201608271 ; 10.1002/anie.201608271 ; 10.1002/anie.201608271 ; 10.1002/anie.201608271 ; 10.1002/anie.201608271 ; 10.1002/anie.201608271 ; 10.1002/anie.201608271 ; 10.1002/anie.201608271 ; 10.1002/anie.201608271 ; 10.1002/anie.201608271 ; 10.1002/anie.201608271
关键词[WOS]SURFACE-ENHANCED RAMAN ; SURFACE-ENHANCED RAMAN ; SURFACE-ENHANCED RAMAN ; SURFACE-ENHANCED RAMAN ; SURFACE-ENHANCED RAMAN ; SURFACE-ENHANCED RAMAN ; SURFACE-ENHANCED RAMAN ; SURFACE-ENHANCED RAMAN ; SURFACE-ENHANCED RAMAN ; SURFACE-ENHANCED RAMAN ; SURFACE-ENHANCED RAMAN ; SURFACE-ENHANCED RAMAN ; SURFACE-ENHANCED RAMAN ; SURFACE-ENHANCED RAMAN ; SURFACE-ENHANCED RAMAN ; SURFACE-ENHANCED RAMAN ; DISCRETE-DIPOLE APPROXIMATION ; DISCRETE-DIPOLE APPROXIMATION ; DISCRETE-DIPOLE APPROXIMATION ; DISCRETE-DIPOLE APPROXIMATION ; DISCRETE-DIPOLE APPROXIMATION ; DISCRETE-DIPOLE APPROXIMATION ; DISCRETE-DIPOLE APPROXIMATION ; DISCRETE-DIPOLE APPROXIMATION ; DISCRETE-DIPOLE APPROXIMATION ; DISCRETE-DIPOLE APPROXIMATION ; DISCRETE-DIPOLE APPROXIMATION ; DISCRETE-DIPOLE APPROXIMATION ; DISCRETE-DIPOLE APPROXIMATION ; DISCRETE-DIPOLE APPROXIMATION ; DISCRETE-DIPOLE APPROXIMATION ; DISCRETE-DIPOLE APPROXIMATION ; NANOPARTICLE DIMERS ; NANOPARTICLE DIMERS ; NANOPARTICLE DIMERS ; NANOPARTICLE DIMERS ; NANOPARTICLE DIMERS ; NANOPARTICLE DIMERS ; NANOPARTICLE DIMERS ; NANOPARTICLE DIMERS ; NANOPARTICLE DIMERS ; NANOPARTICLE DIMERS ; NANOPARTICLE DIMERS ; NANOPARTICLE DIMERS ; NANOPARTICLE DIMERS ; NANOPARTICLE DIMERS ; NANOPARTICLE DIMERS ; NANOPARTICLE DIMERS ; METAL NANOPARTICLES ; METAL NANOPARTICLES ; METAL NANOPARTICLES ; METAL NANOPARTICLES ; METAL NANOPARTICLES ; METAL NANOPARTICLES ; METAL NANOPARTICLES ; METAL NANOPARTICLES ; METAL NANOPARTICLES ; METAL NANOPARTICLES ; METAL NANOPARTICLES ; METAL NANOPARTICLES ; METAL NANOPARTICLES ; METAL NANOPARTICLES ; METAL NANOPARTICLES ; METAL NANOPARTICLES ; NANOSTRUCTURES ; NANOSTRUCTURES ; NANOSTRUCTURES ; NANOSTRUCTURES ; NANOSTRUCTURES ; NANOSTRUCTURES ; NANOSTRUCTURES ; NANOSTRUCTURES ; NANOSTRUCTURES ; NANOSTRUCTURES ; NANOSTRUCTURES ; NANOSTRUCTURES ; NANOSTRUCTURES ; NANOSTRUCTURES ; NANOSTRUCTURES ; NANOSTRUCTURES ; NANOMATERIALS ; NANOMATERIALS ; NANOMATERIALS ; NANOMATERIALS ; NANOMATERIALS ; NANOMATERIALS ; NANOMATERIALS ; NANOMATERIALS ; NANOMATERIALS ; NANOMATERIALS ; NANOMATERIALS ; NANOMATERIALS ; NANOMATERIALS ; NANOMATERIALS ; NANOMATERIALS ; NANOMATERIALS ; SCATTERING ; SCATTERING ; SCATTERING ; SCATTERING ; SCATTERING ; SCATTERING ; SCATTERING ; SCATTERING ; SCATTERING ; SCATTERING ; SCATTERING ; SCATTERING ; SCATTERING ; SCATTERING ; SCATTERING ; SCATTERING ; RESONANCE ; RESONANCE ; RESONANCE ; RESONANCE ; RESONANCE ; RESONANCE ; RESONANCE ; RESONANCE ; RESONANCE ; RESONANCE ; RESONANCE ; RESONANCE ; RESONANCE ; RESONANCE ; RESONANCE ; RESONANCE ; SPECTROSCOPY ; SPECTROSCOPY ; SPECTROSCOPY ; SPECTROSCOPY ; SPECTROSCOPY ; SPECTROSCOPY ; SPECTROSCOPY ; SPECTROSCOPY ; SPECTROSCOPY ; SPECTROSCOPY ; SPECTROSCOPY ; SPECTROSCOPY ; SPECTROSCOPY ; SPECTROSCOPY ; SPECTROSCOPY ; SPECTROSCOPY ; CLUSTERS ; CLUSTERS ; CLUSTERS ; CLUSTERS ; CLUSTERS ; CLUSTERS ; CLUSTERS ; CLUSTERS ; CLUSTERS ; CLUSTERS ; CLUSTERS ; CLUSTERS ; CLUSTERS ; CLUSTERS ; CLUSTERS ; CLUSTERS
收录类别SCI ; SCI ; SCI ; SCI ; SCI ; SCI ; SCI ; SCI ; SCI ; SCI ; SCI ; SCI ; SCI ; SCI ; SCI ; SCI
语种英语 ; 英语 ; 英语 ; 英语 ; 英语 ; 英语 ; 英语 ; 英语 ; 英语 ; 英语 ; 英语 ; 英语 ; 英语 ; 英语 ; 英语 ; 英语
项目资助者NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; NNSFC(21425521 ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; MOST of China(2016YFA0201300) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Hefei Center for Physical Science and Technology(2014FXCX010) ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; Collaborative Innovation Center of Suzhou Nano Science and Technology ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21273214 ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001) ; 21521001)
WOS研究方向Chemistry ; Chemistry ; Chemistry ; Chemistry ; Chemistry ; Chemistry ; Chemistry ; Chemistry ; Chemistry ; Chemistry ; Chemistry ; Chemistry ; Chemistry ; Chemistry ; Chemistry ; Chemistry
WOS类目Chemistry, Multidisciplinary ; Chemistry, Multidisciplinary ; Chemistry, Multidisciplinary ; Chemistry, Multidisciplinary ; Chemistry, Multidisciplinary ; Chemistry, Multidisciplinary ; Chemistry, Multidisciplinary ; Chemistry, Multidisciplinary ; Chemistry, Multidisciplinary ; Chemistry, Multidisciplinary ; Chemistry, Multidisciplinary ; Chemistry, Multidisciplinary ; Chemistry, Multidisciplinary ; Chemistry, Multidisciplinary ; Chemistry, Multidisciplinary ; Chemistry, Multidisciplinary
WOS记录号WOS:000387028000015 ; WOS:000387028000015 ; WOS:000387028000015 ; WOS:000387028000015 ; WOS:000387028000015 ; WOS:000387028000015 ; WOS:000387028000015 ; WOS:000387028000015 ; WOS:000387028000015 ; WOS:000387028000015 ; WOS:000387028000015 ; WOS:000387028000015 ; WOS:000387028000015 ; WOS:000387028000015 ; WOS:000387028000015 ; WOS:000387028000015
引用统计
被引频次:36[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.hfcas.ac.cn:8080/handle/334002/30155
专题技术生物与农业工程研究所
作者单位1.Univ Sci & Technol China, CAS Key Lab Soft Matter Chem, Hefei 230026, Anhui, Peoples R China
2.Univ Sci & Technol China, Engn & Mat Sci Expt Ctr, Hefei 230027, Anhui, Peoples R China
3.Chinese Acad Sci, Hefei Inst Phys Sci, Key Lab Ion Beam Bioengn, Hefei 230031, Anhui, Peoples R China
推荐引用方式
GB/T 7714
Fang, Lingling,Wang, Yueliang,Liu, Miao,et al. Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions, Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions, Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions, Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions, Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions, Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions, Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions, Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions, Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions, Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions, Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions, Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions, Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions, Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions, Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions, Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions[J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016,55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55(46):14294-14298, 14294-14298, 14294-14298, 14294-14298, 14294-14298, 14294-14298, 14294-14298, 14294-14298, 14294-14298, 14294-14298, 14294-14298, 14294-14298, 14294-14298, 14294-14298, 14294-14298, 14294-14298.
APA Fang, Lingling,Wang, Yueliang,Liu, Miao,Gong, Ming,Xu, An,&Deng, Zhaoxiang.(2016).Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions.ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,55(46),14294-14298.
MLA Fang, Lingling,et al."Dry Sintering Meets Wet Silver-Ion "Soldering": Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions".ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 55.46(2016):14294-14298.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Dry Sintering Meets (3929KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fang, Lingling]的文章
[Wang, Yueliang]的文章
[Liu, Miao]的文章
百度学术
百度学术中相似的文章
[Fang, Lingling]的文章
[Wang, Yueliang]的文章
[Liu, Miao]的文章
必应学术
必应学术中相似的文章
[Fang, Lingling]的文章
[Wang, Yueliang]的文章
[Liu, Miao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Dry Sintering Meets Wet Silver-Ion _Soldering__ Charge-Transfer Plasmon Engineering of Solution-Assembled Gold Nanodimers From Visible to Near-Infrared I and II Regions.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。